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A Robust Distance Measure for Similarity-Based
Classification on the SPD Manifold
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Abstract— The symmetric positive definite (SPD) matrices,
forming a Riemannian manifold, are commonly used as visual
representations. The non-Euclidean geometry of the manifold
often makes developing learning algorithms (e.g., classifiers) dif-
ficult and complicated. The concept of similarity-based learning
has been shown to be effective to address various problems on
SPD manifolds. This is mainly because the similarity-based algo-
rithms are agnostic to the geometry and purely work based on the
notion of similarities/distances. However, existing similarity-based
models on SPD manifolds opt for holistic representations, ignor-
ing characteristics of information captured by SPD matrices.
To circumvent this limitation, we propose a novel SPD distance
measure for the similarity-based algorithm. Specifically, we intro-
duce the concept of point-to-set transformation, which enables
us to learn multiple lower dimensional and discriminative SPD
manifolds from a higher dimensional one. For lower dimensional
SPD manifolds obtained by the point-to-set transformation,
we propose a tailored set-to-set distance measure by making use
of the family of alpha–beta divergences. We further propose to
learn the point-to-set transformation and the set-to-set distance
measure jointly, yielding a powerful similarity-based algorithm
on SPD manifolds. Our thorough evaluations on several visual
recognition tasks (e.g., action classification and face recognition)
suggest that our algorithm comfortably outperforms various
state-of-the-art algorithms.

Index Terms— Metric learning, similarity-based classification,
symmetric positive definite (SPD) manifold, visual information.

I. INTRODUCTION

MANY visual representations lie on Riemannian mani-
folds, which are non-Euclidean spaces. Developing a

true Riemannian manifold geometry has received significant
attention in the computer vision community. The sphere, sym-
metric positive definite (SPD), Stiefel, and Grassmannian man-
ifolds are frequently encountered Riemannian manifolds [1].
In this article, we focus on the SPD manifold formed by SPD
matrices, e.g., the covariance matrix, the kernel matrix, and
the diffusion tensor image (DTI). The SPD matrix utilizes the
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second-order or high-order statistical information to capture
the desirable feature distribution and has been successfully
applied to many visual tasks, such as face recognition [2],
action recognition [3], transfer learning [4], object detec-
tion [5], and medical image processing [6].

Classification is one of the basic tasks in computer vision.
However, the non-Euclidean geometry often makes develop-
ing classifiers on SPD manifolds difficult and complicated.
The input of a standard Euclidean-space-learning classifier
(e.g., the support vector machine) is a feature vector that lies
in the Euclidean space, while the SPD manifold is clearly not
a Euclidean space. Most existing SPD manifold classification
methods convert an SPD representation to a requisite vector
by the tangent approximation [7], [8], the kernel method [9]–
[12], or the coding technique [13]–[15]. These methods are not
superior because the vector operation on an SPD representa-
tion inevitably distorts the matrix structure. To better build
a Riemannian-space-learning classifier, the similarity-based
classification scheme [16] is a good choice and has shown
promising performance. The similarity-based classifier does
not consider the input-lied space, and it needs only similarities
of any pairs of inputs. In this case, a robust distance measure
that computes the similarity between two SPD representations
is critical for classifiers to develop SPD manifolds.

To measure a true SPD manifold geometry, many efforts
have been devoted to the distance measure on SPD manifolds,
such as the affine-invariant metric (AIM) [17], log-Euclidean
metric (LEM) [18], Stein divergence [19], Burg matrix diver-
gence [20], and alpha–beta divergence [21], [22]. Because
underlying data distributions of concrete tasks are customarily
different, metric learning is widely employed to provide a
proper distance measure from the given data. Most existing
methods learn the SPD distance measure in a more discrim-
inative space, e.g., the Euclidean tangent space [23]–[25],
the reproducing kernel Hilbert space (RKHS) [26], and other
representative SPD manifolds [27], through which similar
pairs are close and dissimilar pairs are far apart.

As the SPD representation is aggregated from local fea-
tures that contain multiple types of visual information [25],
the SPD representation can be seen as a combination of visual
information statistics. For example, elements of a covariance
matrix are relations of dimensions of local features. We argue
that visual information may have different characteristics,
i.e., different distributions and contributions for both con-
structing the SPD representation and measuring the distance
between two SPD representations. It is necessary to separately
consider different visual information to build a more robust
distance measure. However, many existing metric learning
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methods [23]–[27] only treat an SPD representation as a
global representation and ignore diversities of different visual
information, resulting in an inferior method for exploring the
SPD representation.

In this article, we propose a novel SPD distance measure
for similarity-based classification on SPD manifolds. Unlike
existing methods that apply a single SPD manifold distance
measure, we aim to compute multiple subdistances from
discovered discriminative visual information. Specifically,
we apply a point-to-set transformation containing multiple
low-dimensional manifold projections on each SPD
representation to discover discriminative visual information,
and the obtained low-dimensional SPD matrices constitute
an SPD set. Then, the distance between two original
SPD representations is converted to a set-to-set distance that
integrates multiple individual subdistances of low-dimensional
matrix pairs from each original SPD representation. In this
work, the learnable alpha–beta divergence is utilized to
measure the subdistances, which can preserve the desirable
SPD manifold structure. In fact, learning the set-to-set distance
measure can be seen as a multi-metric learning problem on
the SPD set [28], [29]. Parameters of the proposed distance
measure are modeled on Riemannian manifolds, and we
develop a Riemannian optimization algorithm to learn the
parameters. Evaluated by experiments, our distance measure is
extremely helpful in capturing meaningful nearest neighbors
for a similarity-based classifier.

In summary, our contributions are threefold as follows.

1) We present an effective SPD distance measure for the
similarity-based classification scheme on SPD man-
ifolds. Considering different characteristics of visual
information in the SPD representation, the proposed dis-
tance measure can more effectively explore the discrim-
inative visual information and enhance the robustness of
the similarity-based classifier, even when we only use a
simple nearest neighbor classifier.

2) We formulate the SPD distance as an SPD point-to-set
transformation and a set-to-set distance measure prob-
lem. The point-to-set transformation contains multiple
low-dimensional manifold projections on original SPD
representations, and the set-to-set distance is designed as
integrating individual subdistances on low-dimensional
manifolds.

3) We learn multiple individual alpha–beta divergences
with different weights on low-dimensional manifolds as
subdistances to specifically consider different distribu-
tions and contributions of visual information. In addi-
tion, we introduce a Riemannian optimization algorithm
to jointly learn the point-to-set transformation and the
set-to-set distance to find a solution effectively and
efficiently.

The rest of this article is organized as follows. We review the
related SPD manifold classification and metric learning meth-
ods in Section II. The preliminaries of our method are stated
in Section III. Section IV presents the details of our distance
measure, including the point-to-set transformation and the set-
to-set distance. The corresponding optimization is described

in Section V. Section VI provides the computational com-
plexities of our distance measure and optimization. We show
the experimental results on six data sets to demonstrate the
effectiveness of our method in Section VII, and conclude this
article in Section VIII.

II. RELATED WORK

In this section, we review recent SPD manifold classification
methods and metric learning methods.

A. SPD Manifold Classification

In the SPD manifold classification task, most works convert
the SPD representation to a Euclidean vector, among which
the tangent approximation is a widely used approach. The
tangent space of a manifold point is a Euclidean space,
and thus Euclidean-space-learning classifiers can be applied.
Dong et al. [7] and Huang and Van Gool [8] flatted the
SPD representation to a vector via the tangent approximation
and applied a multilayer perceptron for the classification task.
Except for the tangent approximation, an alternative SPD man-
ifold analysis approach is to embed SPD matrices into RKHS
by a Mercer kernel function, where RKHS is also a Euclidean
space. Wang et al. [10] and Vemulapalli et al. [11] utilized the
LEM-based kernel function to embed the SPD representation
into RKHS and applied Euclidean classifiers. Zhang et al.
[12] proposed a Stein kernel function for the SPD represen-
tation, in which a learnable Stein divergence was exploited.
In addition, the coding technique is a notable approach for
various image processing and computer vision tasks. Harandi
et al. [13] and Harandi and Salzmann [14] made use of kernel
functions to embed the SPD representation into RKHS and
performed coding and dictionary learning. These methods [7],
[8], [10]–[14] all convert the SPD representation into a vector.
Considering that the Riemannian space has a heterogeneous
gap with the Euclidean vector space, the vector operation
inevitably distorts the structure of the SPD matrix. In contrast,
our similarity-based classifier does not address the input-lied
space, and it needs a distance measure to compute similarities
of pairs of samples. Our true geometry distance measure makes
the classifier preserve the SPD manifold structure.

B. SPD Manifold Metric Learning

In general, there exist three categories of SPD manifold
metric learning methods: learning a distance measure in the
Euclidean tangent space, in the kernel space, and on other SPD
manifolds.

In order to utilize the useful Euclidean metric, several
works seek a more discriminative tangent space. Vemula-
palli and Jacobs [23] proposed a metric learning method
on the tangent space and learned a Mahalanobis metric.
The drawback of this work is that the matrix vectoriza-
tion distorts the matrix structure. Huang et al. [24] intro-
duced the LEM learning (LEML) approach to transform
the matrix on the tangent space to other tangent spaces.
LEML not only avoids distorting the matrix structure but
also brings high efficiency. Recently, Zhou et al. [25]
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presented a sample-specific version of LEML named
α-based covariance-like metric learning (α-CML) that learns
to adjust eigenvalues of the SPD matrix for more dis-
criminative power. In addition, some methods embed the
SPD matrix into RKHS by a well-established kernel
method. Quang et al. [26] generalized the LEM between
two finite-dimensional SPD matrices to infinite-dimensional
covariance matrices in RKHS by Hilbert–Schmidt operators.
Several metric learning methods [2], [30] combine the discrim-
inative powers of multiple types of manifold representations
into RKHS. To overcome the inaccurate approximation of the
Euclidean space and preserve the SPD manifold structure,
Harandi et al. [27] proposed projecting the high-dimensional
SPD matrix into a low-dimensional manifold and learning a
metric in the new manifold.

The SPD manifold metric learning methods mentioned
above treat the SPD matrix as a global representation. In con-
trast, we treat the SPD matrix as a combination of differ-
ent visual information that has different characteristics for
the distance measure. Our method discovers multiple visual
information from the SPD representation via a point-to-set
transformation and computes a set-to-set distance. Our set-to-
set distance can be seen as a multi-metric learning problem,
which has been used in various fields of the machine learning
community, such as face and kinship verification [29], facial
expression recognition [31], and multi-sensor fusion [32].
However, different from these methods, we are the first to
learn multiple distance measures on Riemannian manifolds.

III. PRELIMINARIES

This section provides a brief review of the SPD manifold.
Note that throughout this article, vectors are represented by
bold lower case letters, e.g., v, and matrices are denoted by
bold upper case letters, e.g., W .

A. SPD Manifold

Given an SPD matrix X ∈ R
n×n , the matrix satisfies

v�Xv > 0, where v ∈ R
n is any nonzero vector. Let us

define the SPD manifold Sym+
n that consists of all n ×n SPD

matrices

Sym+
n = {X ∈ R

n×n : v�Xv > 0 ∀v ∈ R
n − 0n} (1)

where R
n − 0n is the R

n space without the zero vector.
Then, we introduce the definitions of the matrix logarithm

function logm(·) and the matrix exponential function
expm(·) [17], which is used later.

B. Matrix Logarithm Function logm(X)

Given an SPD matrix X ∈ R
n×n , the matrix logarithm

function logm(X) is

logm(X)=
∞∑

u=1

(−1)u−1

u
(X− In)u =Udiag(log(λu))U� (2)

where � is the transpose operation, and In is an identity
matrix with a size of n × n. X = Udiag(λu)U� is the
eigenvalue decomposition of X , λu is the uth eigenvalue, and
diag(λu) is a diagonal matrix whose elements are {λu}n

i=1.

C. Matrix Exponential Function expm(X)

Given an SPD matrix X ∈ R
n×n , the matrix exponential

function expm(X) is

expm(X) =
∞∑

u=1

(−1)u−1

u
(X − In)u = Udiag(exp(λu))U�.(3)

D. Geometry of SPD Manifolds

The geometry of an SPD manifold is induced by the
AIM [17], which is defined as

DAIM(X, Y) = ‖logm(X− 1
2 Y X− 1

2 )‖F (4)

where X, Y ∈ Sym+
n are two SPD matrices, and ‖ · ‖F is

the Frobenius norm of a matrix. Although AIM measures the
true geometry of the SPD manifold, it has high computational
complexity. Arsigny et al. [18] exploited the tangent space
and introduced a lower computational cost SPD matrix metric
named the LEM

DLEM(X, Y ) = ‖logm(X) − logm(Y)‖F (5)

where the SPD matrix is projected into the tangent space
by logm(·). The tangent space is a Euclidean space; thus,
the Euclidean metric can be applied directly. LEM is an
approximate geodesic distance. In addition to AIM and LEM,
there are several other representative SPD matrix distance
measures, including the Stein divergence [19], the Jeffrey
Kullback-Leibler divergence (Jeffrey KL divergence) [33], and
the Burg matrix divergence [20].

For a specific task, due to the different data distributions,
these SPD distance measures may have different perfor-
mance [15]. It is impractical to choose an optimal SPD matrix
distance measure after trial-and-error procedures. To solve
this problem, Cichocki and Amari [34] proposed a learnable
alpha–beta divergence, which can be adaptive to the underly-
ing data distribution. For two SPD matrices X, Y ∈ Sym+

n ,
the alpha–beta divergence is defined as

D(α,β)(X‖Y) = 1

αβ
log

(
det

(
α(XY−1)β + β(XY−1)−α

α + β

))

= 1

αβ

n∑
u=1

log

(
αλ

β
u + βλ−α

u

α + β

)

α �= 0, β �= 0, and α + β �= 0 (6)

where (α, β) is the parameter, det(·) denotes the determi-
nant of a matrix, and λu is the uth eigenvalue of matrix
XY−1. The alpha–beta divergence is a smooth function with
respect to the parameter (α, β) [21]. With different α and
β values, the alpha–beta divergence can be equivalent to
other well-known SPD matrix distance measures, such as
AIM and Stein divergence. Detailed proof can be found
in [21]. In Table I, we show four special cases of alpha–beta
divergence with corresponding values of α and β. X and
Y are the input SPD matrices, λu is the uth eigenvalue
of XY−1, Tr(·) is the trace of a matrix, and det(·) is the
determinant of a matrix. For each special case, we provide its
corresponding matrix computation and eigenvalue computation
forms, which are equivalent. The alpha–beta divergence is
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TABLE I

ALPHA–BETA DIVERGENCE WITH DIFFERENT (α, β) VALUES

invariant to the affine transformation, i.e., D(α,β)(X‖Y) =
D(α,β)(C�XC‖C�Y C), where X, Y ∈ Sym+

n , and C ∈ R
n×n

is any invertible matrix. Theorem 1 gives the affine-invariance
property of the alpha–beta divergence.

Theorem 1: Given two SPD matrices X, Y ∈ Sym+
n ,

the alpha–beta divergence D(α,β)(X‖Y ) is invariant to affine
transformations, i.e., for any invertible matrix C ∈ R

n×n ,
D(α,β)(X‖Y ) = D(α,β)(C�XC‖C�Y C).

Proof: Through (6), we know that the alpha–beta diver-
gence between two SPD matrices X and Y is only related
to the eigenvalues of XY−1. Thus, we carry out eigenvalue
decomposition to matrix XY−1, XY−1 = U�U−1, where U
is the eigenvector matrix and � is the eigenvalue diagonal
matrix. The simplification of C�XC(C�Y C)−1 is

C� XC(C�Y C)−1 = C� XCC−1Y−1C−� = C� XY−1C−�

= C�U�U−1C−� = C�U�(C�U)−1.

(7)

As U and C are both invertible matrices, C�U is also an
invertible matrix, and C�U�(C�U)−1 is similar to the diag-
onal matrix �. Therefore, � is also the eigenvalue diagonal
matrix of C�XC(C�Y C)−1, XY−1 and C� XC(C�Y C)−1

have the same eigenvalues, and

D(α,β)(X‖Y) = D(α,β)(C� XC‖C�Y C). (8)

�
IV. PROPOSED SPD DISTANCE MEASURE

A. Problem Definition

We first introduce several mathematical symbols used in
our method. The low-dimensional projection fW (·) projects
the SPD representation to another manifold, and W is the
projection matrix.

The subdistance measure gA(·, ·) is a distance measure on a
projected low-dimensional manifold, where A is the parameter.

The integration function h M(·) integrates multiple sub-
distances into one, and M is the integration parameter.
The point-to-set transformation Ts(·) projects the input SPD
representation to m low-dimensional SPD manifolds.

The set-to-set distance Ds(·, ·) is adopted to compute the
distance between two SPD sets.

Our goal is to build a robust SPD distance measure,
where different characteristics of visual information in the
SPD representation are considered. More specifically, our
distance measure is composed of a point-to-set transformation
Ts(·) and a set-to-set distance measure Ds(·, ·), named point-
to-set and set-to-set distance measure (PSSSD). Given two

SPD representations X i and X j , we discover discriminative
visual information from each SPD representation by Ts(·)
which contains m low-dimensional projections { f k

W (·)}m
k=1.

The obtained low-dimensional SPD matrices from one original
SPD representation constitute an SPD set Xi = { f k

W (X i )}m
k=1.

Then, the distance measure between two original SPD repre-
sentations is converted to a set-to-set distance measure Ds(·, ·).
Ds(·, ·) integrates m individual subdistance measures gk

A(·, ·)
between the pair of low-dimensional matrices projected from
each involved original SPD representation. Due to different
distributions of visual information, we assign the learnable
alpha–beta divergence as gk

A(·, ·) on different low-dimensional
manifolds. To consider different contributions of visual infor-
mation, the m subdistances are integrated by h M(·) with
different weights. The three parameters W, A, and M are
represented by a parameter set � = {W, A, M}. Our SPD
distance measure PSSSD described above is defined in the
following, and the framework is shown in Fig. 1.

Definition 1: Given two SPD representations X i and X j ,
our distance D�(X i , X j ) is defined as

D�(X i , X j )

= Ds(Ts(X i ), Ts(X j )) = Ds(Xi ,X j )

= Ds
({

f 1
W (X i ), · · · , f m

W (X i )
}
, { f 1

W (X j ), · · · , f m
W (X j )}

)
= h M

(
g1

A

(
f 1
W (X i ), f 1

W (X j )
)
, · · · , gm

A

(
f m
W (X i ), f m

W (X j )
))

.

(9)

The similarity-based classifier learns the distance measure
defined in (9). We define the objective function L(�,S,D, Y )
on the parameter �, the SPD matrix similar pair set S, the SPD
dissimilar pair set D, and their labels Y , where yi j = 1 means
that X i and X j are similar; otherwise, yi j = 0. Via the training
strategy that utilizes sample pairs, the similarity information
is embedded into the model [35].

Definition 2: The objective function L(�,S,D, Y ) is
defined as

L(�,S,D, Y )

= 1

|S|
∑

i, j∈S
yi j · max(D�(X i , X j ) − ζs, 0)2

+ 1

|D|
∑

i, j∈D
(1 − yi j ) · max(ζd − D�(X i , X j ), 0)2

+ ξ · γ (M), s.t. M ∈ Sym+
m, W ∈ St(mp, n). (10)

We expect that the distance between two similar SPD rep-
resentations is smaller than a threshold ζs , and the distance
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Fig. 1. Flowchart of the proposed distance measure PSSSD between two SPD representations. Different colors indicate different SPD representations, and
different shapes indicate SPD matrices on different low-dimensional manifolds. The point-to-set transformation Ts (·) contains multiple projections, f 1

W , f 2
W ,

and f 3
W , to discover multiple types of visual information. The distance D�(·, ·) between two SPD representations is converted to a set-to-set distance Ds (·, ·).

The detailed set-to-set distance Ds (·, ·) is shown in the right part. g1
A , g2

A, and g3
A are the subdistance measures on low-dimensional manifolds, and h M

integrates these subdistances. � = {W, A, M} is the learnable parameter set. The point-to-set transformation and set-to-set distance are optimized jointly.

between two dissimilar SPD representations is larger than a
threshold ζd . We add two coefficients (1/|S|) and (1/|D|) to
solve the imbalance issue of similar and dissimilar pairs, where
|S| and |D| are the pair numbers of sets S and D. We impose
the orthogonality constraint on W and the positive-definite
constraint on M to obtain a more robust distance measure.
Moreover, to avoid overfitting and incorporate prior infor-
mation with the set-to-set distance [36], [37], we employ
the Burgman matrix divergence [20] between M and a prior
matrix M0 as the regularization in the objective function
in (10), i.e., γ (M) = Tr(M M−1

0 ) − log det(M M−1
0 ) − m.

Due to the manifold constraints of W and M , they can be
learned via Riemannian optimization methods effectively and
efficiently. In Sections IV-B and IV-C, we explain the point-
to-set transformation Ts(·) and the set-to-set distance Ds(·).

B. Point-to-Set Transformation

Our point-to-set transformation Ts(·) applies the bilinear
projection form to project the original SPD matrix X i ∈ R

n×n

into m low-dimensional manifolds

X1
i = f 1

W (X i ) = W�
1 X i W1

...

Xm
i = f m

W (X i ) = W�
m X i Wm (11)

where Xk
i ∈ R

p×p is on the kth low-dimensional SPD mani-
fold, k ∈ {1, 2, · · · , m}, p is the size of the low-dimensional
matrix, f k

W (·) is the kth low-dimensional manifold projection,
and Wk ∈ R

n×p is the kth low-dimensional manifold projec-
tion matrix. We combine the m low-dimensional SPD matrices,
which constitutes an SPD set Xi = {Xk

i }m
k=1. We expect that

each low-dimensional matrix Xk
i is guaranteed to still be an

SPD matrix with the ability to capture the desirable feature
distribution. Based on the linear algebraic theory, a column
full-rank matrix Wk guarantees that W�

k Xk Wk is an SPD
matrix.

The alpha–beta divergence is applied to our
low-dimensional manifolds (detailed in Section IV-C).
To enforce the requirement that W k needs to be a column

full-rank matrix, we can impose the orthogonality constraint on
Wk , without loss of generality, which is shown in Theorem 2.

Theorem 2: Given two SPD matrices X, Y ∈ Sym+
n , and

W̃ ∈ R
n×p is a projection matrix with the column full-rank

constraint, where n ≥ p. D(α,β)(W̃
�

XW̃‖W̃
�

Y W̃)
is the alpha–beta divergence between projected
SPD matrices. To optimize any objective function
L(D(α,β)(W̃

�
X W̃‖W̃

�
Y W̃)), we can impose the

orthogonality constraint on Wk , without loss of generality.
Proof: Based on Theorem 1, the alpha–beta diver-

gence is an affine-invariant divergence, i.e., D(α,β)(X‖Y) =
D(α,β)(C�XC‖C�Y C), where X, Y ∈ Sym+

n , and C ∈ R
n×n

is any invertible matrix. Note that, any column full-rank matrix
W̃ ∈ R

n×p can be factorized into an orthogonal matrix
W ∈ R

n×p and an upper triangular matrix B ∈ R
p×p by

the orthogonal-upper-triangular decomposition (QR decompo-
sition), i.e., W̃ = W B. As the upper triangular matrix B
is a special form of the invertible matrix, resorting to the
affine-invariance property, the alpha–beta divergence between
W̃

�
X W̃ and W̃

�
Y W̃ can be translated to

D(α,β)(W̃
�

X W̃‖W̃
�

Y W̃)

= D(α,β)(B�W� XW B‖B�W�Y W B)

= D(α,β)(W� XW‖W�Y W). (12)

Thus, for any column full rank matrix W̃ ,
we can always find an orthogonal matrix W and
guarantee that L(D(α,β)(W̃

�
X W̃‖W̃

�
Y W̃)) =

L(D(α,β)(W�X W‖W�Y W)). �
The orthogonality constraint makes Wk on a Stiefel mani-

fold [1]. However, an orthogonal matrix R ∈ R
p×p is also an

invertible matrix. Resorting to the affine-invariance property,
we can obtain D(α,β)(R�W�

k X i W k R‖R�W�
k X j Wk R) =

D(α,β)(W�
k X i Wk‖W�

k X j Wk). The objective function is
invariant to the right action of any orthogonal matrix on Wk .
Thus, the projection parameter Wk with the orthogonality
constraint is on a Grassmannian manifold [1], which is a
quotient space of the Stiefel manifold. To reduce the relevance
between any two low-dimensional SPD matrices, we expect
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that projection parameters {Wk}m
k=1 are diverse and as large

as possible. When we add the orthogonality constraint between
two projection parameters Wk and W l , the distance between
Wk and W l reaches the maximum, as p − ‖W�

k W l‖F is the
projection distance metric on the Grassmannian manifold [38].
Thus, for any k �= l, we force W�

k W l = 0, where 0 ∈ R
p×p

is a matrix whose elements are all “0"s.
All W k can compose a total projection matrix W , i.e., W =

[W1, W2, · · · , Wm ] ∈ R
n×mp , in which Wk is a partitioned

matrix of W containing p columns. Note that W is a sub-
unitary matrix as well, i.e., W�W = Imp , and it is on the
Stiefel manifold [1]. We find that, based on Remark 1, our
SPD set Xi = {Xk

i }m
k=1 is equivalent to a diagonal block

matrix Zi , which has a clear matrix structure and simple
matrix computation.

Remark 1: In our method, all low-dimensional manifold
projection matrices {Wk ∈ R

n×p}m
k=1 in (11) can constitute

a matrix W ∈ R
n×mp , k ∈ [1, m]. For an original SPD

representation X i ∈ R
n×n , if we apply a diagonal block

binary mask on the matrix W� X i W , we can obtain a diagonal
block matrix Zi ∈ R

mp×mp . Zi is equivalent to the SPD
set Xi = {Xk

i ∈ R
p×p}m

k=1, and diagonal blocks of Zi are
the same low-dimensional SPD matrices as {Xk

i }m
k=1 in (11),

that is,

Zi = mask(W� X i W)

= mask

⎛
⎜⎝

⎡
⎢⎣

W�
1 X i W 1 · · · W�

1 X i Wm
...

...
...

W�
m X i W 1 · · · W�

m X i Wm

⎤
⎥⎦

⎞
⎟⎠

=

⎡
⎢⎢⎢⎣

X1
i · · · 0

0 X2
i 0

...
...

...
0 · · · Xm

i

⎤
⎥⎥⎥⎦ . (13)

From this point, we transform the original SPD representation
X i to a diagonal block matrix Zi , and the diagonal blocks rep-
resent the discovered visual information. The diagonal block
matrix clears the matrix structure and reduces unimportant
information. In addition, it is more efficient to implement
the matrix eigenvalue decomposition and matrix inversion
operations on Zi than W�X i W .

C. Set-to-Set Distance

Based on the point-to-set transformation, the distance
D�(X i , X j ) between two SPD matrices is transformed to
a set-to-set distance Ds(Xi ,X j ). We design the set-to-set
distance Ds(·, ·) as the integration h M(·) of subdistances
{gk

A(·, ·)}m
k=1, which are assigned on m low-dimensional SPD

manifolds, where A and M are learnable parameters.
On the kth low-dimensional manifold, we apply an individ-

ual learnable alpha–beta divergence [21], [22] as the subdis-
tance measures gk

A(·, ·). Thus, the distance dk
i j between a pair

of Xk
i and Xk

j in two SPD sets Xi and X j is given by

dk
i j = gk

A

(
Xk

i , Xk
j

) = D(αk ,βk)
(
Xk

i ‖Xk
j

)
= 1

αkβk

p∑
u=1

log

⎛
⎝αk

(
λ

k

i ju

)βk + βk
(
λ

k

i ju

)−αk

αk + βk

⎞
⎠ (14)

where λk
i ju is the uth eigenvalue of matrix Xk

i (Xk
j )

−1, and
(αk, βk) is the individual parameter of the kth alpha–beta
divergence. We denote all alpha–beta divergence parame-
ters as a matrix A = [(α1, β1), (α2, β2), . . . , (αm , βm)] ∈
R

m×2 and a distance vector between Xi and X j as d i j =
[d1

i j , d2
i j , . . . , dm

i j ] ∈ R
m×1. Because (αk , βk) needs to be

adaptive to the kth low-dimensional manifold, we exploit a
learnable strategy to update (αk, βk), which is detailed in
Section V.

We argue that subdistances and their relationships all con-
tribute to the SPD distance. Thus, the set-to-set distance
Ds(Xi ,X j ) is designed as a weight sum formulation

D�(X i , X j )

= Ds(Xi ,X j ) = h M
(
d1

i j , d2
i j , . . . , dm

i j

) = d�
i j Md i j

=
m∑

k=1

m∑
l=1

(
dk

i j · Mkl · dl
i j

)
(15)

where M ∈ R
m×m is the integration parameter, Mkl is the

element of M in the kth row and lth column, reflecting
contributions of visual information and their relationships.

Via (15), we know that the designed set-to-set distance
is a quadratic form. If X i = X j , then d i j is a zero vec-
tor, and D�(X i , X j ) = 0. If X i �= X j , then d i j is a
nonzero vector, and D�(X i , X j ) should be larger than 0.
Thus, the nonnegativity of the distance forces M to be an
SPD matrix [37], [39], [40]. PSSSD can be analogous to
the Mahalanobis metric, where each vector dimension has its
own distribution and contribution for the Mahalanobis metric,
and our low-dimensional manifolds can be seen as analogies
of different vector dimensions. In addition, to explain our
distance more clearly, based on Theorem 3, the set-to-set
distance Ds(Xi ,X j ) in (15) can be derived from the squared
alpha–beta divergence and is a weighted version.

Theorem 3: The set-to-set distance Ds(Xi ,X j ) in (15) can
be derived from the squared alpha–beta divergence. Specif-
ically, the set-to-set distance is a weighted version of the
squared alpha–beta divergence.

Proof: Based on Remark 1, the SPD set Xi = {Xk
i }m

k=1
can be established as a diagonal block matrix Zi ∈ R

mp×mp ,
and the diagonal block Xk

i ∈ R
p×p is the low-dimensional

SPD matrix, representing discovered visual information, that
is,

Zi =

⎡
⎢⎢⎢⎣

X1
i · · · 0

0 X2
i 0

...
...

...
0 · · · Xm

i

⎤
⎥⎥⎥⎦ . (16)

We can utilize the squared alpha–beta divergence to measure
the distance between diagonal block matrices Zi and Z j ,
which is

D2 =(D(α,β)(Zi‖Z j ))
2 =

(
1

αβ

mp∑
u=1

log

(
αλ

β
u +βλ−α

u

α+β

))2

(17)

where λu is the uth eigenvalue of the matrix Zi Z−1
j . Because

Zi and Z j are diagonal block matrices, based on (13), the
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matrix inversion operation is flexible. Zi Z−1
j can be calculated

by

Zi Z−1
j =

⎡
⎢⎢⎢⎢⎣

X1
i (X1

j )
−1 · · · 0

0 X2
i (X2

j )
−1 0

...
...

...

0 · · · Xm
i (Xm

j )−1

⎤
⎥⎥⎥⎥⎦ (18)

and {λu}k×p
u=(k−1)×p+1 are the eigenvalues of matrix Xk

i (Xk
j )

−1.
We rewrite (17) as

D2 =
⎛
⎝ m∑

k=1

⎛
⎝ 1

αβ

k×p∑
u=(k−1)×p+1

log

(
αλ

β
u +βλ−α

u

α+β

)⎞
⎠

⎞
⎠

2

. (19)

Note that (1/αβ)
∑k×p

u=(k−1)×p+1 log((αλ
β
u + βλ−α

u /α + β)) is
the alpha–beta divergence between Xk

i and Xk
j . We denote it

as dk , and the squared distance is

D2 =
(

m∑
k=1

dk

)2

=
m∑

k=1

m∑
l=1

dkdl . (20)

If we assign individual (αk, βk) to each dk to allow for
different distributions of diagonal blocks, dk is equivalent to
our subdistance gk

A(·, ·) in (14)

dk = 1

αkβk

k×p∑
u=(k−1)×p+1

log

(
αkλ

βk
u + βkλ

−αk
u

αk + βk

)
. (21)

If we add different weights wk to dk to consider different con-
tributions of diagonal blocks for the distance, D2 is equivalent
to our set-to-set distance in (15)

D2 =
(

m∑
k=1

wkdk

)2

=
m∑

k=1

m∑
l=1

wkwld
kdl =

m∑
k=1

m∑
l=1

Mkl d
kdl .

(22)

Thus, our set-to-set distance can be derived from a squared
alpha–beta divergence with multiple individual parameters and
different weights on diagonal block matrices. �

V. OPTIMIZATION METHOD

L(�,S,D, Y ) in (10) is not jointly convex with respect
to all its learning parameters � = {W, A, M}. Furthermore,
W and M lie on two different Riemannian manifolds and
directly utilizing the Euclidean optimization methods (i.e., pro-
jected methods) may lead to undesirable behaviors. In our
method, parameters A, W , and M are optimized by the
stochastic gradient descent (SGD) method. A is updated by the
Euclidean gradient, and W and M are updated by Riemannian
gradients due to their manifold constraints. As the number of
all pairs can be large, to speed up the training, we update
parameters via small minibatches of pairs instead of the whole.
To be specific, we first compute the gradient with respect to
W , A, and M as follows.

A. Gradient of L With Respect to M

The gradient of L with respect to M can be computed by

∂L
∂ M

= 1

|S|
∑

i, j∈S
d i j

∂L
∂ D�

i j

d�
i j + 1

|D|
∑

i, j∈D
d i j

∂L
∂ D�

i j

d�
i j

+ ξ · ∂γ (M, M0)

∂ M
(23)

where (∂L/∂ D�
i j ) is the gradient of L with respect to

D�(X i , X j )

∂L
∂ D�

i j

= 2 · yi j · max
(
D�

i j − ζs, 0
)

+ 2 · (yi j − 1) · max
(
ζd − D�

i j , 0
)

(24)

and (∂γ (M, M0)/∂ M) is the gradient of γ (M, M0) with
respect to M

∂γ (M, M0)

∂ M
= M−1

0 − M−1. (25)

B. Gradient of L With Respect to A

The gradients of L with respect to αk and βk in A are

∂L
∂αk

= 1

|S|
∑

i, j∈S

∂L
∂dk

i j

· ∂dk
i j

∂αk
+ 1

|D|
∑

i, j∈D

∂L
∂dk

i j

· ∂dk
i j

∂αk
(26)

∂L
∂αk

= 1

|S|
∑

i, j∈S

∂L
∂dk

i j

· ∂dk
i j

∂βk
+ 1

|D|
∑

i, j∈D

∂L
∂dk

i j

· ∂dk
i j

∂βk
. (27)

(∂L/∂dk
i j ) is the kth element of (∂L/∂di j ), which is the

gradient of L with respect to d i j

∂L
∂d i j

= ∂L
∂ D�

i j

· ∂ D�
i j

∂di j
= ∂L

∂ D�
i j

d�
i j (M� + M). (28)

(∂dk
i j /∂αk) and (∂dk

i j /∂βk) are the gradients of dk
i j with respect

to αk and βk , respectively,

∂dk
i j

∂αk

= 1

α2
k βk

p∑
u=1

⎛
⎝αk

(
λk

i ju

)βk − αkβk
(
λk

i ju

)−αk log λk
i ju

αk
(
λk

i ju

)βk + βk
(
λk

i ju

)−αk

− αk

αk + βk
− log

αk
(
λk

i ju

)βk + βk
(
λk

i ju

)−αk

αk + βk

⎞
⎠

(29)
∂dk

i j

∂βk

= 1

αkβ
2
k

p∑
u=1

⎛
⎝βk

(
λk

i ju

)−αk − αkβk
(
λk

i ju

)βk log λk
i ju

αk
(
λk

i ju

)βk + βk
(
λk

i ju

)−αk

− βk

αk + βk
− log

αk
(
λk

i ju

)βk + βk
(
λk

i ju

)−αk

αk + βk

⎞
⎠ .

(30)
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C. Gradient of L With Respect to W

The gradient of L with respect to each Wk is

∂L
∂Wk

=
∑

i, j∈(S∪D)

(
X�

i W k
∂L
∂ Xk

i

+ X i Wk
∂L
∂ Xk

i

�

+ X�
j Wk

∂L
∂ Xk

j

+ X j Wk
∂L
∂ Xk

j

�)
(31)

where (∂L/∂ Xk
i ) is the gradient of L with respect to the

low-dimensional SPD matrix Xk
i , and (∂L/∂ Xk

j ) is the gradi-
ent of L with respect to the low-dimensional SPD matrix Xk

j .
The eigenvalue decomposition of Xk

i (Xk
j )

−1 is Xk
i (Xk

j )
−1 =

Uk
i j �

k
i j (U

k
i j )

�. �k
i j is the eigenvalue diagonal matrix, and λk

i ju
is the uth eigenvalue. The gradients (∂L/∂ Xk

i ) and (∂L/∂ Xk
j )

can be computed by

∂L
∂ Xk

i

= Uk
i j

∂L
∂�k

i j

(
Uk

i j

)�(
Xk

i

)−� (32)

∂L
∂ Xk

j

= (−1) · (
Xk

j

)−�(
Xk

i

)�Uk
i j

∂L
∂�k

i j

(
Uk

i j

)�(
Xk

j

)−� (33)

where (∂L/∂�k
i j ) is the gradient of L with respect to �k

i j .
(∂L/∂�k

i j ) is a diagonal matrix, and the uth element is

∂L
∂λk

i ju

= ∂L
∂dk

i j

· ∂dk
i j

∂λk
i ju

= ∂L
∂dk

i j

· 1

αkβk

αkβk
(
λk

i ju

)βk−1 − αkβk
(
λk

i ju

)−αk−1

αk
(
λk

i ju

)βk + βk
(
λk

i ju

)−αk
.

(34)

Here, we also provide the gradient of L with respect to original
SPD representations X i

∂L
∂ X i

=
m∑

k=1

W�
k

∂L
∂ Xk

i

Wk . (35)

With the developments above, the parameters of the model
can be updated as follows. At time t + 1, A is optimized
directly by SGD: At+1 = At − η(∂L/∂ At ). W and M
are updated by the Riemannian optimization algorithm [1].
First, the Euclidean gradients (∂L/∂W) and (∂L/∂ M) are
converted to the Riemannian gradients (∂L/∂W R) and
(∂L/∂ M R), which are on the corresponding tangent planes.
Then, we obtain a new tangent vector from the Riemannian
gradient. Finally, the new point on the tangent plane is mapped
back to the Riemannian manifold as the updated manifold
point. The computational details are given by

⎧⎪⎪⎨
⎪⎪⎩

∂L
∂W R

t

= ∂L
∂W t

− W t
1

2

(
W� ∂L

∂W t
+ ∂L

∂W t

�
W t

)

W t+1 = q
(

W t − η ∂L
∂W R

t

) (36)

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂L
∂ M R

t

= M t
1
2

(
∂L

∂ M t
+ ∂L

∂ M t

�)
M t

M t+1 = M

1

2
t expm

(
−ηM

− 1
2

t
∂L

∂ M R
t

M
− 1

2
t

)
M

1
2
t

(37)

where (∂L/∂W R
t ) and (∂L/∂ M R

t ) are the Riemannian gra-
dients with respect to W t and M t at time t , and W t+1 and
M t+1 are the manifold points after an update. In (36), q (·) is
the retraction operation mapping the data back to the Stiefel
manifold. q (W) denotes the Q part of the QR decomposition
of a matrix W , i.e., for the matrix W ∈ R

n×p , W can be
decomposed as W = Q R, where Q ∈ R

n×p is an orthogonal
matrix and R ∈ R

p×p is an upper triangular matrix. In (37),
expm(·) is the matrix exponential function as the retraction
operation. The retraction operation can guarantee the new
point not only along the descent direction but also on the
manifold [4]. The convergence of such SGD on the Stiefel
manifold and SPD manifold was proven in [41]. Due to the
page limit, the derivations of the Riemannian gradients in (36)
and (37) can be found in the seminal book by Absil et al. [1].

VI. COMPUTATIONAL COMPLEXITY

In this section, we comment on the computational com-
plexity of our method. We recall that n is the size of the
original SPD matrices, and m and p showing the number of
low-dimensional manifolds and their respective dimensionali-
ties. The number of training samples is denoted by N .

A. Computational Complexity of the Objective Function

The computational complexity of the point-to-set trans-
formation in (11) is O(mn2 p + mnp2). The computational
complexity of inverting a matrix of size p × p is O(p2.376)
via the Coppersmith–Winograd algorithm. Thus, the set-to-set
distance in (15) requires O(3mp3 + mp2.376 + m2 + m) flops.
The objective function in (10) has a computational complexity
of O(N2 + (8/3)m3).

B. Computational Complexity of the Gradient

Computation of the gradient with respect to M in (23)
requires O(N2 m + N2 m2 + 2m2.376) flops. Computation of
gradients with respect to all α and β values in (26) and (27)
has a complexity of O(N2 m2+2 N2 m3 + N2m2 p) and
O(N2 m2 p), respectively. Finally, the computational com-
plexity of the gradient with respect to W in (31) requires
O(m2 + 8mp3 + 2Nmn2 p + 2Nmnp2) flops.

C. Computational Complexity of the
Riemannian Optimization

The computational complexity of updating M in (37) takes
O(3m3), and the computational complexity of updating W
in (36) takes O(4nm2 p2 + 11m3 p3) [37].

VII. EXPERIMENTS

To evaluate our method, we conduct experiments on six
data sets: the ETH-80 data set [42], the MSR-Action3D
data set [43], the YouTube Celebrities (YTC) data set [44],
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the UIUC data set [45], the Describable Textures Data Set
(DTD) [46], and the FGVC-aircraft data set [47].

A. Data Sets and Settings

The ETH-80 data set is an image data set, which contains
80 image sets of eight objects. In our experiment, all images
of the ETH-80 data set are resized to 20 × 20 and encoded
by intensity features. The YTC data set is a video-based face
data set containing 1910 videos of 47 persons. Face regions
are detected from each frame by a cascaded face detector
and resized to 20 × 20, followed by the histogram equalized
operation, and represented by gray values. The MSR-Action3D
data set is a 3-D action data set containing 20 actions. In the
experiments, each frame is represented by a 120-D feature
vector, which is the 3-D coordinate differences of 20 skeleton
joints between this frame and its two neighborhood frames.
The UIUC data set contains texture images of 18 categories.
We resize each image to 400 ×400. Then, 128-D dense scale-
invariant feature transform (SIFT) features are extracted from
each image with strides of 4-pixels and concatenated by 27-D
RGB color features from 3 × 3 patches centered at the SIFT
features. The DTD data set is a material data set with 47
categories (120 images per category). The FGVC-aircraft data
set is a fine-grained image data set. It contains 10 000 aircraft
images of 100 categories.

On the ETH-80, MSR-Action3D, and UIUC data sets,
we randomly select half of the samples from each category
for training and the rest are used for testing. On the YTC data
set, for each person, three videos are randomly selected as the
gallery, and six as the probe. For the DTD and FGVC-aircraft
data set, we use 3760 and 6667 images for training, respec-
tively, and the remaining images are considered for testing.

On the ETH-80, YTC, UIUC, DTD, and FGVC-aircraft data
sets, we compute a covariance matrix C to represent each
sample and add a small ridge δI to avoid singularity, where
δ = 0.001 × Tr(C). On the MSR-Action3D data set, we first
compute the covariance matrix C with the size of 120 × 120,
then transform it to a 121 × 121 Gaussian distribution as the
SPD representation, i.e., C = |C|−(1/121)[C + mm� mm� 1],
where m is the mean vector of 120-D features. Deep features
used in our experiments are extracted from the “conv5-3”
layer of a fine-tuned VGG-16 model and are aggregated into
a 512×512 SPD representation following the work of Yu and
Salzmann [48].

In all the experiment, we set ξ = 0.01 and M0 = Im . For the
ETH-80 and YTC data sets, we set ζs as 5 and ζd as 100. For
the MSR-Action3D, UIUC, DTD, and aircraft data sets, we set
ζs as 10 and ζd as 100. In each iteration, we randomly sample
64 pairs into a minibatch. For the ETH-80 data set, the learning
rate η is set as 10−4. For the MSR-Action3D, YTC, and UIUC
data sets, the learning rate η is set as 10−5. For the DTD and
aircraft data sets, the learning rate η is set as 10−6.

B. Evaluation With Hand-Crafted Features

We first compare and contrast our PSSSD against the
following baselines: AIM [17], Stein divergence [19],
LEM [18], Jeffery KL divergence [33], Burg Matrix
divergence [20], SPD-dimensionality reduction (SPD-DR)

TABLE II

CLASSIFICATION ACCURACY (%) ON FOUR VISUAL RECOGNITION TASKS.
BEST RESULTS ARE HIGHLIGHTED IN BOLD

including AIM-DR and Stein-DR [27], covariance discrim-
inative learning (CDL) [10], Riemannian sparse representa-
tion (RSR) [13], LEML [24], and α-CML [25]. In our method,
we exploit a nearest neighborhood (NN) classifier to label a
query sample.

Table II reports the accuracy of the proposed method and
the baselines on four visual recognition tasks. Some observa-
tions can be made here. For example, while the Jeffery KL
divergence and the Burg Matrix divergence have better per-
formances than AIM, Stein, and LEM on the MSR-Action3D
data set, they fall behind on the UIUC data set. Our method,
in contrast, is able to learn the suitable distance for the task
in hand by exploiting the family of alpha–beta divergences.

Compared with SPD-DR [27], PSSSD achieves better
performances on all studied data sets, demonstrating the
power of encoding multiple discriminative manifolds instead
of one as done in SPD-DR. LEML [24] and α-CML [25]
learn a metric in the tangent space of the manifold. Though
featuring fast computations, working purely in a tangent plane
may lead to inaccurate modeling, as can be observed by the
performance of LEML and α-CML on the MSR-Action3D
and UIUC data sets.

For the MSR-Action3D data set, nonlinear kernel methods
such as CDL [10] and RSR [13] achieve 95.4% and 95.0%,
respectively, outperforming other baselines such as [24], [25],
and [27] . Interestingly, our proposed method, without relying
on nonlinear embeddings, obtains a better performance than
CDL and RSR on the MSR-Action3D data set.

C. Evaluation With Deep Features

We compare PSSSD with state-of-the-art deep methods
including VGG-16 [49], B-CNN [50], matrix power nor-
malization (MPN) [51], DeepO2P [52], compact bilinear
pooling (CBP) [53], low-rank bilinear pooling (LRBP) [54],
statistically motivated second-order pooling (SMSO) [48],
Lin et al. [55], and robust estimation of approximate infinite
dimensional Gaussian (RAID) [56] on DTD and aircraft data
set in Table III. In our method, we project the SPD representa-
tion to 32 low-dimensional manifolds (low-dimensional SPD
matrices are of size 4 × 4).

Our method outperforms all the baselines on the DTD data
set. For example, the SMSO method [48], which directly
projects an SPD matrix to a vector representation, yields an
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Fig. 2. Visualization of the sample distribution of the MSR-Action3D data set (colors correspond to categories). (a) Sample distribution before our metric
learning. (b) Low-dimensional SPD matrix distribution, where shapes indicate different low-dimensional SPD manifolds. (c) Sample distribution after our
metric learning. Best viewed in color.

TABLE III

ACCURACIES (%) ON THE DTD AND AIRCRAFT DATA SETS.
BEST RESULTS ARE HIGHLIGHTED IN BOLD

accuracy of 69.3%, 9.4% shy of PSSSD. As another example,
the work of Lin et al. [55], which aggregates convolutional fea-
tures into a kernel matrix, is outperformed by 6.5% by PSSSD.
On the aircraft data set, our method outperforms the B-CNN
method [50], which directly utilizes a fully connected layer
to classify SPD representations. On the downside, PSSSD
performs below state-of-the-art methods such as LRBP on the
aircraft data set. However, we note that we did not fine-tune
the VGG-16 and only trained our similarity-based model.
We believe that better results can be attained by fine-tuning of
the deep model.

D. Visualization

In this section, we select the MSR-Action3D data set for
the sample distribution visualization experiment, as shown
in Fig. 2 (best viewed on high-resolution display). There are
a total of 20 categories, and each category is represented by
one type of color in the figure. Inspired by the visualization
experience, combining more than one dimensionality reduction
method leads to a better visualization result. First, we utilize
MDS [57] to reduce SPD matrices to 200-D vectors, and
then principal component analysis (PCA) [58] is applied to
reduce the dimensionality to 40. Finally, the representations
are reduced to 2-D vectors via t-distributed stochastic neighbor
embedding (t-SNE) [59].

The original sample distribution is shown in Fig. 2(a).
We find that only a few categories have desirable distributions,

i.e., small intracategory distances and large intercategory dis-
tances, such as the “hand clap,” “two hand wave,” “side kick,”
“forward kick,” and “jogging” actions. Most categories have
poor distributions, such as “draw tick,” “draw circle, ” and
“draw x.” The three actions are almost-uniform mixing in the
2-D visualization figure.

The sample distribution after our metric learning is shown
in Fig. 2(c). Compared with Fig. 2(a), the better locality is
shown. Samples from the same category are more likely to
fall into the same local region. Most actions can be separated
in the 2-D visualization. Even “draw tick,” “draw circle,”
and “draw x” also show the locality to a certain extent.
By comparing Fig. 2(c) and (a), we find that after our metric
learning, all samples fill the whole 2-D figure instead of
locating at only a partial region of the figure.

Moreover, we visualize the low-dimensional SPD matrix
distribution in Fig. 2(b). In the figure, low-dimensional SPD
matrices on different low-dimensional SPD manifolds are
represented by different shapes, and low-dimensional SPD
matrices projected from the same category are represented
by the same color. Low-dimensional SPD matrices projected
from the same category are more likely to be neighbors,
demonstrating that the low-dimensionality manifold projec-
tion is helpful for seeking a more discriminative manifold
space. We also find that low-dimensional manifolds have
little relevance. Low-dimensional SPD matrices on the same
low-dimensional manifold are close; otherwise, they are far
apart. In addition, the low-dimensional manifolds have com-
plementarity among them. For example, “draw tick,” “draw
circle,” and “draw x” are three difficult actions to recognize.
In some low-dimensional manifolds, they cannot be separated,
while in the NO.1 low-dimensional manifold, they can be
separated.

E. Ablation

To evaluate the effectiveness of our set-to-set distance and
demonstrate our motivation, we conduct nine ablation exper-
iments on the MSR-Action3D and UIUC data sets. We first
constrain all (α, β) of alpha–beta divergences to (0, 0), (1, 0),
(1, 1), and (0.5, 0.5). The four (α, β) parameters correspond to
AIM, the Stein divergence, the Jeffrey KL divergence, and the
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Fig. 3. (a) Performance of different numbers of low-dimensional manifolds with a fixed matrix size. (b) Performance of different low-dimensional manifold
sizes with a fixed manifold number.

TABLE IV

ABLATION EXPERIMENTS ON MSR-ACTION3D AND UIUC DATA SETS.
BEST RESULTS ARE HIGHLIGHTED IN BOLD

Burg matrix divergence, respectively, as shown in Table I.
We also relax the constraint that all subdistance measures learn
a common (α, β) parameter. Then, we conduct experiments to
compare different subdistance integration approaches. We suc-
cessively constrain M as an identity matrix and a diago-
nal matrix. Through (15), the identity matrix M represents
that the visual information contributions are treated equally
for the SPD distance. The diagonal matrix M represents that
the visual information contributions are different and can be
learned, while the subdistance relationships have no contri-
bution to the SPD distance. We also evaluate the influence
of the relevance of visual information, i.e., the orthogonality
of multiple projection matrices Wk in (11). After eliminating
the constraints among Wk , the experimental configuration is
represented as “w/o W�

k W l = 0”. Finally, we try another
set-to-set distance, which is designed as the shortest distance
between low-dimensional SPD matrices. The ablation experi-
ment results are shown in Table IV.

In Table IV, the poor performance of fixing A shows that
visual information has different distributions and assigning
individual subdistances is necessary. In the action recognition
task, the Jeffrey KL divergence performs poorly and only
achieves 89.7%, 6.1% lower than using the proposed set-to-
set distance. The other three distance measures perform better
but are still 3% lower than PSSSD. If subdistances utilize the
same learnable (α, β) value, the distance measure can achieve
94.3%, an obvious improvement over the using a nonlearnable
subdistance measure, which demonstrates that for a specific
task, using a fixed SPD matrix distance measure may result
in nonoptimal performance. If subdistance measures learn
their own (α, β) values, the result is 95.8%. For the texture

TABLE V

TRAINING TIME (SECONDS) ON THE MSR-ACTION3D
AND UIUC DATA SETS

Fig. 4. Performance of only one low-dimensional manifold with varying
matrix sizes.

classification task, the performance of the first five ablation
experiments is similar to that of the action recognition task.

Fixing M also leads to inferior performance. When M is
fixed as a diagonal matrix, it performs better than M fixed as
an identity matrix, which shows that visual information has
different contributions. We also find that without the relation-
ships of visual information, it achieves 92.7% and 55.9% on
the two tasks, 3.1% and 9.9% lower, respectively, than our set-
to-set distance. Through these experimental results, we argue
that even low-dimensional SPD matrices are unrelated, and
the relationships of subdistances still contribute to the SPD
distance. Through the ablation experiments on A and M,
we demonstrate that the two parameters have different effects
on our set-to-set distance, and both of them are needed.

In the “w/o W�
k W l” experiment, the performance on the

two tasks is 94.6% and 60.8%, worse than PSSSD, show-
ing that the visual information relevance also influences
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Fig. 5. (a) Time consumption of different numbers of low-dimensional manifolds while the matrix size is fixed as 8. (b) Time consumption of different
low-dimensional manifold sizes while the manifold number is fixed as 8.

TABLE VI

TRAINING TIME (SECONDS) ON THE DTD AND AIRCRAFT DATA SETS

the distance. The performance of “the shortest distance” is
not good enough. As multiple types of visual information are
individual and one of them cannot be expressed by the others,
only considering the shortest subdistance is insufficient, and
other visual information is also helpful to the distance.

F. Efficiency

We compare the training and testing time of our method
with other baselines on the MSR-Action3D and UIUC
data sets. The performance is measured on using an Intel
i5-8250 1.80-GHz CPU (see Table V). Note that we
report the time to run 2000 iterations of our method
here.

Among AIM [17], LEM [18], Stein [19], Jeffery KL [33],
and Burg Matrix [20] divergences, AIM is slower than PSSSD,
Jeffery KL and Burg Matrix divergences achieve comparable
time with PSSSD, but our accuracy is much better. Our method
is faster compared with AIM-DR [27] which utilizes the
manifold projection and preserves the manifold structure as
well. In comparison to CDL [10], RSR [13], LEML [24],
and Stein-DR [27], PSSSD is slower. We note that CDL and
RSR are kernel-based methods, and LEML learns the metric
on a Euclidean space. Furthermore, the three methods do
not involve the Riemannian optimization. Stein-DR does not
need to implement the eigenvalue decomposition and matrix
inversion operations. That said, the higher accuracy of our
method justifies the extra time needed to learn the projections
and the metric.

Comparisons, in terms of training time, between our method
and a VGG-16 model on the DTD and aircraft data sets
are shown in Table VI. Interestingly, the time required to
train PSSSD is not very off (and sometimes even shorter)
than the training time of the VGG-16 model, while PSSSD
brings 18.6% and 13.7% improvement in accuracy, as shown
in Table III.

G. Dimensionality and Number of Submanifolds

In this section, we investigate the number m and the size p
of low-dimensional SPD matrices from the accuracy and time
consumption on the UIUC data set.

1) Accuracy Analysis: First, we fix the size of the
low-dimensional SPD matrices as 4, 8, and 16 and evalu-
ate different low-dimensional SPD manifold numbers from
1 to 18, where “Size=4” represents that the size of the
low-dimensional SPD matrices is 4 × 4. Due to the projection
matrix column full-rank constraint, when “Size=16,” the man-
ifold number must be smaller than 9. The results are shown
in Fig. 3(a). We divide the three lines into two stages, i.e., the
line rise and line stability. In the beginning, the accuracies
continue to improve with the increase in the manifold number,
then the lines tend to stabilize, and the accuracies stabilize
around 60%. As the discriminative visual information is too
small in the beginning stage, it is difficult to correctly classify
all samples. In the stable stage, the discriminative visual infor-
mation is sufficient, and the visual information redundancy
occurs. We find that even when there are few low-dimensional
matrices, PSSSD can still achieve state-of-the-art performance,
which also shows that the original SPD representation has
information redundancy.

Then, we test the performance of different low-dimensional
SPD matrix sizes. We fix the low-dimensional manifold num-
ber as 4, 8, and 16, and the size of the low-dimensional
matrices is changed from 1 to 18. The results are shown
in Fig. 3(b). The three lines in this figure have the same trend
as the evaluation of different low-dimensional SPD manifold
numbers shown in Fig. 3(a). In the line rise stage, with the
fixed matrix size, the larger the number of low-dimensional
manifolds is, the better this experimental configuration per-
forms. In the line stability stage, fewer manifolds perform
better, which contains less redundancy. When the number of
low-dimensional manifolds is fixed as 4 and the matrix size
is 18, we achieve the best performance, which is over 65%.
When the number of manifolds is fixed as 8, the best perfor-
mance is achieved when the matrix size is 12.

We conduct experiments to evaluate the performance when
the set-to-set distance measure reduces to an alpha–beta
divergence, i.e., there is only one low-dimensional manifold,
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TABLE VII

ACCURACY(%) FOR EACH LOW-DIMENSIONAL MANIFOLD ON THE UIUC DATA SET

Fig. 6. (a) Line of the training loss and the test loss to the training iteration. (b) Line of the test accuracy to the training iteration.

m = 1, and p varies from 2 to 128, as shown in Fig. 4. In the
beginning, as the size of the matrix increases, the performance
improves. When p is larger than 16, the performance reaches
a bottleneck, which shows that the matrix obtains less extra
useful information and more redundancy as the matrix size
increases. When p = 128, the model achieves the best perfor-
mance 55%, but it is still 5.8% lower than the model using
18 low-dimensional manifolds (as shown in Table II), showing
that using only one manifold is insufficient. Discovering and
analyzing different types of visual information via multiple
manifolds is helpful for obtaining a robust SPD distance
measure.

2) Time Consumption Analysis: The number m of
low-dimensional manifolds and the size p of low-dimensional
matrices are two important hyperparameters for time consump-
tion. We conduct experiments to evaluate the time consump-
tion with varying m and p on the UIUC data set, as shown
in Fig. 5(a) and (b), respectively. In Fig. 5(a), p is fixed as
8, and in Fig. 5(b), m is fixed as 8. As m or p increases,
the time consumption also increases. In Fig. 5(a), the training
time consumption increases from 127.9 to 583.8 s, and the
testing time consumption increases from 3.1 to 18.3 s. The
reported time consumption 583.8 and 18.3 s in Table V is
our method’s longest time, as shown in Fig. 5(a). In Fig. 5(b),
the training time consumption increases from 148.9 to 708.3 s,
and the testing time consumption increases from 4.0 to 29.9 s.
In our experiment, the trends of training time and testing
time consumption do not strictly conform to the computational
complexity analyses, as MATLAB implements parallel

computing on many matrix operations, such as matrix
multiplication.

H. Low-Dimensional Manifold Effect

In this section, we conduct experiments to show differ-
ent effects of multiple individual low-dimensional manifolds.
After training our model on the UIUC data set, where
the number of low-dimensional manifolds is 18 and the
size of low-dimensional matrices is 8 × 8, we evaluate the
classification performance by each individual subdistance,
as shown in Table VII. In Table VII, there are a total of 18
low-dimensional manifolds, “No.x” represents the subdistance
on the x th low-dimensional manifold, and x varies from 1 to
18. “Total” means the accuracy on the whole data set. “C-y”
indicates the accuracy of the yth category, and y varies from
1 to 18.

We make the following observations.
1) Among the 18 categories, categories 4, 5, 9, and 10 are

to distinguish, and categories 1, 6, and 13 are easy to
distinguish.

2) Low-dimensional manifolds are complementary, and
they focus on different aspects of the task. For exam-
ple, manifold 2 is good at category 1 and performs
poorly on category 15, while the manifold 16 is the
contrary.

3) Integrating different low-dimensional subdistances is
useful. In most categories, the performance of integrat-
ing all subdistances is better than that of the individual
manifold, such as in categories 2 and 4. PSSSD can
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discover discriminative visual information in the SPD
representation and considers the visual information sep-
arately for similarity-based classification.

I. Convergence Analyses

To better understand the behavior of our method, we plotted
the training/testing loss and accuracy curves for the task
of texture classification in Fig. 6. We set the size and the
number of low-dimensional manifolds as 8 × 8 and 12,
respectively. Updating the parameters of the model with SGD
via minibatches results in fluctuations in the loss and accu-
racy. However and trendwise, we observe that both measures
(loss/accuracy) are improving over the course of training.

VIII. CONCLUSION

In this article, we have proposed a novel distance measure
for similarity-based classification on SPD manifolds. In our
method, we observed that complementary information can
be captured by the lower dimensional manifolds, yielding a
robust similarity-based classifier. Thus, considering different
visual information and applying multiple individual subdis-
tance measures are necessary. Extensive experiments on four
visual recognition tasks showed that our method outperformed
existing state-of-the-art methods on the SPD manifold. As a
future work, we will explore deep learning architectures that
can accommodate our design, given the fact that our frame-
work is fully differentiable with respect to its parameters and
inputs.
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