
Learning to Optimize on Riemannian Manifolds
Zhi Gao ,Member, IEEE, Yuwei Wu ,Member, IEEE, Xiaomeng Fan,

Mehrtash Harandi ,Member, IEEE, and Yunde Jia ,Member, IEEE

Abstract—Many learning tasks are modeled as optimization problems with nonlinear constraints, such as principal component

analysis and fitting a Gaussian mixture model. A popular way to solve such problems is resorting to Riemannian optimization

algorithms, which yet heavily rely on both human involvement and expert knowledge about Riemannian manifolds. In this paper, we

propose a Riemannian meta-optimization method to automatically learn a Riemannian optimizer. We parameterize the Riemannian

optimizer by a novel recurrent network and utilize Riemannian operations to ensure that our method is faithful to the geometry of

manifolds. The proposed method explores the distribution of the underlying data by minimizing the objective of updated parameters,

and hence is capable of learning task-specific optimizations. We introduce a Riemannian implicit differentiation training scheme to

achieve efficient training in terms of numerical stability and computational cost. Unlike conventional meta-optimization training schemes

that need to differentiate through the whole optimization trajectory, our training scheme is only related to the final two optimization

steps. In this way, our training scheme avoids the exploding gradient problem, and significantly reduces the computational load and

memory footprint. We discuss experimental results across various constrained problems, including principal component analysis on

Grassmann manifolds, face recognition, person re-identification, and texture image classification on Stiefel manifolds, clustering and

similarity learning on symmetric positive definite manifolds, and few-shot learning on hyperbolic manifolds.

Index Terms—Riemannian optimization, meta-optimization, meta-learning, Riemannian manifolds

Ç

1 INTRODUCTION

OPTIMIZATION techniques are pivotal to the success of the
machine learning community [1]. A large body of

efforts have been targeted at designing powerful optimiza-
tion algorithms, where gradient-based algorithms are wit-
nessed tremendous progress [2], [3]. In practice, numerous
tasks are modeled as optimization problems with nonlinear
constraints. For example, similarity learning [4], [5], kernel-
based processing [6], learning Gaussian mixture model [7],
and data summarization and representation [8], [9], [10] can
be modeled with symmetric positive definite (SPD) matrix

constraints. Principal component analysis (PCA) [11], inde-
pendent component analysis (ICA) [12], subspace learn-
ing [13], [14], and matrix completion [15] are cast as
optimization problems with orthogonality constraints.
Many deep models benefit from orthogonality constraints
as well [16]. A popular way to incorporate nonlinear con-
straints into optimization frameworks is to make use of Rie-
mannian geometry and formulate constrained problems as
optimization on Riemannian manifolds [17].

Nonlinear constraints make solving optimization prob-
lems challenging due to requirements for preserving the Rie-
mannian geometry [18]. Optimization algorithms designed in
euclidean spaces cannot be directly applied to such optimiza-
tion problems, because euclidean optimizers do not comply
with the Riemannian geometry andwill destroy the nonlinear
constraints. To address this issue, one needs to resort to gradi-
ent-based Riemannian optimization algorithms [19]. Their
optimizers view optimization problems with constraints as
unconstrained problems on Riemannian manifolds and uti-
lize Riemannian operations to move along manifolds in the
quest for solution.

Previous endeavors were directed towards designing
Riemannian optimizers by hand. Typical examples include
Riemannian stochastic gradient descent (RSGD) [20], Rie-
mannian variance reduction methods [21], [22], [23], Rie-
mannian adaptive optimization [24], [25], and Riemannian
accelerated algorithms [26], [27], [28]. In these Riemannian
optimization methods, the optimizer design, performance
evaluation, and optimization scheme update require human
involvement and expert knowledge about manifolds to
achieve a satisfactory result. Besides, existing Riemannian
optimizers are task-agnostic. Since underlying data distri-
bution differs among various machine learning tasks [29],
[30], a good optimizer should be tailored to the specific task,

� Zhi Gao and Xiaomeng Fan are with the Beijing Lab of Intelligent Informa-
tion Technology, School of Computer Science, Beijing Institute of Technol-
ogy, Beijing 100081, China. E-mail: {gaozhi_2017, fanxiaomeng}@bit.
edu.cn.

� Yuwei Wu is with the Beijing Lab of Intelligent Information Technology,
School of Computer Science, Beijing Institute of Technology, Beijing
100081, China, and also with the Guangdong Lab of Machine Perception
and Intelligent Computing, Shenzhen MSU-BIT University, Shenzhen,
Guangdong Province 518172, China. E-mail: wuyuwei@bit.edu.cn.

� Mehrtash Harandi is with the Department of Electrical and Computer Sys-
tems Eng., Monash University, Melbourne, VIC 3800, Australia, and also
with Data61-CSIRO, Clayton South, VIC 3169, Australia.
E-mail: mehrtash.harandi@monash.edu.

� Yunde Jia is with the Guangdong Lab of Machine Perception and Intelli-
gent Computing, Shenzhen MSU-BIT University, Shenzhen, Guangdong
Province 518172, China, and also with Beijing Lab of Intelligent Informa-
tion Technology, School of Computer Science, Beijing Institute of Technol-
ogy, Beijing 100081, China. E-mail: jiayunde@bit.edu.cn.

Manuscript received 9 January 2022; revised 16 August 2022; accepted 4
October 2022. Date of publication 19 October 2022; date of current version 3
April 2023.
This work was supported by the Natural Science Foundation of China (NSFC)
under Grants 62172041 and 62176021.
(Corresponding author: Yuwei Wu.)
Recommended for acceptance by C. Zhang.
Digital Object Identifier no. 10.1109/TPAMI.2022.3215702

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 5, MAY 2023 5935

0162-8828 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 28,2023 at 07:32:10 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4424-4352
https://orcid.org/0000-0002-4424-4352
https://orcid.org/0000-0002-4424-4352
https://orcid.org/0000-0002-4424-4352
https://orcid.org/0000-0002-4424-4352
https://orcid.org/0000-0001-6300-6336
https://orcid.org/0000-0001-6300-6336
https://orcid.org/0000-0001-6300-6336
https://orcid.org/0000-0001-6300-6336
https://orcid.org/0000-0001-6300-6336
https://orcid.org/0000-0002-6937-6300
https://orcid.org/0000-0002-6937-6300
https://orcid.org/0000-0002-6937-6300
https://orcid.org/0000-0002-6937-6300
https://orcid.org/0000-0002-6937-6300
https://orcid.org/0000-0003-1900-8945
https://orcid.org/0000-0003-1900-8945
https://orcid.org/0000-0003-1900-8945
https://orcid.org/0000-0003-1900-8945
https://orcid.org/0000-0003-1900-8945
mailto:gaozhi_2017@bit.edu.cn
mailto:fanxiaomeng@bit.edu.cn
mailto:wuyuwei@bit.edu.cn
mailto:mehrtash.harandi@monash.edu
mailto:jiayunde@bit.edu.cn

such as tuning hyperparameters. This heavily relies on
expert knowledge and human involvement as well.

In this article, we propose a Riemannian meta-optimiza-
tion (RMO)method to automatically learn a Riemannian opti-
mizer, reducing human involvement in employing the
Riemannian optimizer. Our work, inspired by progresses in
meta-optimization [31], [32], offers a new perspective to opti-
mizationmethods on Riemannianmanifolds. Our underlying
idea is to parameterize the Riemannian optimizer by a learn-
able meta-model and train the optimizer in a meta-learning
framework, to learn to optimize via a data-driven manner. To
this end, the following two challenges need to be handled.

� Making the meta-model faithful to Riemannian
geometry is challenging. Recurrent neural networks
are commonly used meta-models in existing meta-
optimization methods that are designed for the
euclidean setup [33], [34], [35]. As the Riemannian
geometry is far more complicated than euclidean
counterpart, directly using existing meta-models to
perform optimization on Riemannian manifolds can-
not preserve the geometry of Riemannian parame-
ters and will destroy the nonlinear constraints,
leading to inferior results.

� Training a Riemannian optimizer is challenging.
Training an optimizer is usually cast as a bi-level
optimization problem, i.e., an inner-loop and an
outer-loop. The optimizer updates the target model
in the inner-loop, and updates itself in the outer-
loop. In the outer-loop, meta-gradients with respect
to the optimizer are computed by differentiating
through the optimization trajectory in the whole
inner-loop. This causes heavy memory footprint to
store the computational graph of the optimization
trajectory, and involves a series of time-consuming
Hessian matrices and derivatives of Riemannian
operations. In addition, the meta-gradients are based
on the product of these derivatives, which in turn
leads to numerical instabilities, that is, exploding
gradients.

To address the first challenge, we propose a novel recur-
rent network, namely generalized matrix Long Short-Term
Memory (gmLSTM), as the meta-model to parameterize the
Riemannian optimizer. By considering the structure of Rie-
mannian parameters and utilizing Riemannian operations in
gmLSTM, the optimizer complies with geometry of various
Riemannian manifolds. We train the optimizer to minimize
the objective of Riemannian parameters, through which the
optimizer can explore the underlying data distribution and
perform task-specific optimization in a data-driven manner.
To address the second challenge, we introduce a Riemannian
implicit differentiation training scheme, where the meta-gra-
dients are dependent on the final two optimization steps,
instead of the whole optimization trajectory. In this case, we
sidestep computing the products of Hessian and gradients of
retraction operations in meta-gradients, avoiding the explod-
ing gradients. We demonstrate theoretically and empirically
that ourmethod only needs smallmemory and computational
costs, regardless of the length of the optimization trajectory in
the inner-loop.

In summary, our main contributions are three-fold.

1. We propose a Riemannian meta-optimization (RMO)
method. To the best of our knowledge, it is the first
method to automatically learn a Riemannian opti-
mizer, thus minimizing human involvement in
employing the Riemannian optimizer. RMO can be
readily applied to various manifolds, such as Stiefel,
Grassmann, SPD, and hyperbolic manifolds.

2. We develop a gmLSTM model to parameterize the
Riemannian optimizer, which is capable of preserv-
ing matrix structures of Riemannian parameters. In
this case, RMO is faithful to geometry of various
manifolds and enables us to learn the optimizer in
an end-to-end fashion.

3. We derive a Riemannian implicit differentiation
training scheme that makes the training process effi-
cient and stable. It avoids exploding gradient prob-
lems and significantly reduces both time and
memory consumption.

In our previous work [36], we presented learning an opti-
mizer on the SPDmanifold, which is just one of various types
of Riemannian manifolds. In this article, we extend the work
to other Riemannian manifolds. (1)We extend our work from
the SPDmanifold to variousmanifolds, such as Stiefel, Grass-
mann, and hyperbolic manifolds, making a more generic
method. To this end, we develop a novel recurrent network,
gmLSTM, to comply with various Riemannian geometries,
and provide exploration on four commonly used manifolds.
(2) We theoretically analyze the training process of learning
the Riemannian optimizer, from which we conclude that
training the Riemannian optimizermay suffer from exploding
gradients, and heavy computational load and memory foot-
print. To address this issue,we propose a Riemannian implicit
differentiation training scheme. (3) We apply our method to
various machine learning and computer vision tasks, includ-
ing clustering, similarity learning, dimensionality reduction,
face recognition, few-shot learning, person re-identification,
and texture image classification tasks on SPD, Grassmann,
Stiefel, and hyperbolic manifolds. The code is available at
https://github.com/ZhiGaomcislab/
learningriemannianoptimization.

2 RELATED WORK

2.1 Optimization on Riemannian Manifolds

Gradient-based Riemannian optimization has attracted much
attention in solving optimization problems with nonlinear
constraints [19]. Luenberger [37] presented the first gradient
descent method on Riemannian manifolds, where Rieman-
nian operations are used to ensure that optimization remains
faithful to manifolds. Bonnabel [20] developed the Rieman-
nian stochastic gradient descent (RSGD) algorithm, solving
the heavy computational burden of the Riemannian gradient
descent. Along the way, many works generalize optimization
algorithms from euclidean spaces to Riemannian spaces, to
improve the convergence of RSGD.

Some works developed acceleration or momentum tech-
niques for Riemannian optimization. Liu et al. [28] presented
an acceleration algorithm for Riemannian optimization,
while it involves an exact solution of a nonlinear equation at
each iteration. Zhang and Sra [26] proposed a computation-
ally tractable accelerated algorithm to solve this issue, and

5936 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 5, MAY 2023

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 28,2023 at 07:32:10 UTC from IEEE Xplore. Restrictions apply.

https://github.com/ZhiGaomcislab/learningriemannianoptimization
https://github.com/ZhiGaomcislab/learningriemannianoptimization

more importantly, provided the convergence analysis of the
accelerated algorithm. Alimisis et al. [27] presented a new
accelerated algorithm, capable of achieving acceleration
with a weaker form of convexity. Roy et al. [22] proposed an
efficient momentum Riemannian stochastic gradient descent
(RSGDM) algorithm that considers previous updates to
speed up optimization and can be directly applied to Rie-
mannian optimization problems.

Several works studied reducing variance of stochastic Rie-
mannian gradients. Zhang et al. [21] extended the stochastic
variance reduced gradient from euclidean spaces to Rieman-
nian settings, while it has the computationally expensive par-
allel translation operation. Kasai et al. [38] addressed this
challenging issue by proposing an efficient vector transport
operation. Zhang et al. [39] proposed an unbiased Rieman-
nian gradient estimator that makes the variance reduced sto-
chastic gradient algorithm converge faster. In addition, Roy
et al. [22], Kasai et al. [25], and B�ecigneul and Ganea [24] pro-
posed Riemannian adaptive optimization algorithms that
achieve remarkable improvements in Riemannian optimization.

In addition to the above first-order optimization meth-
ods, Riemannian second-order optimization has also
attracted much attention. Popular methods include the Rie-
mannian Newton method [19], the Riemannian trust-region
method [40], and the Riemannian Broyden–Fletcher–Gold-
farb–Shanno (BFGS) method [41]. Recently, some efforts
were made for more efficient Riemannian second-order
optimization. Kasai et al. [42] presented a stochastic quasi-
Newton method to reduce the expensive computational
load by using the limited BFGS (L-BFGS). Kasai and
Mishra [43] further developed an inexact Riemannian trust-
region algorithm for faster convergence rate, where gra-
dients and Hessian matrices are computed by a random
sampling technique. Hu et al. [44] proposed a regularized
Newton method that approximates the objective function
with a sequence of quadratic subproblems, achieving locally
superlinear convergence rate.

The above Riemannian optimizers are all designed by
hand. Compared with them, we propose a Riemannian meta-
optimization method to automatically learn a Riemannian
optimizer, reducing requirements for human involvement
and expert knowledge. In addition, we use the data-driven
manner to train the optimizer, through which the optimizer
can effectively explore underlying data distribution and per-
form task-specific optimization.

2.2 Meta-Optimization

Meta-optimization uses a meta-learning framework to learn
trainable components for optimization. Trainable compo-
nents can be key hyperparameters of optimization pro-
cesses [45], recurrent models [33], reinforcement learning
models [46], or parameters of traditional optimization algo-
rithms [47], [48], [49].

Ourmethod belongs tomethods of training recurrentmod-
els. Existing methods take gradients as inputs and generate
updated parameters in euclidean spaces. Andrychowicz et al.
[33] proposed the pioneering work that leverages an RNN as
an optimizer and train the optimizer to minimize the loss of a
base-learner. Ravi and Larochelle [34] utilized the LSTM
structure for gradient descent, achieving good performance

on few-shot learning tasks. Wichrowska et al. [50] introduced
hierarchical recurrent models as optimizers that enables the
optimization algorithm generalize well to new tasks. Metz
et al. [51] dynamically weighted two gradient estimators to
compute unbiased meta-gradients, improving the perfor-
mance of the optimizer. Chem et al. [52] studied several tech-
niques for efficient training of RNN-based optimizer.

In contrast to the above studies, our work aims to learn to
optimize on Riemannian manifolds and is unprecedented in
previous studies. Considering the complexity of Rieman-
nian geometry, existing meta-optimization methods fail to
generalize faithfully to learn a Riemannian optimizer. For
example, a simple extension of RNN-based optimizers may
harm the structure of Riemannian parameters, failing to
preserve nonlinear constraints. Besides, direct using of con-
ventional training schemes such as the truncated backpro-
pagation through time algorithm to learn the Riemannian
optimizer, as will be shown, may result in the exploding
gradient issue, and heavy computational load and memory
footprint. In this article, we take the very first step in meta-
learning for Riemannian optimization.

2.3 Implicit Differentiation

Implicit differentiation has been well applied to bi-level opti-
mization problems. By utilizing the implicit function theo-
rem [53], implicit differentiation is used to compute the
gradient with respect to the outer-loop parameters, avoiding
differentiating through the inner-loop optimization. Rajes-
waran et al. [54] utilized the implicit differentiation to com-
pute the gradient with respect to an initial model. Liao et al.
[55] and Gudovskiy et al. [56] utilized implicit differentiation
for hyperparameter optimization. Despite the success,
implicit differentiation has not yet been applied to meta-opti-
mization. In our method, we derive and prove the first
implicit differentiation for meta-optimization by using the
final two iterations in the inner-loop to compute themeta-gra-
dients. Besides, we extend the implicit differentiation to Rie-
mannian manifolds, through which we can efficiently solve
challenging Riemannian optimization problems.

3 MATHEMATICAL BACKGROUND

We use Ip to denote the p� p identity matrix and 0000000p to denote
amatrixwhose elements are all ‘0’s.

3.1 Riemannian Manifolds

A smooth Riemannian manifold M is a locally euclidean
space and can be understood as a generalization of the notion
of a surface to higher dimensional spaces [17]. A euclidean
space is a special case of Riemannian manifolds. For a point
MMMMMMM 2 M, the tangent space is denoted by TMMMMMMMM. The tangent
space is a euclidean space and contains all vectors that are tan-
gent toM atMMMMMMM. In this article, we take four popular Rieman-
nian manifolds, namely hyperbolic, Stiefel, Grassmann, and
SPDmanifolds as examples to show ourmethod.

Hyperbolic Manifolds. A hyperbolic manifold Hd is a
smooth Riemannian manifold with a constant negative cur-
vature [57]. There are five isometric models of hyperbolic
spaces [58], and we choose the Poincar�e ball model to work
with. It is defined as Hd ¼ fxxxxxxx 2 Rd; kxxxxxxxk < 1g with the cur-
vature being �1.

GAO ETAL.: LEARNING TO OPTIMIZE ON RIEMANNIAN MANIFOLDS 5937

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 28,2023 at 07:32:10 UTC from IEEE Xplore. Restrictions apply.

Stiefel Manifolds. A Stiefel manifold Stðp; dÞ denotes a set
of all d� pmatrices with orthonormal columns [59],

Stðp; dÞ ¼ fMMMMMMM 2 Rd�p : MMMMMMM>MMMMMMM ¼ Ipg; (1)

where p < d and > is a transpose operation.
Grassmann Manifolds. A Grassmann manifold Gðp; dÞ rep-

resents a set of all p-dimensional subspaces in Rd [60]. It is
formally defined as the quotient of the Stiefel manifold
Stðp; dÞ through the following equivalence class

½MMMMMMM� ¼ fMMMMMMMRRRRRRR : MMMMMMM 2 Stðp; dÞ; RRRRRRR 2 OðpÞg: (2)

Here, OðpÞ denotes the orthonormal group, i.e., RRRRRRR 2 Rp�p

with RRRRRRR>RRRRRRR ¼ RRRRRRRRRRRRRR> ¼ Ip.
SPD Manifolds. A square matrix MMMMMMM 2 Rd�d satisfying

MMMMMMM ¼MMMMMMM> and vvvvvvv>MMMMMMMvvvvvvv > 0; 8vvvvvvv 2 Rdnf0000000g characterizes an SPD
matrix [61]. An SPD manifold Symþd is consequently identi-
fied as a set of all d� d SPD matrices.

3.2 Riemannian Gradient Descent

In practice, a large body of machine learning problems make
use of nonlinear constraints that correspond to Riemannian
manifolds. The constraints can be used to inject inductive
bias, preserve physical properties of the problem, or lead to
better performance, to name a few. Such constrained optimi-
zation problems can be formulated as

min
MMMMMMM2M

LðMMMMMMMÞ , 1

n

Xn
i¼1

fðMMMMMMM;xxxxxxxi; yyyyyyyiÞ: (3)

Here, f :M�X � Y ! R is a loss function defined on a Rie-
mannian manifoldM. Well-known gradient-based optimiz-
ers in euclidean spaces cannot be directly applied to the
problem in Eq. (3), due to the non-euclidean geometry ofM.

One popular choice is to resort to gradient-based Rie-
mannian optimization algorithms that exploit geometry of
manifolds by making using of several Riemannian
operations.

Orthogonal Projection. The orthogonal projection pMMMMMMM ðrMMMMMMMÞ :
Rn ! TMMMMMMMM transforms a euclidean gradient rMMMMMMM at point MMMMMMM
into a Riemannian gradient. The Riemannian gradient is a vec-
tor sitting on the tangent space TMMMMMMMM, andMMMMMMM is a point on the
manifoldM.

Parallel Transport. The parallel transport operation �MMMMMMM!MMMMMMM 0
ðPPPPPPP Þ : TMMMMMMMM! TMMMMMMM 0M moves vectors from a tangent space

TMMMMMMMM to another tangent space TMMMMMMM 0M along the geodesic
curve. MMMMMMM and MMMMMMM 0 are points on the Riemannian manifoldM,
andPPPPPPP is a vector on the tangent spaceTMMMMMMMM.

Retraction.GMMMMMMMðPPPPPPP Þ : TMMMMMMMM!M is a smoothmapping from
a tangent space TMMMMMMMM to the manifoldMwith a local rigidity
condition [19], and PPPPPPP is a point on the tangent space TMMMMMMMM.
After obtaining a Riemannian gradient on a tangent space, the
retraction operation is applied to find the updated Rieman-
nian parameter onmanifolds.

Based on above operations,MMMMMMM in Eq. (3) is updated by

MMMMMMMðtþ1Þ ¼ G
MMMMMMMðtÞ ð�hðtÞ�������ðtÞÞ; (4)

where hðtÞ is the step size and �������ðtÞ is the search direction on the
tangent space. In Riemannian gradient descent algorithms,
search directions are computed by the orthogonal projection
operation �������ðtÞ ¼ p

MMMMMMMðtÞ ðr
ðtÞ
MMMMMMM Þ, andrðtÞMMMMMMM is a euclidean gradient in

an ambient space. Somemethods [21], [22], [23] take extra con-
siderations of previous search directions �������ðt�1Þ to speed up the
convergence. For example, in a momentum-based Rieman-
nian optimization method [22], the search direction �������ðtÞ is
computed by

�������ðtÞ ¼ p
MMMMMMMðtÞ ðr

ðtÞ
MMMMMMM Þ þ �ðtÞ�

MMMMMMMðt�1Þ!MMMMMMMðtÞ ð�������ðt�1ÞÞ; (5)

where �ðtÞ is a trade-off hyperparameter. We stress that exist-
ing Riemannian optimizers require hðtÞ to be carefully chosen,
and schemes to compute �������ðtÞ are hand-designed.

4 RIEMANNIAN META-OPTIMIZATION METHOD

4.1 Problem Definition

euclidean meta-optimization methods learn to optimize via
a neural network guð�Þ that takes the gradient rðtÞQ as input
and outputs an update vector. This leads to the update rule
to the euclidean parameter Q,

Qðtþ1Þ ¼ QðtÞ � guðrðtÞQ Þ: (6)

In this article, we propose a Riemannian meta-optimi-
zation (RMO) method to automatically learn a Rieman-
nian optimizer. We use recurrent neural networks to
parameterize a Riemannian optimizer,

MMMMMMMðtþ1Þ ¼ G
MMMMMMMðtÞ

�
� gf1ðrðtÞMMMMMMM; SSSSSSSðt�1ÞÞ � gf2ðrðtÞMMMMMMM; SSSSSSSðt�1ÞÞ

�
; (7)

whereMMMMMMMðtÞ is the Riemannian parameter. gf1ð�Þ and gf2ð�Þ pro-
duce the step size h and search direction �������, respectively,

hðtÞ ¼ gf1 rðtÞMMMMMMM; SSSSSSSðt�1Þ
� �

�������ðtÞ ¼ gf2 rðtÞMMMMMMM; SSSSSSSðt�1Þ
� �

8><>: : (8)

f1 and f2 are parameters of the recurrent neural networks,
and SSSSSSSðt�1Þ is the optimization state at time t� 1 generated by
the optimizer. The optimization process is shown in Fig. 1.

4.2 Generalized-Matrix-LSTM-Based Optimizer

Several meta-optimization methods show that optimizers
parameterized by LSTMs can achieve good performances
in euclidean spaces [33], [34], [50], [62]. We note that
existing LSTMs cannot be directly applied to a Rieman-
nian optimizer. The gradients rðtÞMMMMMMM have matrix structures
(e.g., gradients of SPD parameters are symmetric

Fig. 1. The illustration of optimization via our Riemannian optimizer. The
black dash line shows a geodesic. The green dotted arrows denote arbi-
trary euclidean gradients rðtÞMMMMMMM . Green solid arrows, purple solid arrows,
and red solid arrows denote Riemannian gradients, previous optimiza-
tion state SSSSSSSðtÞ, and update hðtÞ�������ðtÞ, respectively. Red dash arrows indicate
the retraction G

MMMMMMMðtÞ , and green dash lines denote orthogonal projection
p
MMMMMMMðtÞ . Based on the previous optimization state and the current gradient,

the optimizer generates a step size and a search direction, and obtains
an updated parameter by the retraction operation.

5938 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 5, MAY 2023

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 28,2023 at 07:32:10 UTC from IEEE Xplore. Restrictions apply.

matrices, and gradients of Grassmann parameters are
composed of multiple column vectors). Using existing
LSTMs for rðtÞMMMMMMM means that we will vectorize the gradients
and apply vector multiplication to process the gradients.
This inevitably destroys the matrix structures, such as
ignoring valuable information about spatial correlations
of column vectors. In our previous work [36], we pro-
posed a matrix LSTM (mLSTM) model to preserve the sym-
metric property on the SPD manifold. In this work, our
purpose is to learn to optimize for a big family of manifolds.
As different manifolds have different matrix structures, it is
challenging to use a model to preserve matrix structures for
various manifolds. To address this challenge, we extend
mLSTM to a generalized matrix LSTM (gmLSTM) model by
utilizing a generalized transformation operation.

For convenience, we simplify the notion of gmLSTM as

HHHHHHHðtÞ; CCCCCCCðtÞ ¼ gmLSTMðXXXXXXXðtÞ; SSSSSSSðt�1ÞÞ; (9)

where SSSSSSSðt�1Þ ¼ ½CCCCCCCðt�1Þ; HHHHHHHðt�1Þ� is the state of gmLSTM. The
architecture of gmLSTM is shown in Fig. 2.

4.2.1 Generalized Matrix LSTM (gmLSTM)

We define a simple and effective transformation YYYYYYY ¼
CWWWWWWW ðXXXXXXXÞ with parameter WWWWWWW , to process gradients of various
Riemannian parameters. The input XXXXXXX 2 H is assumed to
have some structural properties, and we expect to pre-
serve the output YYYYYYY with the similar structure, or in other
words, resides in the same domain, i.e., YYYYYYY 2 H. By using
the transformation CWWWWWWW , we can seamlessly utilize the
LSTM architecture and avoid re-designing recurrent mod-
els for different manifolds. Given a manifold, we just
need to consider the form of the transformation CWWWWWWW ð�Þ.
Taking the SPD manifold as an example, the gradient at a
point is a symmetric matrix (i.e., H is the set of symmetric
matrices). Thus, we use a bilinear projection as CWWWWWWW ðXXXXXXXÞ ¼
WWWWWWW>XXXXXXXWWWWWWW , preserving the symmetric property. Forms of the
transformation CWWWWWWW ðXXXXXXXÞ on other manifolds, e.g., Stiefel,
hyperbolic, and Grassmann manifolds, are given in
Section 5.3.

Based on the transformation CWWWWWWW ð�Þ and the architecture
of LSTM, we formulate gmLSTM as

FFFFFFF ðtÞ ¼ s CWWWWWWWfx
ðXXXXXXXðtÞÞ þCWWWWWWWfh

ðHHHHHHHðt�1ÞÞ
� �

TTTTTTT ðtÞ ¼ s CWWWWWWWix
ðXXXXXXXðtÞÞ þCWWWWWWWih

ðHHHHHHHðt�1ÞÞ� �
OOOOOOOðtÞ ¼ s CWWWWWWWoxðXXXXXXXðtÞÞ þCWWWWWWWoh

ðHHHHHHHðt�1ÞÞ� �
bCCCCCCCðtÞ ¼ tanh CWWWWWWWcxðXXXXXXXðtÞÞ þCWWWWWWWch

ðHHHHHHHðt�1ÞÞ� �
CCCCCCCðtÞ ¼ FFFFFFF ðtÞ � CCCCCCCðt�1Þ þ TTTTTTT ðtÞ � bCCCCCCCðtÞ
HHHHHHHðtÞ ¼ OOOOOOOðtÞ � tanhðCCCCCCCðtÞÞ

8>>>>>>>>>>><>>>>>>>>>>>:
; (10)

where sð�Þ is the sigmoid function, tanhð�Þ is the hyperbolic
tangent function, and � is the Hadamard product. XXXXXXXðtÞ is
the input, CCCCCCCðtÞ is the memory cell, and HHHHHHHðtÞ is the output.
CCCCCCCðtÞ andHHHHHHHðtÞ have the same size with the inputXXXXXXXðtÞ. In addi-
tion, CCCCCCCðtÞ and HHHHHHHðtÞ have the same matrix structure with the
input XXXXXXXðtÞ. The gmLSTM model uses transformation opera-
tions with the parameters g ¼ ½WWWWWWWfx;WWWWWWWfh;WWWWWWWix;WWWWWWWih;
WWWWWWWox;WWWWWWWoh;WWWWWWWcx;WWWWWWWch� to preserve the matrix structure.

4.2.2 Optimizer Architecture

We utilize two gmLSTMs to parameterize gf1ð�Þ and gf2ð�Þ,
and apply Riemannian operations to ensure that the opti-
mizer will comply with Riemannian geometry, detailed as
follows.

Calculating the Step Size. The function gf1ð�Þ utilizes the
first gmLSTM to compute the step size hðtÞ according to the
following rule:

HHHHHHH
ðtÞ
1 ; CCCCCCC

ðtÞ
1 ¼ gmLSTM1ðrðtÞMMMMMMM; SSSSSSSðt�1ÞÞ

hðtÞ ¼ gf1ðrðtÞMMMMMMM; SSSSSSSðt�1ÞÞ ¼ QQQQQQQ>HHHHHHHðtÞ1

(
; (11)

where QQQQQQQ is a learnable parameter.
Calculating the Search Direction. The function gf2ð�Þ utilizes

the second gmLSTM to compute the search direction �������ðtÞ

according to

�������ðtÞ ¼ gf2ðrðtÞMMMMMMM; SSSSSSSðt�1ÞÞ
¼ p

MMMMMMMðtÞ gmLSTM2ðrðtÞMMMMMMM; SSSSSSSðt�1ÞÞ þ rðtÞMMMMMMM
� �

;
(12)

with

HHHHHHH
ðtÞ
2 ; CCCCCCC

ðtÞ
2 ¼ gmLSTM2ðrðtÞMMMMMMM; SSSSSSSðt�1ÞÞ

HHHHHHH
ðtÞ
2

0 ¼ HHHHHHH
ðtÞ
2 þrðtÞMMMMMMM

�������ðtÞ ¼ p
MMMMMMMðtÞ ðHHHHHHHðtÞ2

0Þ

8>><>>: : (13)

Here, gmLSTM2 is a gmLSTM model. We use a skip-con-
nection to fit the residual between the search direction and
the gradient for a more stable and easier training process.
Hence we have HHHHHHH

ðtÞ
2

0 ¼ HHHHHHH
ðtÞ
2 þrðtÞMMMMMMM . This is then followed by

projecting HHHHHHH
ðtÞ
2

0
onto the tangent space via the orthogonal

projection p
MMMMMMMðtÞ ð�Þ for the final search direction. The

Fig. 2. The architecture of the gmLSTM. XXXXXXXðtÞ is the input, CCCCCCCðtÞ is the
memory cell, andHHHHHHHðtÞ is the output at time t.CWWWWWWW is our transformation, s
is the nonlinear activation, � is the matrix addition operation, and �
denotes the Hadamard product.

Fig. 3. The architecture of the proposed optimizer. [...] is the concatena-
tion operation.

GAO ETAL.: LEARNING TO OPTIMIZE ON RIEMANNIAN MANIFOLDS 5939

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 28,2023 at 07:32:10 UTC from IEEE Xplore. Restrictions apply.

optimization state SSSSSSSðtÞ of the optimizer is updated by

SSSSSSSðtÞ ¼ ½CCCCCCCðtÞ1 � CCCCCCC
ðtÞ
2 ; HHHHHHH

ðtÞ
1 �HHHHHHH

ðtÞ
2 �: (14)

In summary, parameters of gf1ð�Þ and gf2ð�Þ are f1 ¼
½g1; QQQQQQQ� and f2 ¼ ½g2�, respectively, where g1 is the parameter
of gmLSTM1 and g2 is the parameter of gmLSTM2. The
architecture of the optimizer is shown in Fig. 3.

5 TRAINING

We employ two optimization loops, i.e., an inner-loop and
an outer-loop, to learn Riemannian optimizers in the meta-
learning process. In the inner-loop, the Riemannian parame-
ter MMMMMMM of the base-learner is updated for T steps by the opti-
mizer, while the parameters f1 and f2 of the optimizer are
learned in the outer-loop. Suppose that the initial Rieman-
nian parameter is MMMMMMMð0Þ, we update the parameters f1;f2 by
minimizing the following meta-objective

J ðf1;f2Þ , LðMMMMMMMðT ÞÞ; (15)

where L is the loss function of the base-learner, and MMMMMMMðtÞ is
the Riemannian parameter at time t.

The conventional truncated backpropagation through
time (TBPTT) algorithm seems to minimize Eq. (15), in line
with existing meta-optimization methods in euclidean
spaces [33], [34], [35]. However, training Riemannian opti-
mizers using TBPTT will suffer from exploding gradients,
and heavy computational load and memory footprint. In
following sections, we provide an analysis of training Rie-
mannian optimizers and present a Riemannian implicit dif-
ferentiation training scheme to solve the aforementioned
problem.

5.1 Analysis of the Traditional Training Scheme

We denote the collective parameters of the optimizer as f ¼
½f1;f2�. The parameter f of the optimizer is updated by f
f� dJ

df . The computation of the meta-gradient dJ
df with

respect to optimizer parameters f differentiates through the
whole optimization trajectory in an inner-loop from t ¼ 0 to
t ¼ T , as shown in Fig. 4a. Here, we provide a simple deri-
vation of the meta-gradient. We ignore the optimization
state and simplify the optimizer as PPPPPPP ðtÞ ¼ bfðrMMMMMMMðtÞÞ, where
PPPPPPP ðtÞ ¼ �hðtÞ�������ðtÞ is the product of the step size hðtÞ and the
search direction �������ðtÞ, and bf is the simplified optimizer con-
taining gf1 and gf2 .

Recall the retraction operation G
MMMMMMMðtÞ , we can obtain a new

Riemannian parameter by MMMMMMMðtþ1Þ ¼ G
MMMMMMMðtÞ ð�PPPPPPP ðtÞÞ. As the

meta-objective is J , LðMMMMMMMðT ÞÞ, the meta-gradient with
respect to the parameter f is

dJ
df
¼ rMMMMMMMðT Þ dMMMMMMM

ðT Þ

df

¼rMMMMMMMðT Þ @MMMMMMMðT Þ

@MMMMMMMðT�1Þ
dMMMMMMMðT�1Þ

df
þ @MMMMMMMðT Þ

@PPPPPPP ðT�1Þ
dPPPPPPP ðT�1Þ

df

 !
;

(16)

where @MMMMMMMðT Þ
@MMMMMMMðT�1Þ and

@MMMMMMMðT Þ
@PPPPPPP ðT�1Þ are partial derivatives of the retrac-

tion operation. dPPPPPPP
ðT�1Þ
df can be further computed according to

the structure of the optimizer,

dPPPPPPP ðT�1Þ

df
¼ @PPPPPPP ðT�1Þ

@f
þ @PPPPPPP ðT�1Þ

@rMMMMMMMðT�1Þ
@rMMMMMMMðT�1Þ

@f

¼ @PPPPPPP ðT�1Þ

@f
þ @PPPPPPP ðT�1Þ

@rMMMMMMMðT�1Þ r2MMMMMMMðT�1Þ dMMMMMMM
ðT�1Þ

df
; (17)

where @PPPPPPP ðT�1Þ
@f

is the partial derivative of the optimizer with

respect to f, @PPPPPPP ðT�1Þ
@rMMMMMMMðT�1Þ is the partial derivative of the optimizer

with respect to the input gradient, and r2MMMMMMMðT�1Þ is the Hes-

sian matrix. By substituting Eq. (17) into Eq. (16), the meta-

gradient is given by

dJ
df
¼ rMMMMMMMðT Þ

 XT�1
k¼1

�
@MMMMMMMðkþ1Þ

@PPPPPPP ðkÞ
@PPPPPPP ðkÞ

@f

YT�1
l¼kþ1

@MMMMMMMðlþ1Þ

@MMMMMMMðlÞ þ
@MMMMMMMðlþ1Þ

@PPPPPPP ðlÞ
@PPPPPPP ðlÞ

@rMMMMMMMðlÞ r2MMMMMMMðlÞ
 !�!

: (18)

In Eq. (18), the computation of themeta-gradient differenti-
ates through the whole optimization trajectory in the inner-
loop, and involves computation of Hessian matrices r2MMMMMMMðlÞ

and derivatives @MMMMMMMðlþ1Þ
@MMMMMMMðlÞ and @MMMMMMMðlþ1Þ

@PPPPPPP ðlÞ of Riemannian retraction
operations, over t ¼ 1 to t ¼ T . Thismakes training a Rieman-
nian optimizer more challenging than training a euclidean
optimizer. The reasons are as follows.

1) Eq. (18) is more prone to exploding gradients com-
pared with euclidean meta-optimization. Similar to
the euclidean case, the Riemannian meta-gradient
involves products of Hessian matrices. This product
makes meta-gradients grow exponentially with the
increase of optimization steps T in the inner-loop,
since the maximum eigenvalue of Hessian matrices
is usually larger than one [51]. However, the Rie-
mannian meta-gradient further requires the product
of derivatives of retraction operations, over the entire

Fig. 4. Comparison between TBPTTand our Riemannian implicit differentiation training scheme. fxxxxxxxi; yyyyyyyigni¼1 is a batch of training data.MMMMMMMðtÞ is the Rie-
mannian parameter of the base-learner at time t,rðtÞMMMMMMM is the gradient, and SSSSSSSðtÞ is the optimization state. In (a), TBPTT differentiates through the whole
optimization trajectory to compute meta-gradients. In (b), the computation of meta-gradients is only related to the final two optimization steps.

5940 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 5, MAY 2023

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 28,2023 at 07:32:10 UTC from IEEE Xplore. Restrictions apply.

optimization trajectory in the inner-loop. We further
study the derivatives of retraction operations to gain
more insights about the Riemannian case. We empir-
ically observe that the maximum singular value of
derivatives of the retraction operation is usually
larger than one, intensifying the problem of explod-
ing gradients. Visualization for the maximum eigen-
value and singular values for a PCA problem is
shown in Fig. 5. The exploding gradients heavily
limit the application of Riemannian meta-optimiza-
tion in practice. If there is an exploding gradient, we
have to restart the training process, or manually load
the previous model to continue the training process.

2) Riemannian meta-optimization suffers from heavy
computational load and memory footprint. Training
Riemannian optimizer needs to process and store large
matrices with complex matrix functions over the
whole inner-loop (e.g., time-consuming Hessian
matrices and derivatives of retraction with singular
value decomposition in Eq. (18)), leading to more
computational load than euclidean counterparts that
mainly process and store vectors. Furthermore,
Eq. (18) depends on the whole optimization path in
the inner-loop, which is completely stored inmemory.
As such, the both time and memory consumption of
TBPTT is proportional to the inner-loop optimization
length. We show an example of time/memory con-
sumption for a PCA task in Fig. 6. The aforementioned
factors lead to heavy memory footprint for training
Riemannian optimizers. Thus, an efficient training
scheme is necessary for Riemannian meta-
optimization.

One way to address the training difficulties is to set a
small number of optimization steps in the inner-loop, while
this will lead to biasedmeta-gradients, damaging the quality
of the optimizer and causes instabilities during training [52].
Here, we propose a Riemannian implicit differentiation
training scheme that provides a feasible way to combat the
inefficiency during training and mitigates the bias in meta-
gradients.

5.2 Riemannian Implicit Differentiation
Training Scheme

We establish a link between Riemannian optimization and
the implicit function theorem [63] to derive an implicit form
for computing the meta-gradient. The implicit form enables
us to perform a large number of optimization steps in the

inner-loop efficiently, as updating the optimizer is only
related to the final two optimization steps of the inner-loop
instead of the whole optimization trajectory. As a result, our
training scheme avoids the exploding gradients and reduces
both time and memory costs significantly (see Fig. 4b for a
comparison).

5.2.1 Implicit Differentiation in Riemannian Manifolds

Suppose that we obtain an exact solution MMMMMMM	 by iterating in
the inner-loop, i.e., rMMMMMMM	 ¼ 0000000. Let us denote the solution
obtained in the last update of MMMMMMM	 by MMMMMMM	0 . Here we utilize
the parameterMMMMMMM	0 to compute the meta-gradient,

dJ
df
¼ rMMMMMMM	0 dMMMMMMM

	0

df
: (19)

The derivative dMMMMMMM	0
df can be computed by the Riemannian

implicit differentiation in Theorem 1.

Theorem 1. If MMMMMMM	 is an exact solution in the inner-loop, the
derivative dMMMMMMM	0

df can be computed implicitly by

dMMMMMMM	0

df
¼ � @MMMMMMM	

@MMMMMMM	0 þ
@MMMMMMM	

@PPPPPPP 	
0

@PPPPPPP 	
0

@rMMMMMMM	0 r2MMMMMMM	0
 !�1

� @MMMMMMM
	

@PPPPPPP 	
0 �

@PPPPPPP 	
0

@f
:

(20)

Proof. SinceMMMMMMM	 is the exact solution andrMMMMMMM	 ¼ 0000000, we have

drMMMMMMM	

df
¼ r2MMMMMMM	 dMMMMMMM

	

df
¼ 0000000: (21)

The Hessian matrix r2MMMMMMM	 is a symmetric positive defi-
nite matrix,r2MMMMMMM	 6¼ 0000000, and thus, dMMMMMMM

	
df ¼ 0000000.

Recall thatMMMMMMM	 is obtained via the retraction operation,
MMMMMMM	 ¼ G

MMMMMMM	0 ð�PPPPPPP 	Þ, the derivative dMMMMMMM	
df can be computed by

the chain rule,

dMMMMMMM	

df
¼ @MMMMMMM	

@MMMMMMM	0 þ
@MMMMMMM	

@PPPPPPP 	
0

@PPPPPPP 	
0

@rMMMMMMM	0 r2MMMMMMM	0
 !

dMMMMMMM	0

df
þ @MMMMMMM	

@PPPPPPP 	
0
@PPPPPPP 	

0

@f
:

(22)

As the derivative dMMMMMMM	
df ¼ 0000000, we have

dMMMMMMM	0

df
¼ � @MMMMMMM	

@MMMMMMM	0 þ
@MMMMMMM	

@PPPPPPP 	
0

@PPPPPPP 	
0

@rMMMMMMM	0 r2MMMMMMM	0
 !�1

� @MMMMMMM
	

@PPPPPPP 	
0 �

@PPPPPPP 	
0

@f
: (23)

tu
In Eq. (20), the derivative dMMMMMMM	0

df only depends on the final
two optimization steps of the inner-loop, rather than the

Fig. 5. Distributions of the maximum eigenvalues or singular values of
derivatives of retraction operations and Hessian matrices, measured on
the PCA task in a Grassmann manifold using the MNIST dataset.

Fig. 6. Time and memory consumption of training a Riemannian opti-
mizer using the TBPTTalgorithm on the PCA task.

GAO ETAL.: LEARNING TO OPTIMIZE ON RIEMANNIAN MANIFOLDS 5941

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 28,2023 at 07:32:10 UTC from IEEE Xplore. Restrictions apply.

whole trajectory in the inner-loop. In other words, no matter
how long the optimization trajectory in the inner-loop is, we
only need to compute the partial derivatives of retraction

operations @MMMMMMM	
@MMMMMMM	0

@MMMMMMM	
@PPPPPPP	0 in the last step, partial derivatives of the

optimizer @PPPPPPP	0

@rMMMMMMM	0
@PPPPPPP	0
@f

in the penultimate step, and the Hessian

matrix r2MMMMMMM	0 in the penultimate step. We do not need to
compute or store derivatives in previous steps. This circum-
vents computing products of gradients of Riemannian
retraction operations and products of Hessian, avoiding the
exploding gradient problem. Both time and memory con-
sumption of our method is very small (complexity analysis
is in Section 5.3.2 and experimental results are in
Section 6.3.2).

Note that the implicit derivative dMMMMMMM	0
df in Theorem 1 needs

a matrix inversion ð @MMMMMMM	
@MMMMMMM	0 þ

@MMMMMMM	
@PPPPPPP	0

@PPPPPPP	0

@rMMMMMMM	0 r
2MMMMMMM	0 Þ�1. This is non-

trivial to compute as matrix inversion is intractable for large
matrices. To address this problem, we utilize Neumann
series [55] to iteratively approximate the matrix inversion.
We initialize two matricex vvvvvvv0 and uuuuuuu0 with the identity
matrix, and update uuuuuuuðiÞ as

vvvvvvvðiþ1Þ ¼ vvvvvvvðiÞ � vvvvvvvðiÞ @MMMMMMM
	

@MMMMMMM	0 � vvvvvvvðiÞ @MMMMMMM
	

@PPPPPPP	0
@PPPPPPP	0

@rMMMMMMM	0 r
2MMMMMMM	0

uuuuuuuðiþ1Þ ¼ uuuuuuuðiÞ þ vvvvvvvðiþ1Þ

(
: (24)

AfterK iterations, the derivative dMMMMMMM	0
df is

dMMMMMMM	0

df
¼ �uuuuuuuðKÞ @MMMMMMM

	

@PPPPPPP 	
0 �

@PPPPPPP 	
0

@f
: (25)

Eqs. (24) only need to compute the Jacobian-vector product
vvvvvvvðiÞ @MMMMMMM

	
@MMMMMMM	0 and the Hessian-vector product vvvvvvvðiÞ @MMMMMMM

	
@PPPPPPP	0

@PPPPPPP	0

@rMMMMMMM	0 r
2MMMMMMM	0 ,

which are much easier to compute than the original formula

with the matrix power operation [64]. Subsituting Eq. (25)

into Eq. (19), themeta-gradient is

dJ
df
¼ rMMMMMMM	0 ð�uuuuuuuðKÞÞ @MMMMMMM

	

@PPPPPPP 	
0 �

@PPPPPPP 	
0

@f
: (26)

The number of iterations in the inner-loop to obtain the
exact solution is unknown. For simplicity, we set a fixed
number T in the inner-loop, and use our optimizer to
updateMMMMMMMð0Þ to an approximate solutionMMMMMMMðT Þ.

5.2.2 Parameter Warmup Pool

Training inmachine learning requires data to be independent
and identically distributed. However, Riemannian parame-
ters and optimization states obtained in an inner-loop are
strongly correlated sequentially. Besides, it is difficult to opti-
mize the Riemannian parameter from scratch to an exact solu-
tion utilizing an untrained optimizer. To handle the two
issues, we build a parameter warmup pool P that stores good
solutions as initial Riemannian parametersMMMMMMMð0Þ. Before train-
ing the optimizer, we utilize a hand-designed optimizer such
as RSGD to obtain good solutions whose gradient norms are
smaller than a small threshold, and push them into the
parameter warmup pool P. In the training stage, for each step
of the outer-loop, we randomly select Riemannian parameters
MMMMMMMð0Þ from the parameter warmup pool P to train our opti-
mizer. To avoid overfitting, we set a hyperparameter t to

update P. After each t steps in the outer-loop, we update the
parameter warmup poolP by regenerating solutions as initial
parameters and push them into the parameter warmup pool
P. The training process of our Riemannian meta-optimization
(RMO)method is summarized inAlgorithm 1.

Algorithm 1. Training of RMO

Input: The initial optimizer. The initial Riemannian parameter
MMMMMMMð0Þ. The initial optimization state SSSSSSSð0Þ ¼ 0000000d. The initial
experience pool P ¼ ;. Maximum iteration T of the inner-
loop, maximum iteration � of the outer-loop, and the
hyperparameter t to update the parameter warmup pool P.

Output: The optimizer parameter f ¼ ff1;f2g.
1: r ¼ 0.
2: while r
 � do
3: if rmod t then
4: Construct the parameter warmup pool P.
5: end if
6: Randomly selectMMMMMMMð0Þ from P, and set t ¼ 0.
7: while t
 T do
8: Compute the loss on training data LðMMMMMMMðtÞÞ.
9: Compute the gradient rMMMMMMMðtÞ.
10: UpdateMMMMMMMðtÞ by our optimizer via Eq. (7).
11: t tþ 1.
12: end while
13: Compute the loss J of the optimizer by Eq. (15).
14: Compute the implicit gradient dJ

df by Eq. (26).
15: Update f of our optimizer.
16: r rþ 1.
17: end while
18: Return the parameter f of our optimizer.

5.3 Exploration on Various Manifolds

5.3.1 Optimizers on Four Common Manifolds

RMO can be applied to various manifolds. We just need to
consider forms of the transformation CWWWWWWW ð�Þ, orthogonal pro-
jection pMMMMMMMð�Þ, and retraction GMMMMMMMð�Þ for a given manifold. In
this section,we develop their corresponding forms to perform
optimization on four popular Riemannian manifolds, namely
hyperbolic, Stiefel, Grassmann, and SPD manifolds, where
details are shown in Table 1. On the Stiefel, Grassmann, and
SPD manifolds, some Riemannian operations use matrix
decomposition or matrix functions, such as singular value
decomposition for Grassmann manifolds. An efficient way to
perform these matrix decomposition/functions and compute
their derivatives can be found in thework [65].

5.3.2 Complexity Analysis on the Four Manifolds

Computational Complexity of Our Optimizer. For our optimizer,
its optimization proceduremainly involvesmatrixmultiplica-
tion, eigenvalue decomposition, singular value decomposi-
tion, and element-wise operations. For a d� d matrix, the
eigenvalue decomposition requires Oðd3Þ. For a d� p matrix,
the element-wise operations require OðdpÞ flops, singular
value decomposition requires Oðmaxðd; pÞ3Þ, and the matrix
multiplicationwith a p� nmatrix requiresOðdpnÞ. This leads
to Oð17d2 þ 51dÞ, Oð3d3 þ 5pd2 þ 18p2dþ d2 þ 31pdþ dÞ,
Oðp3 þ 20p2dþ pd2 þ 29pdÞ, and Oð49d3 þ 29d2 þ 4dÞ flops
for the proposed optimizer to perform optimization on hyper-
bolic, Stiefel, Grassmann, and SPDmanifolds, respectively.

5942 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 5, MAY 2023

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 28,2023 at 07:32:10 UTC from IEEE Xplore. Restrictions apply.

Computational Complexity of Meta-gradient Computation.
Some works show that the time of computing gradients or
Jacobian-vector products of a function is no more than 5
times it takes to compute the function itself, and the time of
computing Hessian-vector products is also no more than 5
times it takes to compute the gradient [66]. Based on the
two rules, the computational complexity of our implicit
meta-gradient is no more than Oð90K þ 90Þd2 þ ð445K þ
228Þd, Oðð90K þ 90Þp2dþ ð35K þ 25Þpd2 þ ð30K þ 15Þd3 þ
ð198K þ 160Þpdþ ð25K þ 5Þp2 þ ð5K þ 5Þd2 þ ð10K þ 5ÞdÞ,
Oðð10K þ 5Þp3 þ ð125K þ 105Þp2dþ ð10K þ 5Þpd2 þ ð153Kþ
145Þpdþ ð25K þ 5Þp2 þ ð25K þ 5ÞP Þ, and Oðð585K þ 300Þd3
þð148K þ 145Þd2 þ ð110K þ 35ÞdÞ on hyperbolic, Stiefel,
Grassmann, and SPD manifolds, respectively. In contrast,
the computational complexity of TBPTT is Oð90T 2 þ
45T Þd2 þ ð293T 2 � 85

2 T � 1
2Þd, Oðð45T 2 þ 45T Þp2d þð352 T 2 þ

15
2 T Þpd2 þ 15T 2d3Þ, Oð5T 2p3 þ ð1252 T 2 þ 75

2 T þ 5Þ p2dþ
5T 2pd2Þ, and Oðð5852 T 2 � 95

2 T þ 55Þd3Þ on the hyperbolic,
Stiefel, Grassmann, and SPD manifolds, respectively.

The computational complexity of training our optimizer is
independent of the maximum optimization steps T of the
inner-loop. Thus, with the increase of optimization steps in
the inner-loop, the running-time of our method to calculate
the meta-gradient remains constant and very small. Though
our method is linearly related to the iteration K of approxi-
mate Neumann series,K is far less than T (we setK ¼ 5 and
T ¼ 50 in experiments).

Memory Cost. In the training process, our optimizer is
updated by Eq. (26), where we only need to store MMMMMMM	,
MMMMMMM	0 , rMMMMMMM	0 , PPPPPPP 	

0
, and the optimizer in the memory. We do

not need to consider the optimization state SSSSSSS in the mem-
ory costs, because the memory it occupies will be imme-
diately freed when it is sent to the optimizer for the next

update iteration. Totally, the memory cost of the Rieman-
nian implicit differentiation training scheme is Oð4dpþ
SP Þ, where SP ¼ 17d2 is the number of parameters in the
Riemannian optimizer. The memory cost is a constant,
independent of the maximum optimization steps T of the
inner-loop.

6 EXPERIMENTS

6.1 Empirical Evaluation

Following state-of-the-art Riemannian optimizationworks [22],
[25], [38], we evaluated RMOon the principal component anal-
ysis (PCA), clustering, and face recognition, and similarity
learning tasks. We compared our optimizer with state-of-the-
art Riemannian optimizers: RSGD [20], RSGDM [22],
RSVRG [21], RSRG [38], and RASA [25]. Following the official
scheme in their papers, all hyperparameters of compared opti-
mizers were tuned by the grid search scheme to achieve the
best performance.We trained our optimizer on the training set
and evaluated its performance on both the training and testing
sets.We set T ¼ 50 in the inner-loop.

6.1.1 PCA on the Grassmann Manifold

Given a set of samples fxxxxxxxi 2 Rdgni¼1, the PCA task aims to
learn an orthogonalmatrixMMMMMMM 2 Rd�p,MMMMMMM>MMMMMMM ¼ Ip, to preserve
the maximum energy of the data in a p-dimensional space,
p < d. The orthogonal matrix MMMMMMM satisfies the rotation invari-
ance property that enforcesMMMMMMM to be on the Grassmann mani-
fold,MMMMMMM 2 Gðp; dÞ. The task can be formulated as

min
MMMMMMM2Gðp;dÞ

LðMMMMMMMÞ ¼ 1

n

Xn
i¼1

���xxxxxxxi �MMMMMMMMMMMMMM>xxxxxxxi

���2: (27)

We used on the MNIST dataset. We represented images
by d ¼ 784-dimensional vectors and aim to learned
p ¼ 32-dimensional representations. Loss curves are shown
in Fig. 7.

6.1.2 Clustering on the SPD Manifold

We considered the task of clustering on the SPD manifold
Symþd . Given a set of SPD points fXiXiXiXiXiXiXi 2 Symþd g, we aimed to
find SPD centroids by solving the following problem

min
fMMMMMMMrgCr¼12Sym

þ
d

LðMMMMMMMÞ ¼
Xn
iˆ r

dðXXXXXXXi;MMMMMMMrÞ; (28)

where iˆ r shows that sample XXXXXXXi is assigned to MMMMMMMr. We
adopted the affine invariance metric (AIM) [18] to

TABLE 1
TransformationCWWWWWWW ð�Þ, Orthogonal Projection pMMMMMMMð�Þ, and Retraction GMMMMMMMð�Þ on Hyperbolic, Stiefel, Grassmann, and SPD Manifolds

Manifold TransformationCW ðXÞ Orthogonal Projection pMðrMÞ Retraction GMðP Þ

Hyperbolic Manifold,MMMMMMM 2 Hd WWWWWWWXXXXXXX;WWWWWWW 2 Rd�d 1
�2
MMMMMMM

rMMMMMMM MMMMMMM�ðtanhð�MMMMMMMkPPPPPPPk2 Þ PPPPPPP
kPPPPPPPkÞ

Stiefel Manifold,MMMMMMM 2 Stðp; dÞ WWWWWWWXXXXXXX;WWWWWWW 2 Rd�d rMMMMMMM �MMMMMMMðMMMMMMM>rMMMMMMMÞSym ufðMMMMMMM þ PPPPPPP Þ
Grassmann Manifold,MMMMMMM 2 Gðp; dÞ WWWWWWWXXXXXXX;WWWWWWW 2 Rd�d rMMMMMMM �MMMMMMMMMMMMMM>rMMMMMMM UUUUUUUgVVVVVVV

>
g where ½UUUUUUUg;SSSSSSSg; VVVVVVV g� ¼ SVDðMMMMMMM þ PPPPPPP Þ

SPDManifold,MMMMMMM 2 Symþd WWWWWWW>XXXXXXXWWWWWWW;WWWWWWW 2 Rd�d MMMMMMMðrMMMMMMMÞSymMMMMMMM MMMMMMM
1
2expmðMMMMMMM�12PPPPPPPMMMMMMM�12ÞMMMMMMM1

2

�MMMMMMM ¼ 2=ð1� kMMMMMMMk2Þ is the conformal factor. MMMMMMM�XXXXXXX ¼ ð1þ2hMMMMMMM;XXXXXXXiþkXXXXXXXk2ÞMMMMMMMþð1�kMMMMMMMk2ÞXXXXXXX
1þ2hMMMMMMM;XXXXXXXiþkMMMMMMMk2kXXXXXXXk2 is the addition on the hyperbolic manifold. ðAAAAAAAÞSym ¼ 1

2 ðAAAAAAAþ AAAAAAA>Þ, ufðAAAAAAAÞ ¼
AAAAAAAðAAAAAAA>AAAAAAAÞ�12 is an operation that yields an orthogonal matrix, ½UUUUUUU;SSSSSSS; VVVVVVV � ¼ SVDðAAAAAAAÞ is the singular value decomposition, AAAAAAA ¼ UUUUUUUSSSSSSSVVVVVVV >, and expmðAAAAAAAÞ is the matrix
exponential operation.

Fig. 7. Plots for the PCA task (in the log scale). Our optimizer converges
very quickly. RSGD reaches a loss of 3.20 and 3.18 on the training and
testing sets, respectively. RSGDM achieves 3.19 and 3.17. In contrast,
RMO achieves 3.14 and 3.08.

GAO ETAL.: LEARNING TO OPTIMIZE ON RIEMANNIAN MANIFOLDS 5943

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 28,2023 at 07:32:10 UTC from IEEE Xplore. Restrictions apply.

compute the distance between XXXXXXXi and the centroid MMMMMMMj.
We conducted experiments on the Kylberg texture data-
set [67] represented each image by a 5� 5 covariance
descriptor. Results are shown in Fig. 8. We also evaluated
the solved centroids. We regarded the centroids as cate-
gory prototypes and computed AIM between test samples
and prototypes to classify test samples. Results are shown
in Table 2.

6.1.3 Face Recognition on the Stiefel Manifold

The orthogonality constraint has been widely used to attain
robust features, making the parameter on the Stiefel manifold.
Here, we considered face recognition using a linear classifier
with the orthogonality constraint. Given image features fxxxxxxxi 2
Rdgni¼1 and labels fyyyyyyyi 2 Rpgni¼1, we trained a linear model by
minimizing the loss function

min
MMMMMMM2Stðp;dÞ

LðMMMMMMMÞ ¼ � 1

n

Xn
i¼1

Xp
l¼1

1ðyil ¼ 1Þlog exp ðMMMMMMM>xxxxxxxiÞl
� �Pp

l0¼1exp ðMMMMMMM>xxxxxxxiÞl0
� � ;

(29)

where MMMMMMM 2 Stðp; dÞ is the weight matrix of the classifier,
and yil is the l-th element of the label yyyyyyyi. 1ðyil ¼ 1Þ
denotes if yil ¼ 1, the value of 1ðyil ¼ 1Þ is 1, and other-
wise is 0.

We used the YaleB dataset [68]. We cropped and resized
the face regions to 32� 32 pixels and represented each
region as a 1024-dimensional feature vector. Loss curves are
shown in Fig. 9. We then evaluated the linear classifier. We
solved the linear classifier using the training set, and mea-
sured accuracies on the testing set. Results are shown in
Table 2.

6.1.4 Similarity Learning on the SPD Manifold

Similarity learning aims to learn a Mahalanobis metric that
computes the distance between xxxxxxxi and xxxxxxxi0 by

dMMMMMMMðxxxxxxxi; xxxxxxxi0 Þ ¼
ffi
ðxxxxxxxi � xxxxxxxi0 Þ>MMMMMMMðxxxxxxxi � xxxxxxxi0 Þ

q
; (30)

where the non-negative condition of the metric requires MMMMMMM
to be an SPD matrix, i.e., MMMMMMM 2 Symd

þþ. We utilized the con-
trastive loss to guide learning the parameter.

We conducted experiments on the fine-grained CUB data-
set [69]. We added a fully-connected layers whose output
dimension is 128 following the VGG-16 network, and
extracted 128-dimensional features for images. Loss curves
are shown in Fig. 10. We then evaluated the performance of
the solved metric matrix, and classification results are shown
in Table 2.

6.1.5 Analysis

Compared to the state-of-the-art hand-designed optimizers,
RSGD, RSGDM, RSRG, RSVRG, and RASA, the proposed
optimizer via RMO achieves better performances for all the
four tasks. The proposed optimizer achieves faster conver-
gence speed and obtains the best optima. Furthermore, the
proposed optimizer workswell on both the seen training data
and unseen test data, showing that the learned optimizer is
able to generalize to unseen data. The reason is that the pro-
posed optimizer is learned from data, and hence can discover
an appropriate updating scheme by exploring the underlying
data distribution of given tasks. Our optimizer adapts the
learning rate and search direction based on both the current
gradient and the previous optimization state. In contrast,
existing Riemannian optimizers are hand-designed and have
fixed updating schemes. That is, the learning rate is fixed dur-
ing optimization steps and the search direction is obtained by

Fig. 8. Plots for the clustering task (in the log scale). On the testing set,
RSVRG achieves losses of 3.54. Among compared methods, RASA
achieves the lowest loss values, �0:70 on the testing set. In contrast, the
proposed optimizer outperforms all the compared methods including
RASA, achieving losses of values �0:88 on the testing set.

TABLE 2
Accuracies (%) on the YaleB, Kylberg, and CUB Datasets

Method Kylberg CUB YaleB

w/o constraint - 66.1 74.80
RSGD [20] 81.25 70.44 79.49
RSVRG [21] 83.19 53.74 79.67
RSRG [38] 70.31 65.53 78.05
RSGDM [22] 82.92 70.15 79.64
RASA [25] 83.40 70.90 80.21
RMO (Ours) 86:70 71:01 95:10

Fig. 9. Plots for the face recognition task (in the log scale). On the train-
ing set, RSRG and RSVRG converge to loss values �4:42 and �3:63,
while our optimizer achieves �5:31. On the testing set, RSRG and
RSVRG converge to �3:47 and �3:73, while our optimizer achieves
�4:83.

Fig. 10. Plots for the similarity learning task (in the log scale).

5944 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 5, MAY 2023

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 28,2023 at 07:32:10 UTC from IEEE Xplore. Restrictions apply.

a fixed scheme. Such fixed updating schemesmay be not suit-
able for all data. In Section 6.4, we provide further analysis via
visualization to better demonstrate the differences between
our algorithm and hand-craftedRiemannian optimizers.

Focusing on the accuracy, the proposed method achieves
the best performance in our experiments. For example, on the
clustering task, our method achieves 86:70%, 5:45% higher
thanRSGDand 3:3% higher thanRASA.On the YaleBdataset,
the best accuracy of hand-designed optimizers is 80:21%,
achieved by RASA. In contrast, RMO achieves 95:10%,
14:89% higher than RASA. This shows that the optima
obtained by our optimizer better fits to the training datawhile
being able to generalize to new data. Again, we conjecture
that the reason is similar to the optimization performance,
simply ourmethod better explores the loss surface, and hence
is able to find better optimas due to its data-driven nature.

6.2 Efficiency

We compares the wall clock time of using our optimizer
against state-of-the-art Riemannian optimization algorithms,
as shown in Table 3. Evaluations were conducted on an Inter
(R) Core(TM) i7-7820X 3.6GHz CPU, GeForce RTX 2080Ti
GPU and 32GB RAM. The wall clock time for all optimizers
was measured in 100 iterations. On the clustering tasks and
similarity learning tasks that is on the SPDmanifold, our opti-
mizer is faster than RSGDM, RSVRG, and RSRG. This is
because the three Riemannian optimizers utilize the parallel
transport to benefit from previous optimization results. On
the SPDmanifold, parallel transport is heavy in computation,
since it requires matrix inversion and matrix power opera-
tions. In contrast, the gmLSTM in our optimizer directly
workswith the previous optimization state via simplermatrix
multiplication and element-wise operations. We note that for
the PCA and face recognition tasks that are on Grassmann
and Stiefel manifolds, our optimizer requires comparable or
marginally more time consumption as compared with exist-
ing Riemannian optimizers. This is because the parallel trans-
port operations on the Stiefel and Grassmannmanifolds have
simpler forms. Although the optimization time is not our
advantage, our optimizer has a faster convergence speed.
This translate into saving time as less optimization steps are
required. Besides, our optimizer achieves a better optima and
avoids lots of human involvement. We observe that RSRG
achieves different time consumption on different tasks, i.e.,

large time consumption on the clustering and similarity learn-
ing tasks and small consumption on the PCA task. The reason
is that a hyperparameter (the number of iterations in the
inner-loop) is set differently. RSRG is a variance reduction
optimization method that uses double loops (an inner-loop
and an outer-loop) in the optimization process, and the num-
ber of iterations in the inner-loop plays an dominant role in
the time consumption of optimization. We set the number of
iterations in the inner-loop as 5 for the similarity learning and
clustering tasks, and 1000 for the PCA task, to achieve the best
performance, causing the different time consumption on dif-
ferent tasks.

We also measured the time consumption of the base-
learner and the optimizer. The time consumption of the base-
learner was measured over the forward process, and the time
consumption of the optimizer was measured over the pro-
cesses of calculating gradients and updating parameters.
Results are also shown in Table 3.

We can see in Table 3 that, on the PCA and face recognition
tasks, more time is spent in optimizing Riemannian parame-
ters. For the clustering and similarity learning tasks, more
time is spent in the forward process of themodel. The reasons
are as follows. (1) The forward process is different among the
four tasks. In the clustering task, we need to compute the
affine invariance metric [18] on the SPD manifold in the for-
ward process,which is heavy in computation, since it requires
matrix inversion andmatrix power operations onmatrices. In
the similarity learning task, we need to compute the distance
between each pair of samples in the forward process, which is
also time-consuming. In contrast, the forward processes of the
PCA and face recognition tasks are not complicated. (2) The
optimizer has different complexities among the four tasks.
The dimension of learnable parameters in the optimizer is
high in the PCA and face recognition tasks, i.e., 784� 784 and
1024� 1024 in the two tasks, respectively. Contrarily, the
dimension is 5� 5 and 128� 128 in the clustering and simi-
larity learning tasks, respectively.

6.3 Ablation Study

6.3.1 gmLSTM

In RMO, gmLSTM plays an important role to preserve matrix
structures of gradients. In this section, we conducted ablation
studies on the PCA task and the clustering task to assess
gmLSTM. Concretely, we replaced gmLSTM in the optimizer
with a conventional LSTM, and the LSTM will destroy the
matrix structure of gradients. We use this experiment to eval-
uate whether we need to preserve matrix structures in Rie-
mannian optimization. When carrying out optimization, we

TABLE 3
Optimization Time (Seconds) of Riemannian Optimizers in

100 Iterations

Method PCA Face
Recognition

Clustering Similarity
Learning

RSGD [20] 57.2 51.7 368.0 150.3
RSGDM [22] 56.9 100.2 389.8 203.9
RSRG [38] 14.9 70.3 1248.4 1226.6
RSVRG [21] 23.2 70.3 802.5 1046.8
RASA [25] 57.7 222.8 375.3 138.0

RMO-base-
learner

33.9 43.2 360.0 117.4

RMO-
optimizer

130.6 68.1 19.0 37.0

RMO (Ours) 164.5 111.3 379.0 154.4

Fig. 11. Ablation study of gmLSTM on the PCA task. On the training and
testing sets, RMO w/o mLSTM finally converges at 3.35 and 3.32, while
RMO converges at 2.37 and 2.36 (log scale).

GAO ETAL.: LEARNING TO OPTIMIZE ON RIEMANNIAN MANIFOLDS 5945

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 28,2023 at 07:32:10 UTC from IEEE Xplore. Restrictions apply.

flattened gradient matricesrðtÞMMMMMMM into vectors and sent the vec-
tors into the optimizer. Then, we reshaped outputs of conven-
tional LSTM into matrices with the same shape as rðtÞMMMMMMM .
Results on the PCA and clustering tasks are shown in Figs. 11
and 12. Results suggest that the optimizer parameterized by
conventional LSTM converges slowly and have a worse
optima. In contrast, our optimizer parameterized by gmLSTM
converge faster to a better optima. This confirms the impor-
tance of preserving matrix structures when learning the Rie-
mannian optimizer.

6.3.2 Riemannian Implicit Differentiation

Training Scheme

Time/memory Consumption. We measured both time and
memory consumption of training the Riemannian optimizer
with (‘w/ RIDTS’) and without (‘w/o RIDTS’) the Rieman-
nian implicit differentiation training scheme (see Tables 4
and 5). For ‘w/o RIDTS’, we utilized the TBPTT algorithm
to train the Riemannian optimizer with the same number of
inner-loop and outer-loop steps as ours. Results suggest
that using the Riemannian implicit differentiation training
scheme saves tangible amount of time and memory as com-
pared to using the TBPTT algorithm. The reason is that our
training scheme does not need to differentiate through the
optimization trajectory in the inner-loop, reducing compu-
tational cost. Furthermore, with the implicit formulation,
we do not need to keep the whole optimization trajectory,
which in terms reduces the memory footprint of our algo-
rithm significantly. Add to this the fact that TBPTT suffers
from the exploding gradient issue, while our training
scheme does not. When the exploding gradient occurs, the
TBPTT has to retrain a model or load a saved model to con-
tinue training, resulting in extra training time. Thus, Rie-
mannian implicit differentiation training scheme makes our
method more efficient.

Meta-Gradient. We visualized meta-gradients of ‘w/
RIDTS’ and ‘w/o RIDTS’ on the PCA tasks (see Fig. 13).

We chose the number of optimization steps in the inner-
loop as T ¼ 5, T ¼ 10, T ¼ 15 and T ¼ 20. We find that,
‘w/o RIDTS’ suffers from exploding meta-gradients,

and the severity of the problem escalates for larger T . In
contrast, meta-gradients of ‘w/ RIDTS’ show stable
behavior and smaller norms, regardless of the duration of
optimization in the inner-loop. Even when T ¼ 20, meta-
gradients of ‘w/ RIDTS’ have smaller and more stable
norms as compared to meta-gradients of ‘w/o RIDTS’
with T ¼ 5. This confirms our analysis that products of
Hessian matrices and products of derivatives of retraction
in meta-gradients of ‘w/o RIDTS’ cause the exploding
gradients. Our Riemannian implicit differentiation train-
ing scheme avoids exploding gradients by breaking the
dependency of optimization trajectories in training the
Riemannian optimizer.

Optimization/Accuracy Performance. Finally, we com-
pared our Riemannian implicit differentiation training
scheme with existing meta-optimization training techni-
ques [52], [70]. For the work in [52], we pretrained an ini-
tial optimizer guided by RSGD and gradually increased
the iterations for the optimizer (50 steps every 2000
epochs). We evaluated its performance with different
optimization steps in the inner-loop, denoted by ‘w/o
RIDTS IL-T ’, where T means the number of inner-loop
steps. Some curves are not presented (e.g., ‘w/o RIDTS
IL-16’ and ‘w/o RIDTS IL-64’ on the PCA task), because
the method of [52] suffered from exploding gradients.
Following ideas in [70], we utilized the persistent evolu-
tion strategies to compute meta-gradients in Riemannian
meta-optimization denoted by ‘w/o RIDTS PES’. Loss
curves are shown in Figs. 14 and 15. Accuracy compari-
sons are shown in Table 6.

For the optimization performance, our training scheme
achieves better performance with faster convergence
speed and lower loss values. Although the method [52]
uses a pretrained model that is capable of alleviating the
instability of training, we observed that it could still suf-
fer from exploding gradients in the Riemannian setting.
We also note that in terms of accuracy, the proposed
training scheme is superior. The method [70] uses evolu-
tion strategies to compute unbiased meta-gradients. Com-
pared with it, our training scheme is more efficient and
achieves higher accuracy.

6.4 Visualization

We trained an optimizer on the PCA task and visualized
generated step sizes and search directions to show how our
optimizer works. The step sizes generated by our optimizer
are shown in Fig. 16a. We find that our optimizer learns to

Fig. 12. Ablation study of gmLSTM on the clustering task. On the training
and testing sets, RMO w/o mLSTM finally converges at 2.55 and 2.56,
while RMO converges at �1:45 and �1:57 (log scale).

TABLE 4
Time (Hours) of Training an Optimizer

Method PCA Face
Recognition

Clustering Similarity
Learning

w/o
RIDTS

1:33� 101 5.97 6.27 8:70� 10�1

w/
RIDTS

1:63� 10�1 4:11� 10�2 5.30 5:80� 10�1

TABLE 5
Memory (MB) of Training an Optimizer

Method PCA Face
Recognition

Clustering Similarity
Learning

w/o
RIDTS

1:19� 104 5:68� 103 7:89� 102 3:68� 103

w/ RIDTS4:55� 103 2:60� 103 6:67� 102 1:21� 103

5946 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 5, MAY 2023

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 28,2023 at 07:32:10 UTC from IEEE Xplore. Restrictions apply.

automatically decrease step sizes, performing adaptive opti-
mization. This is consistent with our common practice of
tuning step sizes for a hand-designed optimizer.

We plotted cosine similarities between generated search
directions and full gradients, as shown in Fig. 16b. Note
that the full gradients are the optimal optimization direc-
tions as they were computed using all training data. We
also plotted cosine similarities between stochastic gradients
(inputs of our optimizer) and the full gradients. To further
compare the generated search directions and the stochastic
gradients, we projected the generated search directions, the
stochastic gradients, and the full gradients to the Grass-
mann manifold. We then computed distances between the
generated search directions and the full gradients, and dis-
tances between the stochastic gradients and the full gra-
dients on the Grassmann manifold using the projection
metric [71]. Results are shown in Fig. 16c. In Figs. 16b and
16c, compared with the stochastic gradients, the generated
search directions by our method have smaller deviations
from the optimal optimization directions (i.e., larger cosine
similarities and smaller distances). This advantage contrib-
utes to our faster convergence speed. Thus, we conclude
that, by exploring the underlying data distributions, our
optimizer learns to automatically transform stochastic gra-
dients and previous optimization states into better search
directions.

We also visualized norms of search directions, as shown
in Fig. 16d. The generated search directions have larger
norms than stochastic gradients, especially at the beginning
of training. Based on the above visualization experiments,
the proposed optimizer can learn to generate adaptive
step sizes and better search directions that have larger
norms, implying a better optimization behaviour.

6.5 Applications

In this work, we focus on Riemannian optimization to
address machine learning tasks with nonlinear constraints,

e.g., dimensionality reduction [11], subspace learning [13],
metric learning [72], and representation learning [73]. Natu-
rally, our method can be applied to many practical con-
strained tasks. To demonstrate this point, we evaluate our
method on the few-shot learning, texture image classifica-
tions, and person re-identification tasks.

6.5.1 Few-Shot Learning

The few-shot learning problems aim to recognize samples
from unseen classes, given very few labeled examples.
Some recent works show that representing data on a hyper-
bolic manifold xxxxxxx 2 Hd may lead to better performances.
Among various properties of the hyperbolic manifold, its
low encoding distortion might be of essential for representa-
tion learning [72]. Here, we build a hyperbolic classifier that
projects euclidean features onto the hyperbolic manifold
and classify them via the hyperbolic distance following [73].
In our experiments, we learn a hyperbolic optimizer to ini-
tialize the classifier for few-shot learning. If we remove the
hyperbolic structure, our model reduces to the celebrated
MAMLmethod [31].

We conducted 1-shot/5-shot 5-way experiments on two
popular datasets: mini-ImageNet [74] and tiered-Image-
Net [75].Weused the 12-layer residual network (ResNet12 [76])
as the backbone. We compared the loss values of RMO with
those of hand-designed Riemannian optimizers RSGD,
RSGDM, and RASA in Fig. 17. The figure shows that our
method has faster convergence speed and smaller loss values
for new tasks. We compared the accuracy of our model with

Fig. 13. Meta-gradients of RMO with and without the Riemannian implicit differentiation training scheme on the PCA task, denoted by ‘w/ RIDTS’ and
‘w/o RIDTS’, respectively. We evaluated meta-gradients with the number T of optimization steps in an inner-loop as 5, 10, 15, and 20.

Fig. 15. Comparisons of learning the Riemannian optimizer with and
without Riemannian implicit differentiation on the clustering task.

Fig. 14. Comparisons of learning the Riemannian optimizer with and
without Riemannian implicit differentiation on the PCA task.

TABLE 6
Ablation on the Kylberg Dataset

Method w/o RIDTS IL [52] w/o RIDTS PES [70] RMO (Ours)

Kylberg 84.15 85.00 86:70

GAO ETAL.: LEARNING TO OPTIMIZE ON RIEMANNIAN MANIFOLDS 5947

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 28,2023 at 07:32:10 UTC from IEEE Xplore. Restrictions apply.

state-of-the-art few-shot learning methods in Tables 7 and 8.
Using a hyperbolic geometry brings clear performance boost
as compared to the euclidean geometry. For example, our
method has at least 10% improvement over MAML and about
5% improvement over ALFA. This is because the hyperbolic
geometry can provide more power representations for data.
Our optimizer learns adaptive optimization for unseen tasks,
further improving the performance. For example, on the mini-
ImageNet dataset, our method is 1:34% and 1:40% higher than
the compared method RSGDM. Hyper ProtoNet learns a
hyperbolic prototype for few-shot learning, and our method is
6:47% and 5:76% higher than it on the mini-ImageNet dataset.
These experiments demonstrate the superiority of our learned
optimizer.

6.5.2 Texture Image Classification

Texture classification, a fundamental problem in computer
vision, has been a long-standing research topic with a wide
variety of applications such as image retrieval. We add the
orthogonality constraint to the classifier for discriminative
representations of texture images. This makes parameters of
the model on Stiefel manifolds. In our experiments, the
DTD [77] dataset was used. We extracted 1024-dimensional
second-order statistics as image representations from a
VGG-16 network via a factorized bilinear pooling [78]. We
trained our optimizer on the training set and then utilized
the optimizer to learn a powerful classifier. Accuracy com-
parisons with the dimensionality of features are shown in
Table 9.

Fig. 16. Visualization of generated step sizes and search directions on the PCA task. (a) Generated step sizes of the proposed optimizer. (b) The red
curve denotes cosine similarities between the generated search directions and full gradients, and the blue curve denotes cosine similarities between
stochastic gradients and full gradients. (c) The projection metric between the generated search directions and the full gradients. (d) Norms of the gen-
erated search directions and stochastic gradients.

Fig. 17. Loss plots for the few-shot learning task on the mini-ImageNet and tiered-ImageNet datasets.

TABLE 7
Accuracy (%) on the Mini-ImageNet Dataset

Method Backbone 1-shot 5-way 5-shot 5-way

MAML [31] ResNet12 51:03� 0:50 68:26� 0:47
L2F [79] ResNet12 57:48� 0:49 74:68� 0:43
CAML [80] ResNet12 59:23� 0:99 72:35� 0:71
ALFA [81] ResNet12 60:06� 0:49 77:42� 0:42
MetaOptNet [76] ResNet12 62:64� 0:61 78:63� 0:46
MetaFun [82] ResNet12 62:12� 0:30 78:20� 0:16
DSN [83] ResNet12 62:64� 0:66 78:83� 0:45
Chen et al. [84] ResNet12 63:17� 0:23 79:26� 0:17
MeTAL [85] ResNet12 59:64� 0:38 76:20� 0:19
LEO [35] WRN-28-10 61:76� 0:08 77:59� 0:12
Hyper ProtoNet [73] ResNet18 59:47� 0:20 76:84� 0:14
RSGD [20] ResNet12 63:38� 0:36 80:10� 0:54
RSGDM [22] ResNet12 64:60� 0:33 81:20� 0:68
RASA [25] ResNet12 62:56� 0:43 78:90� 0:63
RMO (Ours) ResNet12 65:94� 0:42 82:60� 0:39

TABLE 8
Accuracy (%) on the Tiered-ImageNet Dataset

Method Backbone 1-shot 5-way 5-shot 5-way

ProtoNet [86] ResNet12 53:51� 0:89 72:69� 0:74
MAML [31] ResNet12 58:58� 0:49 71:24� 0:43
L2F [79] ResNet12 63:94� 0:48 77:61� 0:41
ALFA [81] ResNet12 64:43� 0:49 81:77� 0:39
DSN [83] ResNet12 66:22� 0:75 82:79� 0:48
MetaOptNet [76] ResNet12 65:99� 0:72 83:28� 0:12
MetaFun [82] ResNet12 67:72� 0:14 78:20� 0:16
Chen et al. [84] ResNet12 68:62� 0:27 83:74� 0:18
MeTAL [85] ResNet12 63:89� 0:43 80:14� 0:40
LEO [35] WRN-28-10 66:33� 0:05 81:44� 0:09
RSGD [20] ResNet12 70:06� 0:66 84:44� 0:27
RSGDM [22] ResNet12 69:56� 0:52 84:56� 0:41
RASA [25] ResNet12 68:2� 0:47 83:4� 0:38
RMO (Ours) ResNet12 71:40� 0:46 85:40� 0:20

5948 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 5, MAY 2023

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 28,2023 at 07:32:10 UTC from IEEE Xplore. Restrictions apply.

Results show that our method achieves state-of-the-art
performance with smaller dimensionality. All the studied
methods use the second-order statistics for classification.
The difference is the use of a classifier with the orthogonal-
ity constraint in our algorithm instead of conventional soft-
max classifier employed by the studied works. Our method
achieves better performance than all compared methods.
This shows the superiority of adding the orthogonality con-
straint. A classifier with orthogonality constraint requires
preserving orthogonality in the training process, which
makes training challenging and unconventional. Our RMO
method quite meets this requirement, and learns to auto-
matically perform optimization on Stiefel manifolds. Since
the classifier with the orthogonality constraint can also be
applied to other classification tasks, such as face and fine-
grained image recognition, our method has wide use-cases
in real-world applications.

6.5.3 Person Re-Identification

Person re-identification has attracted much attention in
computer vision due to its industrial prospects. The goal
here is to retrieve all images with the same identity from
a gallery, given an image of a specific person. The key to
successful person re-identification is to learn discrimina-
tive features and a metric, such that features from the
same identity have small distances and features from dif-
ferent identities have large distances. In our experiment,
we extracted global and part features with bilinear atten-
tion [87], and concatenated them into 1024-dimensional
features, where the GoogLeNet-V1 was used as the back-
bone. We applied a projection with the orthogonality con-
straint on the features, such that the resulting features
become more independent and informative. We used the
Market-1501 [88] and DukeMTMC-reID [89] datasets in
our experiments, and report the mean average precision
(mAP) and rank-1/5/10 accuracies to evaluate our model.
Accuracy comparisons are shown in Table 10.

We can find that the projection with the orthogonality
constraint is more discriminative than the conventional pro-
jection in euclidean spaces. In terms of mAP, our method
achieves 86.1 on the market-1501 dataset, while ‘w/o con-
straint’ is just 82.7. As shown empirically, it is reasonable to
apply our method to the person re-identification task. Our
method not only reduces human involvement but also
brings better performance. This also demonstrates that our

method has wide applications, and can be readily applied
to orthogonal projections to bring discriminative and infor-
mative features.

7 CONCLUSION

In this article, we have presented a Riemannian meta-
optimization (RMO) method to learn an optimizer on Rie-
mannian manifolds, reducing human involvement and
expert knowledge in employing the Riemannian opti-
mizer by hand. The introduced recurrent neural network,
namely gmLSTM, enables us to develop the optimizer
that is faithful to the geometry of the manifold. The Rie-
mannian implicit differentiation training scheme can effi-
ciently learning the Riemannian optimizer, avoiding the
exploding gradients, and reducing both time and memory
costs. We train an optimizer to minimize the objective of a
base-learner in an end-to-end fashion, and thus the opti-
mizer can explore the underlying data distribution to per-
form task-specific optimization. Extensive experiments on
the hyperbolic, Stiefel, Grassmann, and SPD manifolds
have demonstrated that our optimizer can achieve better
convergence behavior than existing state-of-the-art Rie-
mannian optimizers consistently. Developing theoretical
justification of learning Riemannian optimization is our
future work.

REFERENCES

[1] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization.
Cambridge, U.K.: Cambridge University Press, 2004.

[2] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods
for large-scale machine learning,” SIAM Rev., vol. 60, no. 2,
pp. 223–311, 2018.

[3] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam
and beyond,” in Proc. Int. Conf. Learn. Representations, 2018,
pp. 1–23.

[4] A. Cherian, P. Stanitsas, M. Harandi, V. Morellas, and N. Papani-
kolopoulos, “Learning discriminative ab-divergences for positive
definite matrices,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2017,
pp. 4270–4279.

[5] M. Harandi, M. Salzmann, and R. Hartley, “Joint dimensionality
reduction and metric learning: A geometric take,” in Proc. Int.
Conf. Mach. Learn., 2017, pp. 1404–1413.

[6] A. Cherian and S. Sra, “Riemannian dictionary learning and
sparse coding for positive definite matrices,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 28, no. 12, pp. 2859–2871, Dec. 2017.

TABLE 9
Accuracies (%) on the DTD Dataset

Method Feature dim. DTD

B-CNN [9] 2:6� 105 67.5
CBP [90] 8192 67.7
LRBP [91] 100 65.8
MPN [92] 32896 68.0
FBN [93] - 67.8
SMSO [94] 2048 69.3
FBC [78] 1024 70.7
iSQRT-COV [8] 2048 70.6
w/o constraint 1024 69.3
RMO (Ours) 1024 71:2

TABLE 10
Evaluation on the Market-1501 and DukeMTMC-reID Datasets

Method Market-1501 DukeMTMC-reID

mAP R-1 R-5 R-10 mAP R-1 R-5 R-10

SVDNet [72] 62.1 82.3 92.3 95.2 56.8 76.7 86.4 89.9
DKPM [95] 75.3 90.1 96.7 97.9 63.2 80.3 89.5 91.9
HA-CNN [96] 75.7 91.2 - - 63.8 80.5 - -
PBR [97] 79.6 91.7 96.9 98.1 64.2 82.1 - -
DuATM [98] 76.6 91.4 97.1 - 64.6 81.8 90.2 -
Mancs [99] 82.3 93.1 - - 71.8 84.9 - -
SGGNN [100] 82.8 92.3 96.1 97.4 68.2 81.1 88.4 91.2
HPM [101] 82.7 94.2 97.5 98.5 74.3 86.6 - -
IANet [102] 83.1 94.4 - - 73.4 87.1 - -
AANet [103] 83.4 93.9 - 98.5 74.3 87.6 - -
OSNet [104] 84.9 94:8 - - 73.5 88:6 - -
w/o constraint 82.7 92.1 97.3 98.5 72.6 84.8 93.0 94.7
RMO (Ours) 86:1 93.6 98:1 99:3 76:4 86.7 93:9 95:3

GAO ETAL.: LEARNING TO OPTIMIZE ON RIEMANNIAN MANIFOLDS 5949

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 28,2023 at 07:32:10 UTC from IEEE Xplore. Restrictions apply.

[7] R. Hosseini and S. Sra, “Matrix manifold optimization for Gauss-
ian mixtures,” in Proc. Adv. Neural Inf. Process. Syst., 2015,
pp. 910–918.

[8] Q. Wang, J. Xie, W. Zuo, L. Zhang, and P. Li, “Deep CNNs meet
global covariance pooling: Better representation and general-
ization,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 8,
pp. 2582–2597, Aug. 2021.

[9] T.-Y. Lin, A. RoyChowdhury, and S. Maji, “Bilinear convolu-
tional neural networks for fine-grained visual recognition,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 40, no. 6, pp. 1309–1322,
Jun. 2018.

[10] J. Zhang, L. Wang, L. Zhou, and W. Li, “Beyond covariance: Sice
and kernel based visual feature representation,” Int. J. Comput.
Vis., vol. 129, pp. 300–320, 2021.

[11] J. Yuan and A. Lamperski, “Online adaptive principal compo-
nent analysis and its extensions,” in Proc. Int. Conf. Mach. Learn.,
2019, pp. 7213–7221.

[12] A. Hyv€arinen and E. Oja, “Independent component analysis:
Algorithms and applications,” Neural Netw., vol. 13, no. 4/5,
pp. 411–430, 2000.

[13] Z. Huang, R. Wang, S. Shan, L. Van Gool, and X. Chen, “Cross
euclidean-to-riemannian metric learning with application to face
recognition from video,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 40, no. 12, pp. 2827–2840, Dec. 2018.

[14] R. Chakraborty, L. Yang, S. Hauberg, and B. Vemuri, “Intrinsic
Grassmann averages for online linear, robust and nonlinear sub-
space learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43,
no. 11, pp. 3904–3917, Nov. 2021.

[15] W. Dai, O. Milenkovic, and E. Kerman, “Subspace evolution and
transfer (SET) for low-rank matrix completion,” IEEE Trans. Sig-
nal Process., vol. 59, no. 7, pp. 3120–3132, Jul. 2011.

[16] R. Chakraborty, J. Bouza, J. Manton, and B. C. Vemuri,
“ManifoldNet: A deep neural network for manifold-valued data
with applications,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44,
no. 2, pp. 799–810, Feb. 2022.

[17] T. Lin and H. Zha, “Riemannian manifold learning,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 30, no. 5, pp. 796–809, May 2008.

[18] X. Pennec, P. Fillard, and N. Ayache, “A riemannian frame-
work for tensor computing,” Int. J. Comput. Vis., vol. 66, no. 1,
pp. 41–66, 2006.

[19] N. T. Trendafilov, “P.-A. absil, R. mahony, and R. sepulchre.
optimization algorithms on matrix manifolds,” Found. Comput.
Math., vol. 10, no. 2, pp. 241–244, 2010.

[20] S. Bonnabel, “Stochastic gradient descent on Riemannian man-
ifolds,” IEEE Trans. Autom. Control, vol. 58, no. 9, pp. 2217–2229,
Sep. 2013.

[21] H. Zhang, S. J. Reddi, and S. Sra, “Riemannian SVRG: Fast sto-
chastic optimization on Riemannian manifolds,” in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 4592–4600.

[22] S. Kumar Roy, Z. Mhammedi, and M. Harandi, “Geometry
aware constrained optimization techniques for deep learning,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 4460–4469.

[23] H. Sato, H. Kasai, and B. Mishra, “Riemannian stochastic vari-
ance reduced gradient algorithm with retraction and vector
transport,” SIAM J. Optim., vol. 29, no. 2, pp. 1444–1472, 2019.

[24] G. B�ecigneul and O.-E. Ganea, “Riemannian adaptive optimization
methods,” inProc. Int. Conf. Learn. Representations, 2019, pp. 1–16.

[25] H. Kasai, P. Jawanpuria, and B. Mishra, “Riemannian adaptive
stochastic gradient algorithms on matrix manifolds,” in Proc. Int.
Conf. Mach. Learn., 2019, pp. 3262–3271.

[26] H. Zhang and S. Sra, “Towards riemannian accelerated gradient
methods,” 2018, arXiv:1806.02812.

[27] F. Alimisis, A. Orvieto, G. Becigneul, and A. Lucchi, “Practical
accelerated optimization on Riemannian manifolds,”
2020, arXiv:2002.04144.

[28] Y. Liu, F. Shang, J. Cheng, H. Cheng, and L. Jiao, “Accelerated
first-order methods for geodesically convex optimization on Rie-
mannian manifolds,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 4868–4877.

[29] A. Gu, F. Sala, B. Gunel, and C. R�e, “Learning mixed-curvature
representations in product spaces,” in Proc. Int. Conf. Learn. Rep-
resentations, 2019, pp. 1–21.

[30] M. Maher and S. Sakr, “SmartML: A meta learning-based frame-
work for automated selection and hyperparameter tuning for
machine learning algorithms,” in Proc. Int. Conf. Extending Data-
base Technol., 2019, pp. 554–557.

[31] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proc. Int. Conf. Mach.
Learn., 2017, pp. 1126–1135.

[32] Y. Cao, T. Chen, Z. Wang, and Y. Shen, “Learning to optimize
in swarms,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 15 018–15 028.

[33] M. Andrychowicz et al., “Learning to learn by gradient descent
by gradient descent,” in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 3981–3989.

[34] S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” in Proc. Int. Conf. Learn. Representations, 2017, pp. 1–11.

[35] A. A. Rusu et al., “Meta-learning with latent embedding opti-
mization,” in Proc. Int. Conf. Learn. Representations, 2019, pp. 1–17.

[36] Z. Gao, Y. Wu, Y. Jia, and M. Harandi, “Learning to optimize on
SPD manifolds,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2020, pp. 7697–7706.

[37] D. G. Luenberger, “The gradient projection method along geo-
desics,”Manage. Sci., vol. 18, no. 11, pp. 620–631, 1972.

[38] H. Kasai, H. Sato, and B. Mishra, “Riemannian stochastic recur-
sive gradient algorithm,” in Proc. Int. Conf. Mach. Learn., 2018,
pp. 2521–2529.

[39] J. Zhang, H. Zhang, and S. Sra, “R-spider: A fast Riemannian sto-
chastic optimization algorithm with curvature independent
rate,” 2018, arXiv:1811.04194.

[40] P.-A. Absil, C. G. Baker, and K. A. Gallivan, “Trust-region meth-
ods on Riemannian manifolds,” Found. Comput. Math., vol. 7,
pp. 303–330, 2007.

[41] W. Huang, K. A. Gallivan, and P.-A. Absil, “A Broyden class of
quasi-newton methods for Riemannian optimization,” SIAM
J. Optim., vol. 25, pp. 1660–1685, 2015.

[42] H. Kasai, H. Sato, and B. Mishra, “Riemannian stochastic quasi-
newton algorithm with variance reduction and its convergence
analysis,” in Proc. Int. Conf. Artif. Intell. Statist., 2018, pp. 269–278.

[43] H. Kasai and B. Mishra, “Inexact trust-region algorithms on Rie-
mannian manifolds,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 4254–4265.

[44] J. Hu, A. Milzarek, Z. Wen, and Y.-X. Yuan, “Adaptive quadrati-
cally regularized newton method for Riemannian optimization,”
SIAM J. Matrix Anal. Appl., vol. 39, pp. 1181–1207, 2018.

[45] Z. Li, F. Zhou, F. Chen, and H. Li, “Meta-SGD: Learning to learn
quickly for few-shot learning,” 2017, arXiv:1707.09835.

[46] I. Bello, B. Zoph, V. Vasudevan, and Q. V. Le, “Neural optimizer
search with reinforcement learning,” in Proc. Int. Conf. Mach.
Learn., 2017, pp. 459–468.

[47] X. Xie, J. Wu, G. Liu, Z. Zhong, and Z. Lin, “Differentiable linear-
izedADMM,” inProc. Int. Conf.Mach. Learn., 2019, pp. 6902–6911.

[48] X. Chen, J. Liu, Z. Wang, and W. Yin, “Theoretical linear conver-
gence of unfolded ISTA and its practical weights and thresh-
olds,” in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 9061–9071.

[49] R. Liu, S. Cheng, Y. He, X. Fan, Z. Lin, and Z. Luo, “On the con-
vergence of learning-based iterative methods for nonconvex
inverse problems,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42,
no. 12, pp. 3027–3039, Dec. 2020.

[50] O. Wichrowska et al., “Learned optimizers that scale and gener-
alize,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 3751–3760.

[51] L. Metz, N. Maheswaranathan, J. Nixon, D. Freeman, and J. Sohl-
Dickstein, “Understanding and correcting pathologies in the
training of learned optimizers,” in Proc. Int. Conf. Mach. Learn.,
2019, pp. 4556–4565.

[52] T. Chen et al., “Training stronger baselines for learning to opti-
mize,” in Proc. Adv. Neural Inf. Process. Syst., 2020, pp. 7332–7343.

[53] Y. Bengio, “Gradient-based optimization of hyperparameters,”
Neural Comput., vol. 12, no. 8, pp. 1889–1900, 2000.

[54] A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine, “Meta-
learning with implicit gradients,” in Proc. Adv. Neural Inf. Process.
Syst., 2019, pp. 113–124.

[55] R. Liao et al., “Reviving and improving recurrent back-prop-
agation,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 3082–3091.

[56] D. Gudovskiy, L. Rigazio, S. Ishizaka, K. Kozuka, and S. Tsu-
kizawa, “Autodo: Robust autoaugment for biased data with
label noise via scalable probabilistic implicit differentiation,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021,
pp. 16 601–16 610.

[57] J. M. Lee, Riemannian Manifolds: An Introduction to Curvature. Ber-
lin, Germany: Springer, 2006, vol. 176.

[58] J. W. Cannon et al., “Hyperbolic geometry,” Flavors Geometry,
vol. 31, no. 59–115, 1997, Art. no. 2.

5950 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 5, MAY 2023

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 28,2023 at 07:32:10 UTC from IEEE Xplore. Restrictions apply.

[59] A. Edelman, T. A. Arias, and S. T. Smith, “The geometry of algo-
rithms with orthogonality constraints,” SIAM J. Matrix Anal.
Appl., vol. 20, no. 2, pp. 303–353, 1998.

[60] P.-A. Absil, R. Mahony, and R. Sepulchre, “Riemannian geome-
try of Grassmann manifolds with a view on algorithmic
computation,” Acta Applicandae Mathematica, vol. 80, no. 2,
pp. 199–220, 2004.

[61] M. Harandi, M. Salzmann, and R. Hartley, “Dimensionality
reduction on SPD manifolds: The emergence of geometry-aware
methods,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 1,
pp. 48–62, Jan. 2018.

[62] K. Li and J. Malik, “Learning to optimize,” in Proc. Int. Conf.
Learn. Representations, 2016, pp. 1–13.

[63] J. Lorraine, P. Vicol, and D. Duvenaud, “Optimizing millions of
hyperparameters by implicit differentiation,” in Proc. Int. Conf.
Artif. Intell. Statist., 2020, pp. 1540–1552.

[64] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind,
“Automatic differentiation in machine learning: A survey,”
J. Mach. Learn. Res., vol. 18, pp. 153:1–153:43, 2017.

[65] C. Ionescu, O. Vantzos, and C. Sminchisescu, “Matrix backpro-
pagation for deep networks with structured layers,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis., 2015, pp. 2965–2973.

[66] A. Griewank, “Some bounds on the complexity of gradients,
jacobians, and hessians,” in Complexity in Numerical Optimization.
Singapore: World Scientific, 1993, pp. 128–162.

[67] G. Kylberg, “The kylberg texture dataset v. 1.0,” Centre Image
Anal., Swedish Univ., Agricultural Sci. Uppsala Univ., Uppsala,
Sweden, Tech. Rep. (Blue series) 35, Sep. 2011. [Online]. Avail-
able: //www.cb.uu.se/~gustaf/texture/

[68] K.-C. Lee, J. Ho, and D. J. Kriegman, “Acquiring linear subspaces
for face recognition under variable lighting,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 27, no. 5, pp. 684–698, May 2005.

[69] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The
caltech-UCSD birds-200–2011 dataset,” California Institute of
Technology, Tech. Rep. CNS-TR-2011-001, 2011.

[70] P. Vicol, L. Metz, and J. Sohl-Dickstein, “Unbiased gradient
estimation in unrolled computation graphs with persistent
evolution strategies,” in Proc. Int. Conf. Mach. Learn., 2021,
pp. 10 553–10 563.

[71] J. Ham and D. Lee, “Grassmann discriminant analysis: A unify-
ing view on subspace-based learning,” in Proc. Int. Conf. Mach.
Learn., 2008, pp. 376–383.

[72] Y. Sun, L. Zheng, W. Deng, and S. Wang, “SVDNet for pedestrian
retrieval,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2017,
pp. 3820–3828.

[73] V. Khrulkov, L. Mirvakhabova, E. Ustinova, I. Oseledets, and V.
Lempitsky, “Hyperbolic image embeddings,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2020, pp. 6417–6427.

[74] O. Vinyals et al., “Matching networks for one shot learning,” in
Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 3630–3638.

[75] M. Ren et al., “Meta-learning for semi-supervised few-shot
classification,” in Proc. Int. Conf. Learn. Representations, 2018,
pp. 1–15.

[76] K. Lee, S. Maji, A. Ravichandran, and S. Soatto, “Meta-learning
with differentiable convex optimization,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2019, pp. 10 649–10 657.

[77] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi,
“Describing textures in the wild,” in Proc. IEEE/CVF Conf. Com-
put. Vis. Pattern Recognit., 2014, pp. 3606–3613.

[78] Z. Gao, Y. Wu, X. Zhang, J. Dai, Y. Jia, and M. Harandi,
“Revisiting bilinear pooling: A coding perspective,” in Proc.
AAAI Conf. Artif. Intell., 2020, pp. 3954–3961.

[79] S. Baik, S. Hong, and K. M. Lee, “Learning to forget for meta-
learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2020, pp. 2376–2384.

[80] X. Jiang, M. Havaei, F. Varno, G. Chartrand, N. Chapados, and
S. Matwin, “Learning to learn with conditional class depend-
encies,” in Proc. Int. Conf. Learn. Representations, 2019, pp. 1–11.

[81] S. Baik, M. Choi, J. Choi, H. won Kim, and K. M. Lee, “Meta-
learning with adaptive hyperparameters,” in Proc. Adv. Neural
Inf. Process. Syst., 2020, pp. 20 755–20 765.

[82] J. Xu, J. Ton, H. Kim, A. R. Kosiorek, and Y. W. Teh, “MetaFun:
Meta-learning with iterative functional updates,” in Proc. Int.
Conf. Mach. Learn., 2020, pp. 10 617–10 627.

[83] C. Simon, P. Koniusz, R. Nock, and M. Harandi, “Adaptive sub-
spaces for few-shot learning,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2020, pp. 4136–4145.

[84] Y. Chen, Z. Liu, H. Xu, T. Darrell, and X. Wang, “Meta-baseline:
Exploring simple meta-learning for few-shot learning,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis., 2021, pp. 9062–9071.

[85] S. Baik, J. Choi, H. Kim, D. Cho, J. Min, and K. M. Lee, “Meta-
learning with task-adaptive loss function for few-shot learning,”
in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021, pp. 9465–9474.

[86] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for
few-shot learning,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 4077–4087.

[87] P. Fang, J. Zhou, S. K. Roy, P. Ji, L. Petersson, and M. T. Harandi,
“Attention in attention networks for person retrieval,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 44, no. 9, pp. 4626–4641,
Sep. 2022.

[88] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian,
“Scalable person re-identification: A benchmark,” in Proc. IEEE/
CVF Int. Conf. Comput. Vis., 2015, pp. 1116–1124.

[89] E. Ristani, F. Solera, R. S. Zou, R. Cucchiara, and C. Tomasi,
“Performance measures and a data set for multi-target, multi-cam-
era tracking,” in Proc. Eur. Conf. Comput. Vis. Workshops, 2016,
pp. 17–35.

[90] Y. Gao, O. Beijbom, N. Zhang, and T. Darrell, “Compact bilinear
pooling,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2016, pp. 317–326.

[91] S. Kong and C. C. Fowlkes, “Low-rank bilinear pooling for fine-
grained classification,” in Proc. IEEE/CVF Conf. Comput. Vis. Pat-
tern Recognit., 2017, pp. 7025–7034.

[92] P. Li, J. Xie, Q. Wang, and W. Zuo, “Is second-order information
helpful for large-scale visual recognition?,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis., 2017, pp. 2089–2097.

[93] Y. Li, N. Wang, J. Liu, and X. Hou, “Factorized bilinear models
for image recognition,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.,
2017, pp. 2098–2106.

[94] K. Yu and M. Salzmann, “Statistically-motivated second-order
pooling,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 621–637.

[95] Y. Shen, T. Xiao, H. Li, S. Yi, and X. Wang, “End-to-end deep Kro-
necker-product matching for person re-identification,” in Proc.
IEEE/CVFConf. Comput. Vis. Pattern Recognit., 2018, pp. 6886–6895.

[96] W. Li, X. Zhu, and S. Gong, “Harmonious attention network for
person re-identification,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2018, pp. 2285–2294.

[97] Y. Suh, J. Wang, S. Tang, T. Mei, and K. M. Lee, “Part-aligned
bilinear representations for person re-identification,” in Proc.
Eur. Conf. Comput. Vis., 2018, pp. 418–437.

[98] J. Si et al., “Dual attention matching network for context-aware
feature sequence based person re-identification,” in Proc. IEEE/
CVF Conf. Comput. Vis. Pattern Recognit., 2018, pp. 5363–5372.

[99] C. Wang, Q. Zhang, C. Huang, W. Liu, and X. Wang, “Mancs: A
multi-task attentional network with curriculum sampling for
person re-identification,” in Proc. Eur. Conf. Comput. Vis., 2018,
pp. 384–400.

[100] Y. Shen, H. Li, S. Yi, D. Chen, and X. Wang, “Person re-identifica-
tion with deep similarity-guided graph neural network,” in Proc.
Eur. Conf. Comput. Vis., 2018, pp. 508–526.

[101] Y. Fu et al., “Horizontal pyramid matching for person re-identi-
fication,” in Proc. AAAI Conf. Artif. Intell., 2019, pp. 8295–8302.

[102] R. Hou, B. Ma, H. Chang, X. Gu, S. Shan, and X. Chen,
“Interaction-and-aggregation network for person re-identi-
fication,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2019, pp. 9317–9326.

[103] C. Tay, S. Roy, and K. Yap, “AANet: Attribute attention network
for person re-identifications,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2019, pp. 7134–7143.

[104] K. Zhou, Y. Yang, A. Cavallaro, and T. Xiang, “Omni-scale fea-
ture learning for person re-identification,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis., 2019, pp. 3701–3711.

Zhi Gao (Member, IEEE) received the BS degree
from the School of Computer Science, Beijing
Institute of Technology, China, in 2017. He is cur-
rently working toward the PhD degree in the
School of Computer Science, Beijing Institute of
Technology. His research interests include pat-
tern recognition, machine learning, computer
vision, and Riemannian geometry.

GAO ETAL.: LEARNING TO OPTIMIZE ON RIEMANNIAN MANIFOLDS 5951

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 28,2023 at 07:32:10 UTC from IEEE Xplore. Restrictions apply.

//www.cb.uu.se/~gustaf/texture/

Yuwei Wu (Member, IEEE) received the PhD
degree in computer science from the Beijing Insti-
tute of Technology (BIT), Beijing, China, in 2014.
He is now an associate professor with the School
of Computer Science, BIT. From August 2014 to
August 2016, he was a postdoctoral research fel-
low with the School of Electrical & Electronic Engi-
neering (EEE), Nanyang Technological University
(NTU), Singapore. He has strong research inter-
ests in computer vision andmachine learning.

Xiaomeng Fan received the BS degree in infor-
mation and computing science from the Hebei
University of Technology (HEBUT), Hebei, China,
in 2020. He is currently working toward PhD
degree with the School of Computer Science, Bei-
jing Institute of Technology (BIT), Beijing, China.
His research interests include Riemannian optimi-
zation, machine learning, and computer vision .

Mehrtash Harandi (Member, IEEE) is a associate
professor with the Department of Electrical and
Computer SystemsEngineering,MonashUniversity.
He is also a contributing research scientist in the
Machine Learning Research Group (MLRG) with
Data61/CSIRO and an associated investigator with
the Australian Center for Robotic Vision (ACRV). His
current research interests include theoretical and
computational methods in machine learning, com-
puter vision, signal processing, and Riemannian
geometry.

Yunde Jia (Member, IEEE) received the BS, MS,
and PhD degrees from the Beijing Institute of Tech-
nology (BIT) in 1983, 1986, and 2000, respectively.
He was a visiting scientist with the Robotics Insti-
tute, Carnegie Mellon University (CMU), from 1995
to 1997. He is currently a professor of Computer
Science with BIT, and chair professor of Computer
Science with Shenzhen MSU-BIT University. His
interests include computer vision, computational
perception and cognition, and intelligent systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

5952 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 5, MAY 2023

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 28,2023 at 07:32:10 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

