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Abstract—Meta-learning methods are shown to be effective in quickly adapting a model to novel tasks. Most existing meta-learning

methods represent data and carry out fast adaptation in euclidean space. In fact, data of real-world applications usually resides in

complex and various Riemannian manifolds. In this paper, we propose a curvature-adaptive meta-learning method that achieves fast

adaptation to manifold data by producing suitable curvature. Specifically, we represent data in the product manifold of multiple constant

curvature spaces and build a product manifold neural network as the base-learner. In this way, our method is capable of encoding

complex manifold data into discriminative and generic representations. Then, we introduce curvature generation and curvature

updating schemes, through which suitable product manifolds for various forms of data manifolds are constructed via few optimization

steps. The curvature generation scheme identifies task-specific curvature initialization, leading to a shorter optimization trajectory. The

curvature updating scheme automatically produces appropriate learning rate and search direction for curvature, making a faster and

more adaptive optimization paradigm compared to hand-designed optimization schemes. We evaluate our method on a broad set of

problems including few-shot classification, few-shot regression, and reinforcement learning tasks. Experimental results show that our

method achieves substantial improvements as compared to meta-learning methods ignoring the geometry of the underlying space.

Index Terms—Meta-learning, manifold data, constant curvature space, product manifold, curvature

Ç

1 INTRODUCTION

AN important problem inmachine learning and computer
vision is to quickly adapt a model to novel tasks with

unseen and limited data [1], [2], [3], [4]. Meta-learning meth-
ods have shown impressive performance in achieving such
fast adaptation [5], [6], [7]. The central idea is to train a meta-
learner on some seen tasks and generalize the acquired
knowledge to adapt a base-learner to novel tasks. Most exist-
ing meta-learning methods represent data and carry out fast
adaptation in euclidean space. This is mainly because euclid-
ean space provides an appealing vectorial structure, allow-
ing us to implement various basic operations (e.g., addition,
inner product, and measuring distances) with ease. How-
ever, data in most machine learning tasks does not intrinsi-
cally comply with the euclidean geometry. For example, face
images can be better modeled by a Riemannian manifold
with spherical structures [8]. As a result, several studies opt
tomake use of Riemannian geometry formodeling and infer-
ence [9], [10], [11]. Focusing on meta-learning, modeling

manifold data using euclidean space will harm the structure
of data, leading to inferior generalization to novel tasks [12],
[13]. Therefore, it is promising to studymeta-learning in Rie-
mannianmanifold.

Recent work in constant curvature space [14], [15], [16]
offers a feasible perspective to meta-learning in Riemannian
manifold. Constant curvature space has a smooth Rieman-
nian geometry and has been shown to be superior to euclid-
ean spaces in some machine learning problems (e.g., image
retrieval [12]). Curvature is a fundamental concept in con-
stant curvature space, which characterizes the geometry of
the space, representing the deviation of the space from the
flat euclidean space [17]. If the curvature is equal to zero, a
constant curvature space is equivalent to a euclidean space.
Basic operations in constant curvature space are not overly
complicated, in turn bringing convenience to algorithmic
designs. Moreover, combining multiple constant curvature
spaces into a Cartesian product leads to a product mani-
fold [18], capable of modeling complex data with high flexi-
bility [19]. This motivates us to make use of the product
manifold of constant curvature spaces to design a meta-
learning method for fast adaptation to manifold data.

To employ the product manifold for meta-learning, we
need to address two challenges. (1) Making the base-
learner faithful to the geometry of the product manifold is
not straightforward and requires advanced modeling.
Essentially, employing existing models (e.g., CNNs) inevi-
tably destroys the structure of the product manifold. (2) A
meta-learning method requires handling diverse manifold
structures of unseen data. For example, medical images
about brain activity exhibit the cyclical structure [20], and
fine-grained images are modeled better by hierarchical
structures [21]. Given limited data in meta-learning, it is
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challenging to quickly adapt the geometry of the product
manifold to match diverse manifold structures.

In this paper, we propose a curvature-adaptive meta-learn-
ing method that addresses the above two challenges, capable
of fast adaptation to manifold data. To address the first chal-
lenge, we introduce a product manifold neural network as the
base-learner. In our design,wemake use of the tangent bundle
of the product manifold to realize differentiable layers of the
neural network. Since tangent spaces are local approximation
to themanifold (to the first order), the representation ability of
the network may get negatively affected if tangent points are
not flexible and far from features in hand [22]. Hence,we learn
tangent points throughout the network in the hope of better
capturing intrinsic properties of data. In this way, we general-
ize conventional neural network architectures (e.g., fully-con-
nected layer and convolutional block) to the product manifold
of constant curvature spaces via learnable tangent spaces.

To address the second challenge, we introduce a curva-
ture generation scheme and a curvature updating scheme to
update curvatures in the product manifold neural network
(see Fig. 1 for a conceptual diagram). Specifically, we learn a
common curvature initialization and curvature adjustment
by the curvature generation scheme. Given a novel task, the
curvature adjustment modulates the common curvature ini-
tialization to a task-specific curvature initialization, shorten-
ing the optimization trajectory. The curvature updating
scheme learns to produce adaptive learning rate and search
direction for each curvature, leading to faster and more
adaptive optimization as compared to a fixed updating
scheme. In this case, suitable product manifolds are con-
structed for novel tasks via few optimization steps on curva-
tures. We also learn to initialize parameters (i.e., weights) of
the product manifold neural network in the meta-learning

framework and update them for given tasks. Note that, if
the curvature is set to zero and the learning rate is kept fixed
in the optimization, the product manifold neural network
realizes a classic neural network in euclidean space, and our
method is reduced to the celebrated MAML algorithm [1].
We conduct experiments on the few-shot classification, few-
shot regression, and reinforcement learning tasks. Experi-
mental results show the efficiency and effectiveness of our
method, demonstrating the benefits of employing Rieman-
nian structures as compared to meta-learning methods that
are oblivious to the geometry of the underlying space.

In summary, our contributions are three-fold.

1. We propose a curvature-adaptive meta-learning
method that carries out fast adaptation for novel tasks
by updating curvatures in the product manifold of
constant curvature spaces. Our method is capable of
performing fast adaptation to various forms of mani-
fold data, making themethodmore generic.

2. We introduce a productmanifold neural network as the
base-learner, which generalizes conventional neural
network architectures to the product manifold of con-
stant curvature spaces. Our network learns curvatures
and tangent spaces in each layer, hence comes with
great flexibility to capture the intrinsic structure of data.

3. We generate task-specific curvature initialization, and
adaptive learning rates and search directions for cur-
vatures, throughwhich suitable product manifolds are
constructed via few optimization steps on curvatures.

2 RELATED WORK

2.1 Meta-Learning

Existing meta-learning methods can be broadly divided into
three categories: metric-based, model-based, and optimiza-
tion-based methods. Early metric-based methods [23], [24]
learn a common embedding space for classification. Recent
advances suggest that employing a common embedding
space might not be discriminative enough and adapt the
embedding space to specific tasks. For example, Ye et al.
[25] and Kang et al. [26] learned a task-specific transforma-
tion, Li et al. [27] employed a task-specific loss function, Liu
et al. [6] generated task-specific class prototypes, Bateni et al.
[28] and Qiao [29] proposed task-specific distance meas-
ures, and Simon et al. [30] learned task-specific subspaces.

Model-based methods wrap up adaptation as a forward
propagation of a black-box model based on task representa-
tions. Santoro et al. [7] utilized loss gradients as task repre-
sentations to predict parameters of a neural network. Xu
et al. [31] introduced an encoder-decoder architecture to
generate infinite-dimensional task representations. Mishra
et al. [32] used temporal convolutions and attention mecha-
nisms to improve the memory capacity of model-base meta-
learning. Zhen et al. [33] utilized task representations to pro-
duce task-specific kernel functions, showing state-of-the-art
performance. Edwards and Storkey [34] learned to estimate
the statistics of data as task representations, avoiding the
need of external memory modules.

Our method belongs to optimization-based methods that
achieve fast adaptation through an optimization process.
Existing optimization-based methods mainly focus on data

Fig. 1. A conceptual visualization of the proposed method. In real-world,
data usually has various forms of manifold structures, such as hierarchi-
cal data and cyclical data. We propose a curvature-adaptive meta-learn-
ing method that encodes data using a product manifold of constant
curvature spaces and performs fast adaptation to manifold data by
updating curvatures. Our method contains a curvature generation
scheme and a curvature updating scheme, which assigns task-specific
curvature initialization and carries out adaptive optimization on curva-
tures, respectively. Our method can construct suitable geometry for vari-
ous forms of manifold data via few optimization steps.
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in euclidean space. The pioneering work of Finn et al. [1],
model-agnostic meta-learning (MAML), learns a good base-
learner initialization. To reduce the computational complex-
ity of MAML, Rajeswaran et al. [5] derived implicit differen-
tiation to learn the initialization, Jamal et al. [35] utilized a
teacher-student strategy to avoid the process of updating
the base-learner, being immune to the risk of vanishing or
exploding gradients, and Zou and Lu [36] proposed a
Bayesian meta-learning method to avoid backpropagation.
To overcome the overfitting issue, Baik et al. proposed task-
and-layer-specific attenuation [37] and task-specific loss
functions [38], enabling the method to be applied to differ-
ent problem domains, and Zintgraf et al. [2] only updated
part of initial parameters. Several methods show that the
optimization process can also be cast as learning problem.
Andrychowicz et al. [39] trained neural networks for optimi-
zation. Ravi and Larochelle [40] utilized the LSTM structure
for gradient descent. New developments include the work
of Li et al. [41] and Baik et al. [42] that learns both parameter
initialization and the optimizer.

In contrast to the previous art in optimization-based
methods, we focus on manifold data that is more generic in
practice. Recently, Khrulkov et al. [12] and Qi et al. [13] pro-
posed metric-based meta-learning methods for manifold
data by adapting a non-euclidean distance measure to novel
tasks. The two works focus on a specific type of data, and
use a fixed geometry to represent data. Besides, they mainly
work for classification applications, due to the dependency
on the distance measure. In contrast, our method can per-
form fast adaptation to various forms of manifold data by
using the product manifold and updating curvatures, mak-
ing the method more generic. By adapting a neural network
to manifold data instead of only a distance measure, our
method can be applied to a wider set of applications (e.g.,
regression) based on the network design.

2.2 Learning in Constant Curvature Space

Constant curvature space has become an alternative to
euclidean space in many machine learning problems (e.g.,
image retrieval [12] and language processing [43]), because
constant curvature space can provide powerful representa-
tions for multiple types of data. Existing methods exploring
constant curvature space can be divided into two categories:
fixed-curvature methods and adaptive-curvature methods.
Early work utilizes constant curvature space with fixed cur-
vature for the problem in hand. Some methods set negative
curvature in constant curvature space, that is, the hyper-
bolic space, which is shown to be successful in capturing
the hierarchical structure in data. For example, Liu et al.
[14], Long et al. [16], and Yan et al. [21] learned visual
embeddings in hyperbolic space. Ganea et al. [17] and Shi-
mizu et al. [44] designed hyperbolic neural networks,
extracting features of hierarchical data with success. Liu
et al. [45], Zhang et al. [46], and Dai et al. [47] developed
hyperbolic graph networks. There also exists methods that
study dimensionality reduction [48] and clustering [49] in
hyperbolic space. On the other end of the spectrum, several
methods opt for positive curvature to model the spherical
structure in data (e.g., medical images about brain activity).
Some notable studies are the work of Defferrard et al. [20]
on the spherical neural network, the work of Grattarola

et al. [15] on change detection for the spherical data, and the
work of Wilson et al. [50] that learns embeddings on surfa-
ces with positive curvature. The aforementioned studies
regard curvature as a hyperparameter of the model and
require human involvement for proper tuning.

To address this issue, adaptive-curvature methods have
emerged. The underlying idea is to learn curvature using a
penalty term from the data. Bachmann et al. [51], Chami et al.
[52], and Zhang et al. [53] learned the curvature of a constant
curvature graph network, Skopek et al. [18] and Park et al.
[54] updated curvatures for auto-encoders in constant curva-
ture space, and Gu et al. [19] searched the optimal curvature
for embedding purposes. Compared with these methods,
our method utilizes the meta-learning technique and is capa-
ble of quickly identifying the suitable curvature for a given
task with limited annotated data. By assigning task-specific
curvature initialization and applying adaptive updating
scheme on curvatures, our method can construct suitable
constant curvature spaces for various forms of manifold data
through few updating steps. Besides, compared with exist-
ing neural networks in constant curvature space (e.g., [17],
[45]), which use a common tangent space at the origin for all
features, we apply learnable tangent spaces in each layer,
reducing approximation error of the tangent spaces to the
manifold.

3 MATHEMATICAL BACKGROUND

Throughout this paper, we denote vectors by bold lower-
case letters, e.g., uu, matrices by bold upper-case letters, e.g.,
WW , and tensors by blackboard upper-case letters, e.g., X.

3.1 Riemannian Manifold

A Riemannian manifold M is a topological space that
locally resembles euclidean space and can be understood as
a generalization of the notion of surface to higher-dimen-
sional space. Similar to euclidean space, the shortest path
between two points on Riemannian manifold is a curve and
is called a geodesic.1 For a point uu 2 M, its tangent space
TuuM is a euclidean space that approximatesM linearly at
uu. It contains all vectors tangent toM at uu. A Riemannian
manifold is endowed with a metric % : TuuM� TuuM! R

that induces an inner product structure h�; �iuu on the tangent
space TuuM, i.e., for two points qq; ss 2 TuuM, hqq; ssiuu ¼ %ðqq; ssÞ.
The norm k � k on the tangent space is also defined by the
metric: kqqk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
%ðqq; qqÞ

p
, qq 2 TuuM.

3.2 Constant Curvature Space

A d-dimensional constant curvature spaceMd
K is a smooth

Riemannian manifold with a curvature K that represents
the deviation ofMd

K from a flat space [55]. For uu 2 Md
K , its

tangent space is denoted by TuuMd
K . We will use the gyro-

vector space [56] to work with constant curvature space. In
particular, the following operations are essential to our
developments.

Inner Product. For qq; ss 2 TuuMd
K , their inner product is

hqq; ssiuu ¼ ð�K
uu Þ

2hqq; ssi2; (1)

1. To be rigorous, geodesics are paths with zero acceleration and not
necessarily unique.
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where �K
uu ¼ 2=ð1þKkuu2kÞ is the conformal factor, and

h�; �i2 is the euclidean inner product.
Addition. For xx; yy 2 Md

K , their addition is

xx�Kyy ¼
ð1� 2Khxx; yyi2 �Kkyyk2Þxxþ ð1þKkxxk2Þyy

1� 2Khxx; yyi2 þK2kxxk2kyyk2
:

(2)
Distance Measure. For xx; yy 2 Md

K , their distance is

dðxx; yyÞ ¼ 2ffiffiffiffiffiffiffi
jKj

p tan �1K ð
ffiffiffiffiffiffiffi
jKj

p
� k � xx�KyykÞ: (3)

Exponential Map. The exponential map expKuu ðqqÞ is used to
map a vector qq from the tangent space TuuMd

K to the mani-
foldMd

K ,

expKuu ðqqÞ ¼ uu�K tanKð
ffiffiffiffiffiffiffi
jKj

p �K
uu kqqk
2
Þ qqffiffiffiffiffiffiffi
jKj

p
� kqqk

 !
: (4)

Logarithmic Map. The logarithmic map logK
uu ðxxÞ is used to

map a vector xx from the the manifold Md
K to the tangent

space TuuMd
K ,

logK
uu ðxxÞ ¼

2ffiffiffiffiffiffiffi
jKj

p
�K
uu

tan �1K ð
ffiffiffiffiffiffiffi
jKj

p
� k � uu�KxxkÞ

�uu�Kxx

k � uu�Kxxk
:

(5)

The function tanKð�Þ is determined by the sign of the curva-
ture, that is

tanKð�Þ ¼
tan ð�Þ; if K � 0
tanhð�Þ; if K < 0

�
; (6)

and its inverse function tan �1K ð�Þ is

tan �1K ð�Þ ¼
arctanð�Þ; if K � 0
arctanhð�Þ; if K < 0

�
: (7)

Orthogonal Projection. The orthogonal projection projKuu trans-
forms an ambient euclidean vector zz into a tangent space
TuuMd

K ,

projKuu ðzzÞ ¼
zz� huu; zzi2uu; if K � 0

1=ð�K
uu Þ

2
� �

zz; if K < 0

(
: (8)

3.3 Product Manifold

A product manifold is a Cartesian product of multiple sub-
manifolds. Considering m submanifolds M1; . . . ;Mm, a
product manifold of the m submanifolds is defined byMp :
¼ �m

j¼1Mj, where �m
j¼1 is the Cartesian product [57]. Any

xx 2Mp is represented by vector concatenation, xx ¼
ðxx1; . . . ; xxmÞ, where xxj 2 Mj. Similarly, the tangent space
TuuMp ofMp is defined by the Cartesian product of tangent
spaces of submanifolds, TuuMp :¼ �m

j¼1TuujMj, with uu ¼
ðuu1; . . . ; uumÞ 2 Mp being the tangent point. A tangent vector
qq 2 TuuMp is qq ¼ ðqq1; . . . ; qqmÞ, where qqj 2 TuujMj. Inner prod-
uct and squared distance in product manifold are given by
the sum of inner products and squared distances in subma-
nifolds. For two vectors xx; yy 2 Mp, their squared distance is
d2Mp
ðxx; yyÞ ¼

Pm
j¼1d

2
Mj
ðxxj; yyjÞ, where d2Mj

ð�Þ is the squared
distance in Mj. For two vectors qq; ss 2 TuuMp, their inner

product is hqq; ssipuu ¼
Pm

j¼1hqqj; ssjiuuj , where h�iuuj is the inner
product in TuujMj.

4 PRODUCT MANIFOLD NEURAL NETWORK

This paper proposes a curvature-adaptive meta-learning
method that is capable of adapting a base-learner to various
forms of manifold data. As such, the base-learner should
have the ability to encode manifold structure. Such capabil-
ity is typically ignored by most neural networks as they are
designed in euclidean space. To solve this issue, we intro-
duce a product manifold neural network as the base-learner
(detailed in this section), where data is represented by prod-
uct manifold of constant curvature spaces. We adapt the
neural network to manifold data by updating curvatures
(detailed in the next section).

It is known that layers of a neural network encode differ-
ent information. For example, in a vision task, bottom layers
tend to capture low-level features such as edges, while
upper layers usually capture high-level semantic fea-
tures [58]. Inspired by this, each layer in our neural network
represents data in an individual product manifold with
layer-specific curvatures. In the lth layer, data is represented
by the product manifold Ml

p of m constant curvature
spaces. For ease of reading, we omit the index l in the fol-
lowing sections, unless a clear distinction is necessary. In
one layer of our neural network, the product manifold is
defined by

Mp :¼ �m
j¼1M

dj
Kj
; (9)

where Kj is the curvature of the jth constant curvature
space, and dj is the dimension of the jth constant curvature
space. The dimension of Mp is the sum of dimensions of
submanifolds,

Pm
j¼1dj. AsMp has non-euclidean structures,

conventional network architectures (e.g., fully-connected
layers and convolutional blocks) cannot be directly applied.
Considering that tangent space is a euclidean space, here
we utilize exponential and logarithmic maps to generalize
basic architectures from euclidean space to the product
manifold. The exponential and logarithmic maps on the
product manifold are defined as follows.

Definition 1. Given a vector xx ¼ ðxx1; . . . ; xxmÞ 2 Mp,Mp is a
product manifold of m constant curvature spaces, Mp :¼
�m

j¼1M
dj
Kj
, xxj is in the jth constant curvature space. The loga-

rithmic map LoguuðxxÞ :Mp ! TuuMp is used to map xx from
Mp to the tangent space TuuMp,

LoguuðxxÞ ¼ logK1
uu1
ðxx1Þ; . . . ; logKm

uum
ðxxmÞ

� �
; (10)

where uu ¼ ðuu1; . . . ; uumÞ 2 Mp is the tangent point.

Definition 2. Given a vector qq ¼ ðqq1; qq2; . . . ; qqmÞ 2 TuuMp,
TuuMp is the tangent space of a product manifoldMp ofm con-
stant curvature spaces, qqj is in the tangent space of the jth con-
stant curvature space, and uu ¼ ðuu1; . . . ; uumÞ 2 Mp is the
tangent point. The exponential map ExpuuðqqÞ : TuuMp !Mp

is used to map qq from TuuMp toMp,

ExpuuðqqÞ ¼ expK1
uu1
ðqq1Þ; . . . ; expKm

uum
ðqqmÞ

� �
: (11)

1548 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 11,2023 at 11:55:24 UTC from IEEE Xplore.  Restrictions apply. 



In one layer, we first map input features from the prod-
uct manifold Mp to a tangent space TuuMp using the loga-
rithmic map. Next, we perform desired calculations (e.g.,
linear mappings and nonlinear activation) on TuuMp. Then,
we need to convey the result to the next layer, whose data is
in a product manifoldM0

p, having different dimensions and
curvatures with Mp. Since there does not exist a mapping
between TuuMp andM0

p, we resort to a new tangent space
TvvM0

p onM0
p, where vv 2 M0

p is the tangent point. We utilize
the orthogonal projection operation to enforce the result on
the tangent space TvvM0

p, and finally map the result to M0
p

using the exponential map. The orthogonal projection on
the product manifold is defined as follows.

Definition 3. Given a vector zz ¼ ðzz1; zz2; . . . ; zzmÞ, the orthogo-
nal projection operation Projuu on a product manifoldMp of m
constant curvature spaces is used to enforce zz on the tangent
space TuuMp,

ProjuuðzzÞ ¼ projK1
uu1
ðzz1Þ; . . . ; projKm

uum
ðzzmÞ

� �
: (12)

In summary, we use two tangent spaces TuuMp and
TvvM0

p in one layer of the product manifold neural network.
TuuMp is on the product manifold Mp, and uu 2 Mp is the
tangent point. TuuMp is used to perform desirable calcula-
tions (e.g., the linear mapping and nonlinear activation in
fully-connected layers). TvvM0

p is on the product manifold
M0

p, and vv 2 M0
p is the tangent point. TvvM0

p is used to con-
vey the result to the next layer, where data is represented in
M0

p. Suppose that there are L layers in our backbone, we
totally have 2L tangent spaces. The illustration of our net-
work is shown in Fig. 2.

Since tangent spaces are only local approximation to the
manifold, it will cause large approximation errors if tangent
points are not flexible and far from features [22]. Thus,
using a common tangent space for all features may result in
non-discriminative features. In our method, we make tan-
gent points uu and vv adaptive and will be learned during
training. As a result, suitable tangent spaces are constructed

for each layer, which in turn reduce the approximation error
and enable the network to better fit to manifold data.

We denote a product manifold neural network by Puu;ff,
and suppose that there areL layers in the backbone to extract
features and the ðLþ 1Þth layer is a classifier. uu denotes
parameters of the product manifold neural network, includ-
ing all tangent points fuulgLþ1l¼1 , fvvlg

L
l¼1, weights fWWlgLl¼1,

biases fbblgLl¼1, and the classifier weight fwwig. ff is the set of all
curvatures. Each layer hasm constant curvature spaces, and
thuswe havemðLþ 1Þ curvatures in the neural network, col-
lectively denoted by ff ¼ fK1; . . . ; KmLþmg. In the next part,
we will discuss the forms of the backbone and classifier used
in the productmanifold.

4.1 Backbone of the Product Manifold Neural
Network

A neural network is used to extract features for downstream
tasks and is usually composed of fully-connected layers and
convolutional blocks, as shown in Fig. 3

4.1.1 Fully-Connected Layer

Suppose the input of a fully-connected layer is xx ¼ ðxx1; . . . ;
xxmÞ 2 Mp.

Map xx to a Tangent Space.We map xx to a tangent space
TuuMp by

ss ¼ LoguuðxxÞ; (13)

where ss 2 TuuMp, and uu ¼ ðuu1; . . . ; uumÞ 2 Mp is the tangent
point for inputs.

Calculations in the Tangent Space. We then carry out the
linear mapping and nonlinear activation operations in each
constant curvature space, obtaining the result zz,

zz ¼ ðzz1; . . . ; zzmÞ
¼ sðWW 1ssþ bb1Þ; . . . ; sðWWmssþ bbmÞð Þ: (14)

Here, WWj and bbj are the weight and bias for the jth constant
curvature space, respectively, and s is the nonlinear activa-
tion operation.

We need to convey the result zz to the next layer, whose
data is in a product manifoldM0

p.M0
p has different dimen-

sions and curvatures fromMp. Since TuuMp is not necessar-
ily a tangent space forM0

p, we cannot directly convey zz to
M0

p to the next layer. To solve this issue, we resort to a new
tangent space TvvM0

p onM0
p, where vv ¼ ðvv1; . . . ; vvmÞ 2 M0

p is
the tangent point for outputs. We utilize the orthogonal pro-
jection on product manifold, which enforces the result on
the tangent space TvvM0

p,

qq ¼ ProjvvðzzÞ; (15)

where qq 2 TvvM0
p.

Map qq to a Product Manifold. Finally, we map qq to the
product manifoldM0

p and obtain the output yy,

yy ¼ ExpvvðqqÞ: (16)

yy 2 M0
p is also the input for the next layer. The aforemen-

tioned design not only preserves the Riemannian structure of
data but also provides a simple way to extract discriminative

Fig. 2. We take the fully-connected layer as an example to show the data
flow in the product manifold neural network. In the lth layer, the input is
xx, and we first map xx into the tangent space TuuMp. We then carry out
desired calculations, such as a linear mapping and non-linear activation
as done in fully-connected layers. Since we cannot directly map the
result zz into the product manifoldM0

p of the ðlþ 1Þth layer, we preserve
results in a tangent space TvvM0

p ofM0
p and finally map the result toM0

p
via the exponential map. By analogy, this is true for each layer in the
product manifold neural network.
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features (see Algorithm 1 for a pseudo-code of a fully-con-
nected layer on the productmanifold).

Algorithm 1.Pseudo-Code of Computations Performed in
a Fully-Connected Layer of the Product Manifold Neural
Network

Input: Input feature xx 2 Mp, weight WW ¼ ½WW 1; . . . ;WWm�, and
bias bb ¼ ½bb1; . . . ; bbm�.

Output: Output feature yy 2 M0
p for the next layer.

1: Map feature xx to the tangent space TuuMp via Eq. (13).
2: Carry out linear mapping and nonlinear activation

operations in the tangent space via Eq. (14), and preserve the
result qq in the tangent space TvvM0

p via Eq. (15).
3: Map qq to the product manifoldM0

p for the next layer via
Eq. (16).

4.1.2 Convolutional Block

We take a convolutional block that sequentially contains a
convolution operation, a nonlinear activation operation, a
batch normalization operation, and a pooling operation as
an example to show how to build convolutional blocks in
the product manifold. The input is a 3-D tensor X 2 Rc�h�w

where c is the number of channels, and h and w are the
height and width of feature maps, respectively.

Map Features in X into a Tangent Space.Wemap features in
X to a tensor S 2 Rc�h�w in the tangent space TuuMp, which
has the same size with X. We reshape the 3-D tensor X into
a matrix XX 2 Rc�hw. Here, we regard each column xxi 2 Rc

in XX as a feature on the product manifold xxi 2 Mp. Thus,
there are hw features in total, and the dimension of each one
is c. We utilize the logarithmic map Loguuð�Þ to map each fea-
ture xxi into the tangent space TuuMp, ss

i ¼ LoguuðxxiÞ, where
ssi 2 TuuMp, and uu ¼ ðuu1; . . . ; uumÞ 2 Mp is the tangent point
for inputs. We collect all ssi into a matrix SS 2 Rc�hw (ssi is the
ith column of SS). SS is finally reshaped back into a 3-D tensor
S 2 Rc�h�w. In summary, the process to obtain the tensor S is
denoted as

S ¼ LoguuðXÞ: (17)

Calculations in the Tangent Space. For the tensor S in the tan-
gent space, we sequentially carry out a convolution opera-
tion, a nonlinear activation operation, a batch normalization
operation, and a pooling operation, given by

Z ¼
�
Z1; . . . ;Zm

�
¼
�
Pool BN sðWW 1 	 SþbbmÞð Þð Þ; . . . Pool BN sðWWm 	 SþbbmÞð Þð Þ

�
; (18)

where 	, Pool, and BN are convolution, pooling, and batch
normalization operations, respectively. WWj and bbj are the
weight and bias in the convolution operation for the jth con-
stant curvature space, respectively. Z is concatenated by m
3-D tensors ðZ1; . . . ;ZmÞ in the m constant curvature space
along the channel dimension.

Similar to fully-connected layers in the product manifold,
we also utilize the orthogonal projection operation to enforce
features in Z in a tangent space TvvM0

p for the next layer,

Q ¼ ProjvvðZÞ; (19)

where vv ¼ ðvv1; . . . ; vvmÞ 2 M0
p is the tangent point for out-

puts. We collect weights and biases for the m constant cur-
vature spaces asWW ¼ ½WW 1; . . . ;WWm� and bb ¼ ½bb1; . . . ; bbm�.

Map Features in Q into a Product Manifold. Finally, we use
reshaping and exponential operations to map Q into the
manifoldM0

p and obtain the output Y,

Y ¼ ExpvvðQÞ: (20)

Y is also the input for the next layer. The proposed convolu-
tional block is summarised in Algorithm 2.

4.2 Classifier of the Product Manifold Neural
Network

We argue that constant curvature spaces capture signifi-
cantly different features and play different roles in down-
stream tasks. Inspired by the fact that attention mechanism
has achieved success in many machine learning problems,
we propose an attention classifier in the product manifold,
as shown in Fig. 3. Here, we define an attention inner prod-
uct between two vectors qq ¼ ðqq1; . . . ; qqmÞ 2 TuuMp and ss ¼

Fig. 3. Illustration of a convolutional block, a fully-connected layer, and a classifier in the product manifold neural network. In this illustration, we repre-
sent data in a product manifold of three constant curvature spaces, and features are denoted by concatenating representations on the three constant
curvature spaces.
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ðss1; . . . ; ssmÞ 2 TuuMp. We assign different weights to differ-
ent constant curvature spaces, and weight-sum their inner
products. Concretely, the attention inner product h�; �i
uu is
computed by

aa ¼ att hqq1; ss1iuu1 ; . . . ; hqqm; ssmiuum
h i� �

hqq; ssi
uu ¼
Pm

j¼1 ajhqqj; ssj
�
uuj
¼
Pm

j¼1 ajð�
Kj
uuj Þ

2	
qqj; ssj

�
2

8<: ;

(21)

where uu ¼ ðuu1; . . . ; uumÞ is the tangent point. aa ¼ ½a1; . . . ; am�
contains weights for all constant curvature spaces, and aj is
the jth element of aa. We use an attention network attð�Þ to
assign different weights.

Algorithm 2. Pseudo-Code of Computations Performed
in a Convolutional Block of the Product Manifold Neural
Network

Input: Input tensor X, where features xxi in X are in a product
manifold, xxi 2Mp. Weights WW ¼ ½WW 1; . . . ;WWm� and bias
bb ¼ ½bb1; . . . ; bbm�.

Output: Output tensor Y for the next layer, where features in Y

are in a product manifoldM0
p.

1: Map features xxi in X to a tangent space TuuMp via Eq. (17).
2: Carry out operations in the tangent space via Eq. (18) and

enforce the result Q in the tangent space TvvM0
p via Eq. (19).

3: Map Q into the product manifoldM0
p of the next layer via

Eq. (20).

In the product manifold neural network, there are several
convolutional blocks or fully-connected layers to extract fea-
tures, and the last layer is used for classification. Suppose
the input of the classifier is xx ¼ ðxx1; . . . ; xxmÞ 2 Mp, the tan-
gent point of the classifier as uu ¼ ðuu1; . . . ; uumÞ, and the
weight for the ith class in the classifier as wwi. The probability
that a feature xx belongs to the ith class is computed by the
softmax function,

pðŷ ¼ ijxxÞ ¼
exp

	
LoguuðxxÞ; wwi

�

uu

� �
P

n exp
	
LoguuðxxÞ; wwn

�

uu

� � ; (22)

where ŷ is the prediction.

5 CURVATURE ADAPTATION

In this section, we first show the role of curvatures in the
product manifold neural network, and then we introduce a
curvature generation scheme and a curvature updating
scheme. Through these two schemes, the product manifold
neural network is capable of quickly adapting to various
forms of manifold structures by producing suitable curva-
tures given very limited data.

5.1 Curvatures in Neural Networks

To understand the role of curvature, we consider a few-shot
classification task and plot the loss landscape with respect
to the curvature in Fig. 4. This analysis reveals two key
points. First and from Fig. 4a, we empirically observe the
chaotic nature of the loss landscape. Fig. 4b suggests that
the optimal curvature for different tasks vary, where we

plot the histogram of the curvature across 150 tasks. This
is of course not very unexpected as natural data usually
complies with complex and various manifold structures.
With cautious, we can claim that this is a confirmation of
our hypothesis, traditional meta-learning methods that
only learn a common curvature initialization and adopt a
simple gradient descent scheme cannot accurately model
the structure of the data and benefit from it for adaptation.
A common curvature initialization may cause a long opti-
mization trajectory for some tasks, and a simple gradient
descent scheme may result in local optima in the trajectory
due to the sharp landscape. To overcome these challenges,
in our curvature-adaptive meta-learning method, we learn
to assign task-specific curvature initialization, and carry
out adaptive curvature updating based on the underlying
data distributions, bringing a faster convergence and bet-
ter optima.

5.2 Formulation

In the meta-learning setting, a collection of tasks fT ig are
available, sampled from a task distribution T i � DðT Þ,
where each task T i has a support set Ds

i and a query set Dq
i

containing the training and test data, respectively.
We propose a curvature generation scheme Gcc1

and a
curvature updating scheme Acc2

to quickly adapt curvatures
to novel tasks. The curvature generation scheme Gcc1

assigns
task-specific curvature initialization to a novel task. To be
specific, we learn a common curvature initialization ff and
parameter cc1 to modulate ff for a novel task T i. The task-
specific curvature initialization ffi;0 is produced as ffi;0 ¼
Gcc1
ðff;Ds

i Þ. The curvature updating scheme Acc2
(parameter-

ized by cc2) produces adaptive learning rates and search
directions for the initial curvature. That is, the curvature is
updated by ff0i ¼ Acc2

ðffi;0;Ds
i Þ for task T i. Similar to many

optimization-based meta-learning methods [1], [5], we also
learn parameter initialization uu of the product manifold neu-
ral network and update it by uu0i  uu � bruuL for task T i,
where b is the learning rate and ruuL is the gradient. The
adaptation process to a novel task is shown in Fig. 5.

Our goal is to learn the meta-learner, i.e., the curvature
generation scheme Gcc1

, the curvature updating scheme Acc2
,

a common curvature initialization ff, and a parameter initiali-
zation uu, such that a product manifold neural network can
quickly adapt to manifold data through few optimization

Fig. 4. Motivation of the curvature generation and curvature updating
schemes. Experiments are conducted on the few-shot classification
dataset mini-ImageNet [59]. In Fig. 4a, we plot the loss curve of a task
with respect to a curvature. In Fig. 4b, we fix all the parameters of the
product manifold neural network, measure the optimal curvatures across
150 tasks, and plot their distribution. The loss landscape is chaotic, and
optimal curvatures for different tasks vary. Thus, quickly finding of the
optimal curvature for a novel task is challenging and necessary.
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steps. Concretely, the optimal values of the four components
are obtained by

uu
;ff
;cc
1;cc


2 ¼ argminuu;ff;cc1;cc2

J ðuu;ff;cc1;cc2Þ: (23)

J ðuu;ff;cc1;cc2Þ is our meta-objective function, formulated by

J ðuu;ff;cc1;cc2Þ ¼ ET i�DðT Þ L uu0i;ff
0
i;D

q
i


 �� 
¼ET i�DðT Þ

�
L
�
uu � bruuL;Acc2

Gcc1
ðff;Ds

i Þ;Ds
i


 �
;Dq

i

��
: (24)

L is a loss function to evaluate the model (e.g., a cross
entropy loss). In Eq. (24), we compute the loss of the
adapted product manifold neural network Puu0

i
;ff0

i
on the

query data Dq
i of task T i. In next sections, we will detail the

curvature generation scheme Gcc1
and the curvature updat-

ing scheme Acc2
.

5.3 Curvature Generation Scheme

Given a novel task T i, the curvature generation scheme Gcc1

modulates the common curvature initialization based on
the second-order information of data Ds

i , because the sec-
ond-order information has an ability to capture expressive
correlations between features [60], [61]. Specifically, we
extract features of Ds

i from a product manifold neural net-
work Puu;ff with the common curvature initialization uu and
parameter initialization ff. We represent these extracted fea-
tures as fxxi;n 2 Mpg, where n is the index of features and
the dimension of xxi;n is d. The second-order information of
fxxi;ng is denoted as ffi 2 Rz (z is a hyperparameter), and it is
computed via the factorized bilinear model [62], [63]

fi;j ¼
X
n

SumPooling UU>j Loguuðxxi;nÞ � VV >j Loguuðxxi;nÞ
� �

;

ffi ¼ ½fi;1; fi;2; . . . ; fi;z�; (25)

where fi;j is the jth element in ffi, SumPooling is the sum
pooling operation, UUj 2 Rd�r, VV j 2 Rd�r, r is the other
hyperparameter of the curvature generation scheme denot-
ing the rank of UUj and VV j, and � denotes the Hadamard
product. The parameters are collectively denoted by UU ¼
½UU1; . . . ; UUz� 2 Rd�rz and VV ¼ ½VV 1; . . . ; VV z� 2 Rd�rz.

We use a multi-layer perceptron network MLP to gener-
ate curvature adjustment bffi based on ffi. We empirically
observed that arbitrary curvatures may cause numerical
instabilities in the training process. Also, some studies sug-
gest bounding the curvature (e.g., in the range of ½�1; 1�)
helps training and adaptation [12], [16]. Thus, we employ a
sigmoid function on the multi-layer perceptron network
MLP, and formulate the curvature adjustment bffi asbffi ¼ Sigmoid MLPðffiÞð Þ � 0:5ð Þ � 2; (26)

where bffi 2 RmLþm (recall that m is the number of constant
curvature spaces in each layer, and there are L layers to
extract features and one classifier). The parameter ofMLP is
WWf . Based on the common curvature initialization ff and
the adjustment bffi, the task-specific curvature initialization
is computed by

ffi;0 ¼ ffþ bffi: (27)

Parameters of the curvature generation scheme are cc1 ¼
fUU; VV ;WWfg.

5.4 Curvature Updating Scheme

Our curvature updating schemeAcc2
adapts the initial curva-

ture ffi;0 to task T i via gradient descent. Noting that different
constant curvature spaces may have different optimization
trajectories, a single learning rate for adaptation could result
in suboptimality. In addition, simply using gradients as
search directions may lead to undesirable bias when training
data is limited. To address this issue, we apply adaptive
learning rates and search directions to each constant curva-
ture space. Concretely, given a novel task T i, curvatures of a
productmanifold neural network are updated according to

Kj;i;tþ1 ¼ Kj;i;t � aj;i;tTT j;i;t; (28)

where Kj;i;tþ1 is the curvature of the jth constant curvature
space after the tth optimization step for task T i. Recall that
there are Lþ 1 layers in the product manifold neural net-
work, and each layer has m constant curvature spaces.
Thus, we totally have mLþm curvatures in the product
manifold neural network, which we collectively denote by

ffi;t ¼ fK1;i;t; . . . ; KmLþm;i;tg: (29)

In Eq. (28), aj;i;t and TTj;i;t denote the learning rate and the
search direction for the curvature Kj;i;t at step t, respec-
tively. Instead of designing the updating scheme by hand,
we utilize neural networks gcc2

to automatically generate
adaptive learning rates and search directions,

ðaj;i;t; TT j;i;tÞ ¼ gcc2
Kj;i;t;rKj;i;t

L
� �

; (30)

where rKj;i;t
L is gradient with respect to the curvature

Kj;i;t, cc2 is the parameter of the used neural network gcc2
.

The parameter uu of the product manifold neural network
is also updated via gradient descent. The update for task T i

is written as uui;tþ1 ¼ uui;t � bruui;tL, where b is the learning
rate for parameters andruui;tL is the gradient with respect to
the parameter uui;t. Suppose there are t steps in the updating

Fig. 5. Illustration of the adaptation to a novel task. The green line repre-
sents the curvature generating scheme, the red line denotes the curva-
ture updating scheme, the yellow line denotes the process of parameter
updating, and the black line denotes the flow of training data. ŶY s

i is the
prediction, and YY s

i is the ground truth. L is the loss function on the sup-
port data Ds

i . ai;t and TT i;t are the produced learning rate and search
direction for each curvature, and b is the learning rate for updating the
parameters.
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scheme, the final adapted parameter and curvature for task
T i are denoted by uu0i ¼ uui;t and ff0i ¼ ffi;t .

After adapting the product manifold neural network to
novel tasks, we update uu, ff, cc1, and cc2 by minimizing the
loss of Puu0

i
;ff0

i
on the query set Dq

i ,

uu uu � hruu

P
T i
L
�
uu � bruuL;Acc2

Gcc1
ðff;Ds

i Þ;Ds
i


 �
;Dq

i

�
ff ff� hrff

P
T i
L
�
uu � bruuL;Acc2

Gcc1
ðff;Ds

i Þ;Ds
i


 �
;Dq

i

�
cc1  cc1 � hrcc1

P
T i
L
�
uu � bruuL;Acc2

Gcc1
ðff;Ds

i Þ;Ds
i


 �
;Dq

i

�
cc2  cc2 � hrcc2

P
T i
L
�
uu � bruuL;Acc2

Gcc1
ðff;Ds

i Þ;Ds
i


 �
;Dq

i

�

8>>>>>>>>>><>>>>>>>>>>:
:

(31)

h is the learning rate of meta-learning, and the meta-training
process of our method is shown in Algorithm 3.

Algorithm 3. Training Procedure for Learning the Meta-
Learner of the Proposed Method

Input: Task distribution pðT Þ.
Output: Updated uu, ff, cc1, and cc2.
1: whileNot converged do
2: Sample tasks fT ig � pðT Þ.
3: for each task T i 2 fT ig do
4: Construct support and query data Ds

i and D
q
i of T i.

5: Extract features of Ds
i using Puu;ff, and compute second-

order information of the features via Eq. (25).
6: Generate curvature initialization ffi;0 for task T i via

Eqs. (26) and (27).
7: Let t ¼ 0 and uui;0 ¼ uu.
8: while t  t do
9: Compute loss Lðuui;t; ffi;t;Ds

i Þ on the support set Ds
i ,

and compute gradientsrKj;i;t
L andruui;tL.

10: Produce learning rates aj;i;t and search direction TTj;i;t

for each curvature via Eq. (30), and perform gradient
descent for each curvature via Eq. (28).

11: Perform gradient descent for parameters
uui;tþ1 ¼ uui;t � bruui;tL.

12: end while
13: Let uu0i ¼ uui;t and ff0i ¼ ffi;t.
14: Computemeta-objectiveLðuu0i;ff0i;D

q
i Þ on the query setD

q
i .

15: end for
16: Update uu, ff, cc1, and cc2 by minimizing

P
T i
Lðuu0i;ff0i;D

q
i Þ

according to Eq. (31).
17: end while

5.5 Complexity Analysis

Compared with euclidean meta-learning, our extra compu-
tational overhead lies mainly in two aspects. (1) The forward
and backward propagation caused by extra operations in the
product manifold neural network, including the orthogonal
projection operation, the exponential map, and the logarith-
mic map. (2) The curvature generation and curvature updat-
ing schemes to update our curvatures.

For a product manifold with m submanifolds of dimension
d, complexity of the forwardpropagation of the orthogonal pro-
jection, the exponential map, and the logarithmic map is
Oð4dmÞ, Oð22dmÞ, and Oð19dmÞ, respectively. Complexity

of the backward propagation of the orthogonal projection,
the exponential map, and the logarithmic map is Oð20dmÞ,
Oð110dmÞ, andOð95dmÞ, respectively. For the curvature gen-
eration scheme, we use a factorized bilinear model [62], [63]
to produce task-specific curvature initialization. The com-
plexity of the curvature generation scheme is Oðdmrz þ
2z2 þ 2rz þ ðz þ 3ÞmLþ 6zÞ, where r and z are hyperpara-
meters of the curvature generation scheme, andL is the num-
ber of layers in the product manifold neural network. For the
curvature updating scheme, we use three fully-connected
and two ReLU layers to compute learning rates and use a
two-layer LSTM to compute search directions for curva-
tures. The complexity of this module is Oð10ðLþ 1Þ2m2þ
4Lmþ 32TLmÞ.

6 EXPERIMENTS

We evaluated our method on few-shot classification, few-
shot regression, and reinforcement learning tasks.

6.1 Few-Shot Classification

6.1.1 Setting

We used the mini-ImageNet [59], tiered-ImageNet [64],
CUB [65], and CIFAR-FS [66] datasets for few-shot classifi-
cation. The mini-ImageNet dataset has 100 classes and each
category has 600 images. Following [1], we use 64, 16, and
20 classes for training, validation, and testing, respectively.
The tiered-ImageNet dataset has 608 classes and 779165
images totally, where 351, 97, and 160 classes are used for
training, validation, and testing, respectively. Images of the
mini-ImageNet and tiered-ImageNet datasets are resized
into 84� 84 pixels. The CUB dataset is a fine-grained image
dataset that contains 200 bird classes with 11788 images in
total. Following the protocol of [25], we utilize 100, 50, and
50 classes for training, validation, and testing, respectively.
We resize bird regions into 84� 84. CIFAR-FS is a dataset
derived from CIFAR-100 [67]. It contains 100 classes, where
64, 16, and 20 classes are used for training, validation, and
testing, respectively. Each class has 600 images with size of
32� 32. On the four datasets, we conducted experiments on
1-shot 5-way and 5-shot 5-way tasks.

We evaluated our method with a 4-layer convolutional
network (ConvNet) [24] and a 12-layer residual network
(ResNet12) [68] that has four convolutional blocks. Both
backbones are extended from euclidean space to the prod-
uct manifold. In doing so, we keep the architectural design
and dimensions in each layer same as the original designs
in euclidean space. For example, the convolutional block of
the used ResNet12 has the following structure, Conv! BN
! Conv ! BN ! Conv ! BN ! ReLU ! Pooling, the
same as that in euclidean space.

Our method was trained with t ¼ 5 gradient steps, and
evaluated with t ¼ 10 gradient steps. The multi-layer per-
ceptron network for curvature generation has two layers.
The curvature updating network uses three fully-connected
layers to produce learning rates and a two-layer LSTM to
produce search directions. We pre-trained the backbone
using the cross-entropy loss on training data. We carried
out meta-training to learn our method over 20000 tasks. The
validation set was only used to select a model after the
meta-training stage, and the performance was reported as
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the mean accuracy over 10000 tasks on the test set with the
95% confidence interval. We updated the curvature genera-
tion scheme, curvature updating scheme, and initialization
per each task during the training. Besides, following the
work [69], we applied the multi-step loss optimization
scheme in the meta-training stage to obtain training stability
and utilized the cosine annealing scheme to adjust the learn-
ing rate of meta-training. In few-shot classification tasks, we
set m ¼ 16 (number of constant curvature spaces) and uti-
lized the same dimensionality for all submanifolds of the
product manifold.

6.1.2 Results

Results on the mini-ImageNet, tiered-ImageNet, CUB, and
CIFAR-FS datasets are shown in Tables 1, 2, 3, and 4, respec-
tively. Our method belongs to optimization-based meta-
learning. CAVIA [2], MAML++ [69], L2F [37], ALFA [42],
CAML [77], Lazy-Reptile [35], MeTAL [38], and LEO [70] are
state-of-the-art optimization-based methods. Compared with
them, the main difference of our method is that we are capa-
ble of fast adaptation to various forms of manifold data,
showing improvements on these methods. For example, in
the 1-shot task of using ConvNet on the mini-ImageNet data-
set (in Table 1), the accuracies of MAML++, L2F, ALFA,
Lazy-Reptile and MeTAL read as 52:15%, 52:10%, 52:76%,
51:50%, and 52:63%, respectively. Our method achieves

54:66%, outperforming them by around 2%. LEO uses a
deeper backbone (i.e., WRN-28-10 in Table 1) than ours (i.e.,
ResNet12), while the results imply our effectiveness, with
improvements of 1:37% and 3:45% in the 1-shot and 5-shot
tasks, respectively. This suggests that natural data usually
has manifold structures, demonstrating the necessity of con-
structing suitable Riemannian geometry for manifold data.
Similarly, experimental results on the tiered-ImageNet (in
Table 2), CUB (in Table 3), and CIFAR-FS (in Table 4) datasets
further suggest our superiority. On the CIFAR-FS dataset,
our method outperforms compared methods by more than
8% and 5% in the 1-shot and 5-shot tasks.

Compared with metric-based and model-based methods,
our method performs competitively or even exceeds many
state-of-the-art methods. For example, in the 5-shot task on

TABLE 1
Accuracy (%) Comparisons With the State-of-the-Art Few-Shot

Classification Methods on the Mini-ImageNet Dataset

Backbone Method Category 1-shot 5-way 5-shot 5-way

ConvNet

METAVRF [33] Model 54:2� 0:8 67:8� 0:7
HyperProto [12] Metric 54:43� 0:20 72:67� 0:15
Meta-LSTM [40] Optim 43:56� 0:84 60:60� 0:71

MAML [1] Optim 48:70� 1:75 63:11� 0:91
FOMAML [1] Optim 48:07� 1:75 63:15� 0:91
iMAML [5] Optim 49:30� 1:88 63:47� 0:90
Reptile [71] Optim 49:97� 0:32 65:99� 0:58

GEM-BML+ [36] Optim 50:03� 1:63 -
Lazy-Reptile [35] Optim 51:50� 1:00 67:22� 0:97
TMAML [72] Optim 51:77� 1:86 65:6� 0:93
CAVIA [2] Optim 51:82� 0:65 65:85� 0:55

MAML++ [69] Optim 52:15� 0:26 68:32� 0:44
L2F [37] Optim 52:10� 0:50 69:38� 0:46

MeTAL [38] Optim 52:63� 0:37 70:52� 0:29
ALFA [42] Optim 52:76� 0:52 71:44� 0:45

Ours Optim 54:66� 0:55 72:90� 0:50

Others HyperProto [12] Metric 59:47� 0:20 76:84� 0:14
METAVRF [33] Model 63:80� 0:05 77:97� 0:28

LEO [70] Optim 61:76� 0:08 77:59� 0:12

ResNet12

SNAIL [32] Model 55:71� 0:99 68:88� 0:92
adaResNet [73] Model 56:88� 0:62 71:94� 0:57
MetaFun [31] Model 62:12� 0:30 77:78� 0:12
TADAM [74] Metric 58:50� 0:30 76:70� 0:30

MetaOptNet [75] Metric 62:64� 0:61 78:63� 0:46
MAML [1] Optim 51:03� 0:50 68:26� 0:47

MetaGAN [76] Optim 52:71� 0:64 68:63� 0:67
L2F [37] Optim 57:48� 0:49 74:68� 0:43

MeTAL [38] Optim 59:64� 0:38 76:20� 0:19
CAML [77] Optim 59:23� 0:99 72:35� 0:71
ALFA [42] Optim 60:06� 0:49 77:42� 0:42

Ours Optim 63:13� 0:41 81:04� 0:39

‘Optim’, ‘Model’, and ‘Metric’ mean the optimization-based, model-based, and
metric-based meta-learning methods, respectively. ‘Others’ means some other
backbones that are larger than ResNet12, such as ResNet18 [12] and WRN-
28-10 [33], [70].

TABLE 2
Accuracy (%) Comparisons With the State-of-the-Art Few-Shot

Classification Methods on the Tiered-ImageNet Dataset

Backbone Method Category 1-shot 5-way 5-shot 5-way

ConvNet

MAML [1] Optim 49:06� 0:50 67:48� 0:47
FOMAML [1] Optim 50:12� 1:82 67:43� 1:80
iMAML [5] Optim 51:51� 1:80 69:92� 1:70
Reptile [71] Optim 51:34� 0:40 68:73� 0:40
L2F [37] Optim 54:40� 0:50 73:34� 0:44

Lazy-Reptile [35] Optim 54:41� 1:00 72:21� 0:94
MeTAL [38] Optim 54:34� 0:31 70:40� 0:21
ALFA [42] Optim 55:06� 0:50 73:94� 0:43

Ours Optim 57:13� 0:48 75:70� 0:41

ResNet12

MetaFun [31] Model 67:27� 0:20 83:28� 0:12
ProtoNet [23] Metric 53:51� 0:89 72:69� 0:74

RelationNet [24] Metric 54:48� 0:93 71:32� 0:78
MetaOptNet [75] Metric 65:99� 0:72 81:56� 0:53

DSN [30] Metric 66:22� 0:75 82:79� 0:48
MAML [1] Optim 58:58� 0:49 71:24� 0:43
L2F [37] Optim 63:94� 0:48 77:61� 0:41

MeTAL [38] Optim 63:89� 0:43 80:14� 0:40
ALFA [42] Optim 64:43� 0:49 81:77� 0:39

Ours Optim 68:46� 0:56 83:84� 0:40

TABLE 3
Accuracy (%) Comparisons With the State-of-the-Art Few-Shot

Classification Methods on the CUB Dataset

Backbone Method Category 1-shot 5-way 5-shot 5-way

ConvNet

ProtoNet [23] Metric 51:31� 0:91 70:77� 0:69
MatchNet [59] Metric 61:16� 0:89 72:86� 0:70
RelationNet [24] Metric 62:45� 0:98 76:11� 0:69
Adver-Align [82] Metric 63:30� 0:94 81:35� 0:67

MAML [1] Optim 55:92� 0:95 72:09� 0:76
Ours Optim 64:74� 0:96 81:66� 0:58

Others

RelationNet [24] Metric 67:59� 1:02 82:75� 0:58
ProtoNet [23] Metric 71:88� 0:91 87:42� 0:48

MatchingNet [59] Metric 72:36� 0:90 83:64� 0:60
Delta-encoder [78] Aug 69:80� 0:46 82:60� 0:35

AFHN [79] Aug 70:53� 1:01 83:95� 0:63
MAML [1] Optim 69:96� 1:01 82:70� 0:65
S2M2 [80] Metric 72:92� 0:83 86:55� 0:51
DEML [81] Model 66:95� 1:06 77:11� 0:78

ResNet12

FEAT [25] Metric 73:27� 0:22 85:77� 0:14
RENet [26] Metric 79:49� 0:44 91:11� 0:24
LLP [83] Metric 79:77� 0:44 92:07� 0:25

TriNet [84] Aug 69:61� 0:46 84:10� 0:35
Ours Optim 74:00� 1:00 86:77� 0:75

‘Aug’ means the data augmentation technique for few-shot learning. ‘Others’
means some other backbones that are larger than ResNet12, such as
ResNet18 [1], [23], [24], [59], [78], [79], ResNet34 [80], and ResNet50 [81].
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the mini-ImageNet (in Table 1) and CIFAR-FS (in Table 4)
datasets, our method improves upon the model-based
method METAVRF [33] by 5:1% and 5%, using ConvNet as
the backbone. When ResNet12 is used as our backbone,
our performance gain is 3:07% in the 5-shot task on the
mini-ImageNet dataset, against METAVRF using deeper
WRN-28-20 as the backbone. Note that HyperProto [12] is
a metric-based method and learns a robust distance mea-
sure in hyperbolic manifold. The results suggest that the
proposed curvature-adaptive meta-learning method is bet-
ter than HyperProto. On the mini-ImageNet dataset (in
Table 1), the performance of ours is remarkable, even 4:2%
higher in the 5-shot task, where we use the ResNet12 back-
bone while HyperProto uses a deeper ResNet18 backbone.
The reason is that HyperProto focuses on a fixed form of
manifold data, while the proposed method is capable of
quickly adapting to various forms of manifold data. On
the CUB dataset (in Table 3), the performance of our
method is worse than the metric-based method RENet [26]
and LLP [83]. RENet extracts expressive correlations of
images via attention for robust embedding space and LLP
utilizes local features, which are beneficial to fine-gradient
images in CUB.

The backbone comparisons on the four datasets are also
shown in the four tables. The ConvNet is a shallower back-
bone than the ResNet12, and thus using the ConvNet has
worse performance than using the ResNet12. We observe that
our method achieves better performance compared with
state-of-the-art optimization-based methods on both the two
backbones. For example, compared with the state-of-the-art
optimization-based method ALFA [42] on the tiered-Image-
Net dataset (in Table 2), improvements of 2:07% and 1:76%
are achieved in the 1-shot and 5-shot tasks using the ConvNet
backbone, and improvements of 4:03% and 2:07% are
obtained in the 1-shot and 5-shot tasks using the ResNet12
backbone. The ConvNet and ResNet12 backbones we used
have the same architectures with those in euclidean meta-
learning methods. This gains are mainly attributed to the fact
that our method is capable of constructing appropriate Rie-
mannian geometry for natural data. Overall, our method can

achieve good performance nomatter which network architec-
ture is used.

6.2 Few-Shot Regression

6.2.1 Sine Curves

A k-shot regression task is defined as training a neural net-
work to fit an unknown wave, given k points. Following the
standard protocol [1], [42], our goal is a sine wave with
varying amplitude, frequency, and phase, sampled in the
range of ½0:1; 5:0�, ½0:8; 1:2�, and ½0;p�, respectively. We eval-
uated our method with k ¼ 5; 10; 20 points and two neural
network architectures: a two-hidden-layer multi-layer per-
ceptron (MLP) with 40 hidden neurons and a three-hidden-
layer MLP with 80 hidden neurons.

In this few-shot regression task, we set the number m of
constant curvature spaces as 8, and constant curvature
spaces had the same dimension. In the two-hidden-layer
MLP, the dimension of each constant curvature space was
5, and in the three-hidden-layer MLP, the dimension of
each constant curvature space was 10. Our method was
trained with t ¼ 1 gradient step, and evaluated with t ¼ 5
gradient steps. We set 240 epochs in the meta-training stage,
and each epoch had 500 few-shot learning tasks. The batch-
size in meta-training was 5, that is, we updated our curva-
ture generation scheme and curvature updating scheme
using five few-shot regression tasks once. The performance
of our method was measured in mean-square error (MSE).

Results are shown in Table 5. Comparedwith state-of-the-
art meta-learning methods, MAML [1], TR [89], ALFA [42],
and L2F [37], our method fits the wave more accurately, sig-
nificantly improving the performance. Even given very few
points, ourmethod still has a lower error. For example, in the
5-shot tasks, MSE of ourmethod is 0.28 and 0.14 with the two
network architectures, while MAML achieves 1.24 and 0.84,
and ALFA achieves 0.92 and 0.70, having much larger errors
than our method. L2F achieves the best performance among
compared methods, and our method still has 0.42, 0.27, and
0.08 improvements compared with it, when using the two-
hidden-layer neural network. This demonstrates that the
proposed method captures the underlying structure of data
better by constructing suitable spaces. We think our gains
here are that constant curvature space can encode the nonlin-
ear sine curves and their properties better than a simple
euclidean space.

We also showqualitative results in Fig. 6.We compare our
method with MAML that uses a conventional neural net-
work in euclidean space and learns parameter initialization,

TABLE 4
Accuracy (%) Comparisons With the State-of-the-Art Few-Shot

Classification Methods on the CIFAR-FS Dataset

Backbone Method Category 1-shot 5-way 5-shot 5-way

ConvNet

METAVRF [33] Model 63:10� 0:70 76:50� 0:90
MAML [1] Optim 56:50� 1:90 70:50� 0:90

FOMAML [1] Optim 55:60� 1:88 69:52� 0:91
Reptile [71] Optim 57:50� 0:45 71:88� 0:42

Lazy-Reptile [35] Optim 59:36� 1:44 74:90� 1:28
Ours Optim 65:43� 0:90 81:50� 1:08

ResNet12

Shot-Free [68] Metric 69.20 84.70
TEWAM [29] Metric 70.40 81.30
ProtoNet [23] Metric 72:20� 0:70 83:50� 0:50

MetaOptNet [75] Metric 72:60� 0:70 84:30� 0:50
RENet [26] Metric 74:51� 0:46 86:60� 0:32
DSN [30] Metric 75:60� 0:90 86:20� 0:60

MCGN [85] Metric 76:45� 0:99 88:42� 0:23
RFS [86] Metric 73:90� 0:80 86:90� 0:50

Rizve et al. [87] Metric 77:87� 0:85 89:74� 0:57
MABAS [88] Aug 73:51� 0:92 85:49� 0:68

Ours Optim 86:40� 0:80 94:87� 0:50

‘Aug’ means the data augmentation technique for few-shot learning.

TABLE 5
MSE Over 100 Sampled Tasks on Few-Shot Regression

(A Smaller Value Means a Better Performance)

Method 2 hidden layers 3 hidden layers

5-shot 10-shot 20-shot 5-shot 10-shot 20-shot

MAML [1] 1.24 0.75 0.49 0.84 0.56 0.33
TR [89] 1.09 0.66 - - - -
ALFA [42] 0.92 0.62 0.34 0.70 0.51 0.25
L2F [37] 0.70 0.36 0.16 - - -

Ours 0:28 0:09 0:04 0:14 0:06 0:03
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while our method uses a product manifold neural network,
and learns a curvature generation scheme and a curvature
updating scheme. Experimental results also show that our
method better fits a wave using few points. In areas where
much training points are provided, both our method and
MAML fit the wave well. But in areas where few training
points are provided (i.e., red boxes in the figure), MAML has
a large error, while our method still fits the wave well. For
example, in the 5-shot task, when the value of the horizontal
axis is smaller than�4, there is no training point. In this case,
our method has a small error with the ground truth, while
MAML has a large deviation. In the 10-shot task, when the
value of the horizontal axis is around 2, there is only one
training point, and ourmethod fits the wave better.

6.2.2 Image Completion

We evaluated our method on a more challenging few-shot
regression task, i.e., the image completion task. We regard
each image as an individual task. For each task, we are
given an image with few pixels, and our goal is to predict
the rest pixels of this image via our product manifold neural
network. The given pixels in an image are the support data,
and the remaining unknown pixels are the query data. We
utilized a 6-layer neural network for image completion, and
the size of hidden layers was 128. The input of the neural
network is a coordinate in the image and the output is the
predicted pixel of this coordinate. In the first five layers, we
processed data in learned tangent spaces and mapped
results to the manifold of the next layer. In the last layer, we
projected input into the tangent space at the origin and uti-
lized the results in the tangent space as the predicted pixel
values.

We utilized the CelebA dataset [90], and trained our
method using the training set of CelebA. In themeta-training
stage, we sampled images from the training set to learn the
initial product manifold neural network, a curvature genera-
tion scheme, and a curvature updating scheme. In the meta-
test stage, we sampled images from the test set, and our
results were measured over 100 images. For a new task, we
first sent support pixels to the initial productmanifold neural
network to extract features by Eq. (25), and generated task-
specific curvature initialization via our curvature generation
scheme in Eqs. (26) and (27). Then, we performed optimiza-
tion on the neural network by using the support data, where

parameters were updated by the conventional gradient
descent, and curvatures were updated by our curvature
updating scheme in Eqs. (30) and (28). After several itera-
tions of the optimization, we can obtain a task-specific prod-
uct manifold neural network for the given image. We used
the updated neural network to predict values of the rest pix-
els of this image.

We set the number m of constant curvature spaces as 4,
and the dimension of each constant curvature space was 32.
We set the batchsize of meta-training as 25. Our method
was trained with t ¼ 5 gradient steps, and evaluated with
t ¼ 5 gradient steps. We trained our method for 5 epochs,
where each epoch had 10000 few-shot learning tasks. We
evaluated our method with two settings: random pixels and
ordered pixels as input data. In each image, 10 or 100 pixels
were provided for training/evaluation.

Experimental results are shown in Table 6. Our method
achieves better performance than compared optimization-
basedmeta-learningmethods (e.g.,MAML [1] andCAVIA [2]),
no matter in the random pixel setting or ordered pixel setting.
Results show that using the product manifold of constant cur-
vature spaces and updating curvatures for different tasks bet-
ter fits various practical data. Here we also show some
examples of ourmethod and CAVIA, as shown in Fig. 7. Com-
paredwithCAVIA, ourmethod achieves better image comple-
tion. For example, in the first image, our method produces
better background. In the second image, our method better fits
the face orientation. These experimental results show the supe-
riority of modeling natural data with constant curvature
space over methods that limit themselves with euclidean
space.

Fig. 6. Qualitative results on few-shot regression tasks, where the two-hidden-layer neural network is used. We plot the waves on the 5-shot, 10-shot,
20-shot tasks. ‘GT’ is the true sine wave, and the black points denote the support data for training. Our method better fits a sine wave, given only few
points. In the red boxes, few points are provided. In this case, our method still fits the wave well, while MAML has a large error.

TABLE 6
MSE of Pixels in Image Completion Tasks

on the CelebA Dataset

Method Random Pixels Ordered Pixels

10 100 10 100

CNP [90] 0.039 0.016 0.057 0.047
MAML [1] 0.040 0.017 0.055 0.047
CAVIA [2] 0.037 0:014 0.053 0.047

Ours 0:034 0:014 0:052 0:045

We evaluate our method with random training pixels and ordered training pix-
els, and ordered pixels are chosen from the top-left corner to the bottom-right.
In each image, 10 or 100 pixels are provided for training.
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6.3 Reinforcement Learning

6.3.1 Setting

We used a reinforcement learning (RL) environment
MuJoCo [91] to evaluate our method on two types of RL
tasks. First, we consider a 2D navigation task. A robot
moves from a starting point to a destination point in a 2D
space, and the reward is the negative squared distance
between the current point and the destination point. We fol-
lowed the standard protocol [1], [2], fixed the starting point,
and varied the destination point for different tasks. The sec-
ond task is a high-dimensional locomotion task. Therein,
the goal is to find a particular direction of a cheetah robot.
In this case, the reward is the magnitude of the velocity in
the forward or backward direction. In our experiments, the
search trajectory of a robot was collected in a rollout. For
each task, we used 20 rollouts to update the model, with
each rollout constituting of 200 search steps of the robot. In
the meta-learning process, we updated the network through
500 batches, with the batchsize in meta-learning being 40.
That is, we updated our curvature generation scheme and
curvature updating scheme over 40 RL tasks. Our method
was trained with t ¼ 1 gradient step, and evaluated with
t ¼ 3 gradient steps. For the RL tasks, we used a product
manifold neural network with two hidden-layers of size
100. We set the number of constant curvature spaces as m ¼
10, and the dimension of the spaces was set as 10.

6.3.2 Results

We compare our method with meta-learning methods:
MAML [1], L2F [37], and CAVIA [2]. Results on the studied
two RL tasks are shown in Fig. 8. Experimental results show
that our method performs competitively or even exceeds
various state-of-the-art algorithms in adapting a model to
RL tasks. For example, in 2D navigation experiments, our
method demonstrates better initialization. At beginning, the

obtained reward of MAML and CAVIA is about �40, while
the obtained reward of our model is larger than �33, higher
than that of them. In the adaptation process, the following
steps of our method further improve the performance. After
the adaptation process, the reward of our method is about
�7:91, still higher than compared methods. This shows that
constant curvature space better encodes nonlinear data in
RL tasks. Furthermore, updating curvature via our method
will lead to construction of suitable space to represent data,
and in turn performance improvements.

6.4 Ablation Study

In this section, we discuss ablation experiments on the few-
shot classification tasks using the mini-ImageNet dataset to
evaluate our method. We denote the configuration where
each layer in a product manifold neural network has its indi-
vidual product manifold as ‘MM’, and the configuration
where all layers of a product manifold neural network share
a common productmanifold as ‘SM’.We evaluated the prod-
uct manifold neural network with only one constant curva-
ture space by manually setting the curvature at �1, �0:01,
0.01, or 1. We refer to this by ‘SM¼ �1=� 0:01=1=0:01’,
respectively. We denote our curvature generation scheme as
‘CGS’. If only learning a common curvature initialization is
considered in the meta-training process, the result is shown
with ‘w/o CGS’. Similarly, we denote our curvature updat-
ing scheme as ‘CUS’, and using only a simple gradient
descent to update curvatures is shownwith ‘w/o CUS’.

We also evaluated the generated learning rates and search
directions in our curvature updating scheme. Removing the
procedure that generates the learning rates and search direc-
tions is shown with ‘CUS w/o lr’ and ‘CUS w/o sd’, respec-
tively. Moreover, we assessed our attention classifier. In
doing so, we replaced the attention classifier with a fully-
connected layer and assigned uniformweights to all constant
curvature spaces. This is shown by ‘Ours w/o att’. We report
the results for all the aforementioned variations in Table 7.

Comparing ‘SM¼ �1=� 0:01=1=0:01’ with ‘SM’ and ‘MM’
in Table 7 reveals that updating curvatures to suitable values
leads to better performance than manually setting fixed cur-
vatures for various tasks. This is because a fixed curvature
cannot be optimal for all tasks, given the complexity of natu-
ral data. This demonstrates that real tasks have differentman-
ifold structures, requiring the space to vary its curvature.
Comparing ‘SM’ with ‘MM’, using individual product mani-
folds in different layers brings obvious improvements, where
‘MM’ is 1:97% and 1:11% higher than ‘SM’. Comparing ‘MM
+CGS’ with ‘MM’, we find that our curvature generation

Fig. 7. Qualitative results on the CelebA dataset, where 10 random pix-
els are provided as the support data. Our method generates better com-
pletion results, such as better fitting background and face orientation.

Fig. 8. Reinforcement learning results on 2D navigation and direction
tasks. We plot the obtained reward and gradient steps, and the results
show that our learned model can more quickly adapt to a new reinforce-
ment learning task than compared methods and obtain greater reward.
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scheme has 2:56% and 3% improvements. Besides, we find
that in our curvature updating scheme, producing adaptive
learning rates and search directions both play important roles
in finding better optima. ‘MM+CUS’ achieves 61:96% and
78:90% on the 1-shot and 5-shot tasks, higher than the perfor-
mance of ‘MM+CUS w/o lr’ and ‘MM+CUS w/o sd’. Thus,
both the curvature generation scheme and the curvature
updating scheme make our method more flexible. Compar-
ing ‘Ours (MM+CGS+CUS)’ with ‘Ours w/o att’, our atten-
tion classifier brings 0:72% and 0:70% boost, showing that it
can efficiently utilize features from different spaces for
classification.

6.5 Hyperparameter Analyses

In this part, we assess the number of constant curvature
spaces (i.e., m) in the product manifold on the mini-Image-
Net dataset. Note that while we have used different number
of constant curvature spaces in various experiments, fea-
tures of a layer in this experiment have the same dimension.
For example, if the dimension of features in a product mani-
fold neural network is 64, using 8 constant curvature spaces
means the dimension of constant curvature spaces is 8, and
using 16 constant curvature spaces means the dimension of
constant curvature spaces is 4. We measured m in the range
of ½2; 4; 8; 16; 32�, and report results in Table 8. By increasing
the number of constant curvature spaces, the performance
of our method first increases and then decreases. We
achieve the best performance when m ¼ 16, 63:13% and
81:04% on the 1-shot and 5-shot tasks, respectively. Thus,
we choose m ¼ 16 in the classification tasks for the mini-
ImageNet, tiered-ImageNet, CUB, and CIFAR-FS dataset.

6.6 Visualization

6.6.1 Feature Distribution

In this section, we show the effect of updating curvatures by
visualizing feature distributions in few-shot classification
tasks. From the feature distribution, we can evaluate the
matching degree between updated curvatures and manifold
structures of data, and further assess the quality of updated
curvatures. We first meta-trained a set of common curva-
tures for a product manifold neural network and fixed them
for all tasks, and took a task as an example to show its fea-
ture distribution before the classifier. We then show such a

feature distribution of the adaptive curvatures in our
method. Concretely, we sampled one task from the mini-
ImageNet dataset, and used the MDS method [92] to embed
features into a 2-D space. Results are shown in Fig. 9. We
can find that our adaptive curvatures lead to a better feature
distribution than common curvatures. For example, in the
left panel for common curvatures, features of ‘worm fence’
and ‘hotdog’ classes are mixed in the space, while features
of the two classes in the right figure have clear boundaries.
This shows the benefit of adapting the curvatures. Fixed
geometry realized by common curvatures may incur distor-
tions to data, while our method constructs suitable space
for manifold data by updating curvature through few steps,
making features more discriminative.

6.6.2 Updated Curvatures

We show changes of curvature values after our curvature
generation scheme (denoted by CGS) and curvature updat-
ing scheme (denoted by CUS). We stored curvatures of a
product manifold neural networks into a vector, and the
changes were measured by L2 distance between vectors of
common curvature initialization, generated task-specific
curvature initialization, and updated curvatures. We also
plot the accuracies after the two schemes. Results are mea-
sured across 10000 tasks on mini-ImageNet, as shown in
Fig. 10. It shows that both CGS and CUS together work to
adapt curvatures. Compared with the common curvature
initialization, the task-specific initialization produced via
CGS is much closer to updated curvatures, bringing a
shorter optimization trajectory. Then CUS further finds bet-
ter curvatures.

We measured the distribution of updated curvatures
across 100 tasks on mini-ImageNet, and plot their frequen-
cies over 10 bins in the range of ½�0:5; 0:5�. Results are
shown in Fig. 11. While the histogram has several dominant
bins, curvatures are spread across all bins. This confirms the
necessity of curvature adaptation for features.

6.6.3 Produced Learning Rates and Search Directions

We visualize produced learning rates via our curvature
updating scheme on the mini-ImageNet dataset (see Fig. 12a).
We plot the gradient norms of curvatures in Fig. 12b. Both
learning rates and gradient normsweremeasured by comput-
ing the mean over 500 tasks. Our analysis suggests that at the
beginning of optimization (i.e., first step), curvatures have
large gradients, and our method produces small learning
rates for them. As the optimization continues, gradient norms
gradually decrease. Our method produces the biggest learn-
ing rate at the second optimization step, while showing a
decreasing trend afterwards. This is consistentwith the recent

TABLE 7
Ablation Experiments on the Mini-ImageNet Dataset

Method 1-shot 5-way 5-shot 5-way

SM¼ �1 57.90 75.94
SM¼ �0:01 57.44 75.56
SM¼ 1 56.06 72.90
SM¼ 0:01 56.97 76.06
SM 57.13 76.14
MM 59.10 77.25

MM+CGS 61.66 80.25
MM+CUS w/o lr 61.80 78.70
MM+CUS w/o sd 61.75 78.54
MM+CUS 61.96 78.90

Ours w/o att 62.41 80.34
Ours (MM+CGS+CUS) 63:13 81:04

TABLE 8
Evaluation ofm on the Mini-ImageNet Dataset

Method 1-shot 5-way 5-shot 5-way

m ¼ 2 58.31 76.68
m ¼ 4 58.75 80.54
m ¼ 8 59.22 80.73
m ¼ 16 63:13 81:04
m ¼ 32 60.91 77.88
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research advance [93],where small learning rates are assigned
to large gradients, and large learning rates are assigned to
small gradients, making optimization more robust and
efficient.

We plot the cosine similarities between our generated
search directions and full gradients in Fig. 13a to show the
effectiveness of our generated search directions in CUS.
Note that, the full gradients are the optimal optimization
directions for curvatures, and are obtained using all training
data in the dataset. Large cosine similarities mean the pro-
duced search directions are very aligned (i.e., small devia-
tions) with the optimal optimization directions. Here, we
also plot the cosine similarities between stochastic gradients
(inputs of our CUS) and full gradients. We can conclude
that our curvature updating scheme transforms input gra-
dients into better search directions that have higher cosine
similarities with the full gradients. This shows that our cur-
vature updating scheme learns to find better search direc-
tions, leading to a faster convergence.

Besides, we show loss values using our curvature updat-
ing scheme to further show its effectiveness. We compare
our curvature updating scheme with a hand-designed gra-
dient descent scheme with a fixed learning rate and gra-
dients being search directions, results are shown in Fig. 13b.
We conducted experiments on 1-shot 5-way tasks using the
mini-ImageNet datasest, and computed the average loss
over 600 tasks sampled from the test set. We tuned the fixed
learning rate in the hand-designed gradient descent scheme
to achieve the best performance. One can draw the follow-
ing conclusions. (1) The curvature updating scheme has

faster optimization convergence. (2) The curvature updating
scheme obtains a better optimum.We note that the curvature
updating scheme achieves the loss about 0.6, while using a
hand-designed gradient descent scheme achieves a loss
about 0.7. This suggests that the proposed updating scheme
makes the model better fit to data. (3) A hand-designed
updating scheme needs much human involvements to tune
hyperparameter (e.g., learning rates). In contrast, our curva-
ture updating scheme automatically finds good optimization
trajectories, reducing human involvements.

6.7 Running Time

Here, we provide the wall-clock time of our method on the
1-shot 5-way and 5-shot 5-way tasks of few-shot classifica-
tion tasks. We compare our training and testing time with
the MAMLmethod that is a standard meta-learning method
in euclidean space. The training time was measured after

Fig. 9. Feature distributions of a few-shot classification task on the mini-
ImageNet dataset. In the left panel, we plot the feature distribution of
using common curvatures for all tasks. In the right panel, we plot the fea-
ture distribution of adapting the curvatures.

Fig. 10. In the left panel, we plot changes of curvature values after our
curvature generation scheme (CGS) and curvature updating scheme
(CUS). We plot accuracies after the two schemes in the right panel.

Fig. 11. Distribution of the updated curvatures on the mini-ImageNet
dataset.

Fig. 12. Generated learning rates and gradient norms for the curvatures
on the mini-ImageNet dataset.

Fig. 13. In Fig. 13a, we plot cosine similarities between our generated
search directions and full gradients using the mini-ImageNet dataset,
(the red curve). We also plot the cosine similarities between stochastic
gradients and full gradients, (the blue curve). The two curves show that
our generated search directions have smaller deviations from the opti-
mal optimization directions (the full gradients). In Fig. 13b, we measured
loss values in the adaptation to unseen data using our curvature updat-
ing scheme (‘CUS’) and a hand-designed updating scheme that uses a
fixed learning rate and uses gradients as search directions (‘Hand-
designed’).

GAO ETAL.: CURVATURE-ADAPTIVE META-LEARNING FOR FASTADAPTATION TO MANIFOLD DATA 1559

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 11,2023 at 11:55:24 UTC from IEEE Xplore.  Restrictions apply. 



500 episodes, and the test time was measured after 100 epi-
sodes. Experiments were conducted on the mini-ImageNet
dataset, where the ConvNet backbone was used. The perfor-
mance was measured using an Inter(R) Core(TM) i9-10900X
3.7GHz CPU, a GeForce RTX 3090 GPU and 128GB RAM.
Results are shown in Table 9 with “Ours w/o CGS CUS”
denoting the extra time cost caused by the orthogonal pro-
jection operation, the exponential map, and the logarithmic
map. Also, “Ours” denotes the extra time cost caused by not
only the three operations, but also the curvature generation
and curvature updating schemes.

From the experiments, we find that our method brings
better performance in the expense of computational over-
head. Further, the three extra operations in the product
manifold neural network require more time cost than the
curvature generation and curvature updating schemes.
Although the orthogonal projection, exponential map, and
the logarithmic map in constant curvature space are ele-
ment-wise operations (i.e., elements of a vector are indepen-
dent in the three operations, and we do not need complex
matrix function), they still incur computational cost. This
motivates us to study more efficient curvature adaptation
schemes in the future.

6.8 Convergence

In this section, we provide convergence analysis of our
meta-learning process. We plot the meta-objective (i.e.,
Eq. (24)) on the mini-ImageNet 5-shot tasks in Fig. 14. The
learning curve demonstrates that the curvature-adaptive
meta-learning converges steady. Recall that the meta-objec-
tive is composed of loss values of updated networks on
query data of given tasks. Thus, the decreasing trend of the
meta-objective shows that our method discovers how to
tune a model to suitable curvatures and parameters. As a
result, the proposed method is able to construct suitable
product manifolds for given tasks with complex and vari-
ous manifold structures of data.

7 CONCLUSION

In this paper, we have presented a curvature-adaptive
meta-learning method that can quickly adapt a model to
manifold data. The proposed product manifold neural net-
work with multiple constant curvature spaces can better
model complex structures of natural data. Our curvature
generation scheme and curvature updating scheme can con-
struct suitable product manifolds for various manifold data
through few optimization steps on curvatures. Assigning a
task-specific curvature initialization brings a shorter optimi-
zation trajectory, and generating learning rates and search

directions adaptively leads to faster convergence and better
optima as compared to using a fixed optimization scheme.
Extensive experiments on few-shot classification, few-shot
regression, and reinforcement learning tasks show that
our method outperforms existing meta-learning methods
designed in euclidean space, and updating curvatures makes
a model adapt to manifold data well. Since theories of Rie-
mannian manifold lead to many strong and elegant results,
we think exploring other Riemannian geometries and devel-
oping more efficient ways to adapt a model to Riemannian
manifold are potential research directions for the future.
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