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Adversarial 3D Convolutional Auto-Encoder for
Abnormal Event Detection in Videos

Che Sun , Student Member, IEEE, Yunde Jia , Member, IEEE, Hao Song , and Yuwei Wu , Member, IEEE

Abstract—Abnormal event detection aims to identify the events
that deviate from expected normal patterns. Existing methods
usually extract normal spatio-temporal patterns of appearance and
motion in a separate manner, which ignores low-level correlations
between appearance and motion patterns and may fall short of
capturing fine-grained spatio-temporal patterns. In this paper,
we propose to simultaneously learn appearance and motion to
obtain fine-grained spatio-temporal patterns. To this end, we
present an adversarial 3D convolutional auto-encoder to learn the
normal spatio-temporal patterns and then identify abnormal events
by diverging them from the learned normal patterns in videos.
The encoder captures the low-level correlations between spatial
and temporal dimensions of videos, and generates distinctive
features representing visual spatio-temporal information. The
decoder reconstrucccts the original video from the encoded features
representing by 3D de-convolutions and learns the normal spatio-
temporal patterns in an unsupervised manner. We introduce the
denoising reconstruction error and adversarial learning strategy to
train the 3D convolutional auto-encoder to implicitly learn accurate
data distributions that are considered normal patterns, which
benefits enhancing the reconstruction ability of the auto-encoder
to discriminate abnormal events. Both the theoretical analysis
and the extensive experiments on four publicly available datasets
demonstrate the effectiveness of our method.

Index Terms—Adversarial 3D convolutional auto-encoder,
normal patterns, adversarial learning, abnormal event detection.

I. INTRODUCTION

ABNORMAL event detection in videos has received much
attention from both academia and industry [1]–[3]. De-

tecting abnormal events is still a challenging problem due to
diverse events, lack of training data, and highly contextual def-
inition of abnormal events in videos. Numerous efforts have
devoted to dealing with these issues [4], [5]. A feasible solu-
tion is to learn normal patterns from training data and identify
abnormal events deviated from the normal patterns [6], [7]. Re-
cently, with the success of deep learning methods on various
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visual tasks [8]–[10], many researchers pay attention to learn-
ing normal spatio-temporal patterns via deep auto-encoders,
such as fully connected auto-encoders [11], 2D convolutional
auto-encoders [12], [13], convolutional long short-term mem-
ory (LSTM) auto-encoders [14], and so on. Most of them learn
normal spatio-temporal patterns of appearance and motion sep-
arately. These methods, however, fail to obtain the fine-grained
spatio-temporal patterns that usually occur at short intervals
in local regions, limiting the improvement of detection perfor-
mance.

In this paper, we propose a novel method that learns ap-
pearance and motion simultaneously to obtain fine-grained
spatio-temporal patterns by performing information correla-
tions on low-level pixel spaces. We build a 3D convolutional
auto-encoder to learn the spatio-temporal patterns and train the
auto-encoder by using the denoising reconstruction error and
adversarial learning strategy. Specifically, given a video, the en-
coder of the 3D convolutional auto-encoder that consists of 3D
convolutional layers captures the low-level appearance and mo-
tion simultaneously. It encodes correlations between spatial and
temporal dimensions of videos into distinctive features repre-
senting visual spatio-temporal information. The decoder that
consists of 3D de-convolution layers reconstructs the video from
the learned features directly. Different from auto-encoders with
recursive structures (e.g., LSTM [14]) which over-emphasize
learning of temporal information [15], our method takes the
spatial and temporal information into account simultaneously.
The joint modeling method is well-suited for learning the subtle
spatio-temporal patterns.

We introduce the denoising reconstruction error and adversar-
ial learning strategy to enhance the reconstruction ability of the
auto-encoder for learning better normal patterns. Specifically,
we use the denoising reconstruction error to force the 3D con-
volutional auto-encoder to implicitly learn data distributions of
normal data that are considered to be the normal patterns. Dur-
ing the process, some higher-order terms are omitted, which may
bring extra errors. Thus, we introduce the adversarial learning
strategy based on generative adversarial networks (GANs) [16]
to train our auto-encoder using an extra discriminator to learn
more accurate data distributions. The discriminator is designed
to distinguish the reconstructed video from the original input
video. The 3D convolutional auto-encoder is treated as the gen-
erator, which aims at reconstructing realistic videos to confuse
the discriminator. Compared with the traditional training method
of auto-encoders using denoising reconstruction errors [17], the
well-trained discriminator using adversarial learning strategy
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without variational lower bound will help the 3D convolutional
auto-encoder perfectly recover more accurate distributions.

We give a rigorous theoretical analysis of the effectiveness of
our method in abnormal event detection. Experiments on four
challenging datasets demonstrate that our method can achieve
promising results compared with state-of-the-art methods.

The contributions of this paper are summarized as follows:
� We propose a novel anomaly detection method that learns

appearance and motion simultaneously to obtain fine-
grained spatio-temporal patterns. Our method performs in-
formation correlations on low-level pixel spaces, which can
be helpful to distinguish abnormal events in videos.

� We build a 3D convolutional auto-encoder to learn fine-
grained spatio-temporal patterns directly from both spa-
tial and temporal dimensions to capture subtle appearance
and motion changes. We introduce denoising reconstruc-
tion errors and the adversarial learning strategy to help the
auto-encoder learn robust normal patterns.

� We conduct a rigorous theoretical analysis of the effec-
tiveness of integrating denoising reconstruction errors with
adversarial learning to learn normal patterns from the per-
spective of data distributions.

The rest of this paper is organized as follows. In section II, we
review related work of unsupervised abnormal event detection
in videos. Section III presents the framework of simultaneously
learning appearance patterns and motion patterns. Section IV
presents experimental settings and evaluation results. This paper
is concluded in Section V.

II. RELATED WORK

There has been much work on abnormal event detection in
surveillance videos [5], [12], [18]. Since the abnormal events are
of infrequency and ambiguity [19], [20], most existing methods
adopt an unsupervised learning scheme to learn normal patterns.
In this paper, we also focus on the unsupervised abnormal event
detection task.

Deep learning has been successfully applied to abnormal
event detection in videos [21]–[23]. The deep methods of abnor-
mal event detection can be roughly divided into classification-
based methods [13], [24], [25] and reconstruction-based meth-
ods [12], [26], [27]. Classification-based methods treat abnormal
event detection as a classification problem, and the classification
task is performed with deep features. Zhou et al. [24] built a
spatio-temporal convolutional neural network (spatio-temporal
CNN) to identify abnormal events. Ionescu et al. [13] formu-
lated the abnormal event detection task as a multi-class problem
based on object detection results.

Reconstruction-based methods learn normal patterns and dis-
tinguish abnormal events through reconstruction errors. Ben-
efiting from the promising representation capabilities of auto-
encoders [17], [28], [29], many methods use auto-encoders to
reconstruct the input video sequence, and distinguish abnormal
events through reconstruction errors. Hasan et al. [12] used a
fully connected auto-encoder and an end-to-end 2D convolu-
tional auto-encoder to learn regular dynamics respectively and
identify irregularity far from the regular dynamics. Their work

stacks multiple frames into different channels, without effec-
tively modeling the temporal relationship between sequential
frames. Chong and Tay [14] employed a spatio-temporal ar-
chitecture for abnormal event detection, which consists of two
components, i.e., one for spatial feature representation and the
other for learning the temporal evolution. Since this method
separately models spatio-temporal relationships, it is ineffective
to represent the location-variant relationships, e.g., rotation and
scaling. Medel and Savakis [30] introduced a composite convo-
lutional LSTM network to predict the evolution of a video se-
quence, and detected anomalous video segments using a regular-
ity evaluation algorithm. Most of these methods use 2D convo-
lutional layers [12] or 2D convolutional LSTM layers [14], [30]
to formulate auto-encoders for abnormal event detection. These
methods, however, do not fully exploit low-level appearance and
motion cues, which restricts the improvement of abnormal de-
tection performance. Different from these reconstruction-based
methods, our method learns the intrinsic normal spatio-temporal
patterns by simultaneously taking the spatial and temporal infor-
mation into account, which is better suitable for learning normal
appearance-changing and motion-changing patterns for abnor-
mal event detection in videos.

Recently, due to the good performance of GANs [16], some
methods employ adversarial learning in abnormal event detec-
tion [11], [31], [32]. Ravanbakhsh et al. [11] proposed a re-
construction model as a generator inspired by the conditional
GANs [33], and used the reconstruction error to differentiate nor-
mal and abnormal events. Similar to the work of [11], Sabokrou
et al. [31] introduced an adversarial model and used both gen-
erator and discriminator to detect and fine-segment abnormal
events. Schlegl et al. [34] learned a manifold of normal objects
and calculated the anomaly scores based on the mapping from
image space to a latent space using GANs. We use the adver-
sarial learning to directly guide auto-encoders to learn normal
patterns from the perspective of data distributions. We use de-
noising errors to force auto-encoders to implicitly model data
distributions. The adversarial learning without variational lower
bound can reduce extra errors caused by omitted higher-order
terms of denoising reconstruction errors, thereby helping the
auto-encoders learn more accurate data distributions (i.e., better
normal patterns) to improve abnormal detection performance.

III. METHOD

In this paper, we introduce an abnormal event detection
method of simultaneously learning normal appearance patterns
and motion patterns to learn robust normal spatio-temporal pat-
terns. As shown in Fig. 1, we build an adversarial 3D con-
volutional auto-encoder to encode normal patterns of video
sequences with a small reconstruction error. The adversarial
learning with an extra discriminator helps the 3D convolution
auto-encoder learn normal patterns better and distinguish normal
and abnormal events without any supervised information. The
adversarial 3D convolutional auto-encoder is able to implicitly
learn the characteristics that reflect the accurate distributions.
The intuition is that the implicit distributions are considered the
normal patterns, which can be used to identify abnormal events
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Fig. 1. Overview of our method. A video corrupted with random Gaussian noise is input to the 3D convolutional auto-encoder. The auto-encoder is utilized
to learn normal patterns by the reconstruction loss. It is also treated as a generator competing with the discriminator. The adversarial loss with respect to the
discriminator is introduced to help the auto-encoder learn the accurate normal patterns.

deviating from the learned normal pattern. Moreover, we add
random Gaussian noise η ∼ N (0, σ2I) to the input video to
prevent the auto-encoder from learning an identity function.

A. Problem Statement

Given a video S, conventional reconstruction-based methods
use a reconstruction model (e.g., an auto-encoder) by only us-
ing normal videos, and then use the reconstruction error e to
discriminate abnormal events. e is calculated by

e = ‖S −R(S)‖2, (1)

where R(·) denotes the reconstruction model. The intuition is
that the reconstruction model trained by normal events is able to
reconstruct normal events well but fails to reconstruct abnormal
events. Therefore, these methods learn the normal patterns and
detect abnormal events through the reconstruction error e.

In this paper, we learn the intrinsic normal spatio-temporal
patterns by simultaneously learning appearance patterns and
motion patterns. To learn the normal patterns, we build a 3D
convolutional auto-encoder as the reconstruction model

Rθ(S) = Gθ2 (Fθ1(S)) , (2)

where Fθ1(·) denotes the 3D convolutional encoder with the
parameter θ1, Gθ2(·) stands for the 3D convolutional decoder
with the parameter θ2, and Rθ(·) represents the reconstruction
model with the parameter θ = {θ1, θ2}. The 3D convolutional
encoder Fθ1(·) learns the low-level correlations between spatial
and temporal dimensions of videos, and generates distinctive
features representing visual spatio-temporal information. The
3D de-convolutional decoderGθ2(·) reconstructs the video from
the learned features directly. The 3D convolutional auto-encoder
takes the spatial and temporal information into account simul-
taneously, which is well-suited for learning the intrinsic normal
spatio-temporal patterns.

To solve the optimal parameter θ of Rθ(·), we use the de-
noising reconstruction error [17] to train the 3D convolutional
auto-encoder. The auto-encoder implicitly learns the normal

data distributions that are considered normal patterns for de-
tecting abnormal events. Specifically, we add random Gaus-
sian noise η ∼ N (0, σ2I) to the input video S to generate the
corrupted input video S̃ = S + η. Then the 3D convolutional
auto-encoder reconstructs the corrupted video S̃, and outputs
the reconstructed oneR(S̃). According to the theory in the work
of Alain and Bengio [17], the optimal output of the 3D convo-
lutional auto-encoder with the denoising reconstruction error is
calculated in the following theorem.

Theorem 1: Assume that p(S) represents the probability den-
sity function of the training (normal) data S. The optimal output
of the 3D convolutional auto-encoder trained by the denoising
reconstruction error is

R∗θ(S̃) =
Eη

[
p(S̃ − η)(S̃ − η)

]
Eη

[
p
(
S̃ − η

)] ,

s.t. For ∀x, p(x) �= 0. (3)

The proof of Theorem 1 is given in the Appendix. From Eq. (3),
the optimal output R∗θ(S̃) refers to a kind of weighted average
around the data point S̃. If the noise level is high (the stan-
dard deviation σ of the Gaussian noise is set to a large value),
the output R∗θ(S̃) will produce blurry results from its neighbors
with Gaussian noise. Thus, the reconstruction error Rθ(S̃)− S
with high level noise cannot be directly used to discriminate ab-
normal events. On the contrary, a small value of σ should be
selected, and we can calculate the optimal output of the trained
3D convolutional auto-encoder in Theorem 2.

Theorem 2: Assume that p(S) represents the probability den-
sity function of the training data S. When the noise level σ
asymptotically approaches to 0 (σ → 0), the optimal output is

R∗θ(S) = S + σ2 ∂ log p(S)

∂S
+ o(σ2). (4)

The proof of Theorem 2 is found in the Appendix. From Eq. (4),
we find that the reconstruction error R∗θ(S)− S ∝ log∂p(S)

∂S
defines a local vector field for the trained 3D convolutional
auto-encoder, and the vector field points towards the nearest

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 14,2022 at 10:28:10 UTC from IEEE Xplore.  Restrictions apply. 



SUN et al.: ADVERSARIAL 3D CONVOLUTIONAL AUTO-ENCODER FOR ABNORMAL EVENT DETECTION IN VIDEOS 3295

high-density point on the data manifold. Since we train the 3D
convolutional auto-encoder only with normal videos, the normal
samplesSn are dense to the distribution p(Sn), and the abnormal
ones Sa are sparse (or even zero). Therefore, we will get larger
reconstruction errors of abnormal samples than that of normal
ones. In other words, the reconstruction model trained by the
denoising reconstruction error learns the normal patterns that
implicitly capture the characteristics of the data distributions.
This proves that abnormal events can be effectively detected
through the reconstruction error R∗θ(S)− S.

Furthermore, to better recover the data distribution p(S), we
introduce the adversarial learning strategy [16] with an extra
discriminator to train the 3D convolutional auto-encoder. The
auto-encoder is treated as the generator. According to the the-
ory in [16], the well-trained discriminator using the adversarial
learning strategy without variational lower bound will help the
3D convolutional auto-encoder perfectly recover a more accu-
rate distribution p(S) of normal data.

Theorem 3: Let p(S) be the data distribution of normal events
and pr(R

∗
θ(S̃)) be the distribution of the reconstructed data,

where R∗θ(S̃) denotes the optimal output of the 3D convolu-
tional auto-encoder in Eq. (4). For simplicity, we assume that
Dφ(·) represents the mapping of the discriminator, where φ is
the parameter of the discriminator. The global optimal solution
of the discriminator D∗φ is

D∗φ(S) =
p(S)

p(S) + pr(R∗θ(S̃))
. (5)

With the optimal discriminatorD∗φ, the adversarial loss is equiv-
alent to

C(Rθ(S̃)) = − log 4 + 2× JSD
(
p(S)‖pr(R∗θ(S̃))

)
, (6)

where JSD represents Jensen-Shannon divergence [35]. Since
the JSD is non-negative and JSD(p‖q) = 0⇔ p = q, the op-
timal R∗ is obtained when pr(R

∗
θ(S̃)) = p(S).

We refer the readers to the work of Goodfellow et al. [16] for a
detailed proof of Theorem 3. Obviously, the adversarial learning
forces the reconstructed samples R∗θ(S̃) of the auto-encoder to
follow the true data distributionp(S). From Theorem 1, we know
that the optimal output R∗θ(S̃) without the adversarial learning
refers to a kind of weighted average around the data point S̃.
The adversarial learning in Theorem 3 guarantees the output
R∗θ(S̃) ∼ pr(R

∗
θ(S̃)) = p(S), which makes the reconstructed

output R∗θ(S̃) of normal data more authentic and indistinguish-
able from the raw data S. For any given abnormal sample Sa

that does not follow p(S), the auto-encoder trained by the ad-
versarial learning strategy may not guarantee to map R∗θ(Sa) to
p(S), which will make its reconstruction error larger.

B. Network Architecture

We build the adversarial 3D convolutional auto-encoder as
the reconstruction model Rθ to learn the intrinsic normal spatio-
temporal patterns. As depicted in Fig. 1, the adversarial 3D con-
volutional auto-encoder consists of three subnetworks: the 3D
convolutional encoder Fθ1 , the 3D convolutional decoder Gθ2

and the discriminator Dφ.

3D Convolutional Encoder: To reconstruct an input video
at the pixel level, motivated by 3D convolutional neural net-
works [36], several 3D convolutional layers and 3D max-pooling
layers are used to encode spatio-temporal structures of the input
video. The set of learnable parameters of the encoder is rep-
resented as θ1 that requires to be solved. The 3D convolution
operation maintains the spatio-temporal relationships between
pixels by learning video features using small cuboids of the input
video. The low-level appearance and motion information in the
cuboids is extracted by the 3D convolutional encoder simulta-
neously. With several spatio-temporal convolutional layers, the
input video can be effectively encoded into informative feature
maps. Moreover, the 3D max-pooling layer is used for transla-
tion invariance, rotation invariance, and scale invariance. The
3D encoder composed of both 3D convolutional layers and 3D
max-pooling layers produces the informative feature maps with
indispensable spatio-tempral information for reconstruction.

3D De-Convolutional Decoder: The decoder consists of 3D
de-convolutional layers and 3D un-pooling layers, and has the
symmetrical structure with the encoder. θ2 denotes the set of
learnable parameters of the decoder. The 3D de-convolution uti-
lizes 3D convolution-like operations to get the no-sparse cuboid.
After de-convolution, the cuboid is larger than the original in-
put video when the filter is multiplied by the input video at the
boundary, so we follow the operation in the work of Hasan et
al. [12], cropping out the boundary of the output to keep the
same size of the previous layer. The 3D de-convolutional lay-
ers in the decoder directly reconstruct the input video with the
learned 3D filters for modeling the normal appearance patterns
and motion patterns simultaneously.

In the encoding phase, 3D max-pooling layers are adopted
for the purpose of invariance, and they may lose some spatio-
temporal information. To reconstruct the input video, the corre-
sponding 3D un-pooling layers are applied. The 3D un-pooling
is the reverse operation of the 3D pooling and restores the orig-
inal size of the features maps. The 3D un-pooling is formulated
in a similar way to the 2D un-pooling [37], which records the
locations of maximum input selected during a 3D max-pooling
operation. The recorded locations are used to place each input
back to the original location.

The structure of the 3D convolutional auto-encoder is illus-
trated in Fig. 2. Following the C3D net [36], all 3D convolution
kernels are set to 3× 3× 3 with stride 1 in both spatial and
temporal dimensions, except that the kernel of the first convolu-
tional layer is 1× 2× 2. All pooling kernels are set to 2× 2× 2,
except that the kernel of the first pooling layer is 1× 2× 2.
The decoder has a symmetrical structure of the encoder. The
dashed lines refer to the locations of recorded maximum input
in each sliding window during the max-pooling, which are used
for un-pooling.

Discriminator: The adversarial learning strategy is realized
through two competing neural networks: a generator and a
discriminator. They compete with each other in a two-player
game, where the generator is used to produce samples as re-
alistic as possible to confuse the discriminator. The discrimi-
nator computes the probability that a sample comes from true
observations.
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Fig. 2. Illustration of the network structure. The encoder consists of five 3D convolutional layers and four 3D max-pooling layers. Each convolutional layer is
followed by a Batch Normalization (BN) layer and a Tanh activation function (Tanh) layer. The decoder has a symmetrical structure of the encoder. The dashed
lines refer to the locations of recorded maximum input in each sliding window during the max-pooling, which are used for un-pooling. The discriminator has three
3D convolutional layers and three 3D max-pooling layers, followed by two fully connected (FC) layers.

Specifically, the generator of our network is constructed based
on the 3D convolutional auto-encoder Rθ(·), which takes the
corrupted video S̃ as the input. The discriminator Dφ(·) con-
sisting of several 3D convolutional layers aims to distinguish
whether the video is true or generated, where φ stands for all
learnable parameters of the discriminator. The structure of the
discriminator is exhibited in Fig. 2, where “FC” means a fully
connected layer. The inputs to the discriminator are the original
input video S and the reconstructed video Rθ(S). The output of
the discriminator is the probability that the input video comes
from true observations.

C. Optimization Objective

In order to train the adversarial 3D convolutional auto-
encoder, a denoising reconstruction loss and an adversarial loss
are introduced. The denoising reconstruction loss is based on
the Euclidean distance between the input video and the recon-
structed video,

Lrec = ES

[
‖Rθ(S + η)− S‖2

]
, (7)

whereS andRθ(S + η) indicate the original input video and the
corresponding output video, respectively. E is the empirical esti-
mation of the expected value of the probability, which is realized
by sampling from training data. Rθ(·) denotes the 3D convolu-
tional auto-encoder with the parameter θ, and η ∼ N (0, σ2I)
represents the isotropic Gaussian noise to partly corrupt the in-
put video.

The adversarial loss Ladv is defined as

Ladv = min
θ

max
φ

(
ES [log (Dφ(S))]

+ ES

[
log
(
Dφ(Rθ(S + η))

)])
, (8)

where Dφ(·) denotes the discriminator with the parameter φ.
We combine the denoising reconstruction loss Lrec and the

adversarial loss Ladv to solve the optimal parameter θ of the 3D
convolutional auto-encoder Rθ(·), and arrive at the following
objective function

LR = Lrec + λLadv, (9)

where λ is the trade-off parameter. When we train Dφ, we use
the loss function

LD = Ladv. (10)

Following [16], [38], [39], we train θ by using the gradient
descent method of−∇θ(LR), and updateφ by using the gradient
ascent method of +∇φ(LD). The gradient of θ is calculated by

∇θ(LR) =
∂Lrec

∂θ
+ λ

∂Ladv

∂θ

= ES

[
2(Rθ(S + η)− S)

∂Rθ(S + η)

∂θ

+
λ

Dφ(Rθ(s+ η))

∂Dφ(Rθ(s+ η))

∂Rθ(S + η)

× ∂Rθ(S + η)

∂θ

]
, (11)

where ∂Dφ(Rθ(s+η))
∂Rθ(S+η) denotes the partial derivative of the output

of the discriminator Dφ(·) relative to its input Rθ(S + η), and
∂Rθ(S+η)

∂θ represents the partial derivative of the output of the
auto-encoderRθ(S + η) relative to the parameter θ. We refer the
readers to [40] for the detailed calculation process of gradients
for convolutional networks.

The gradient of φ is calculated by

∇φ(LD) = ES

[
1

Dφ(S)

∂Dφ(S)

∂φ

]

+ ES

[
1

Dφ(Rθ(S + η))

∂Dφ(Rθ(S + η))

∂φ

]
,

(12)

where ∂Dφ(S)
∂φ represents the partial derivative of the output

of the discriminator ∂Dφ(S) relative to the parameter φ, and
∂Dφ(Rθ(S+η))

∂φ denotes the partial derivative of the output of the
discriminator Dφ(Rθ(S + η)) relative to the parameter φ.

We update the parameters iteratively using the calculated gra-
dients, and the adversarial learning algorithm of our method is
summarized in Algorithm 1.
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Fig. 3. Training loss curves on the ShanghaiTech dataset. (a) Reconstruction
loss Lrec; (b) Adversarial loss Ladv.

Algorithm 1: The Adversarial Learning Algorithm of Our
Method.
Input: Training videos {S1, S2, . . . , SN};
Output: The parameters {θ, φ};
1: Initialize the parameters {θ, φ};
2: for iteration number do
3: Sample a batch of training data and corrupt each

sample Si with random Gaussian noise
ηi ∼ N (0, σ2I) independently: Si + ηi;

4: Calculate the output of the 3D convolutional
auto-encoder: Ŝ = Rθ(S + η);

5: Calculate the loss Lrec, Ladv;
6: Update {θ, φ} using Stochastic Gradient:

θ ← −∇θ(LR),

φ← +∇φ(LD);

7: return The parameters {θ, φ}.

We use Algorithm 1 to train our network, and show the training
loss curves of the reconstruction loss and the adversarial loss on
the ShanghaiTech dataset in Fig. 3. We find that the reconstruc-
tion loss quickly converges to a relatively small value. The aver-
age values of adversarial loss fluctuate at 2 ln 2, which means the
discriminator is fairly confused between reconstructed videos
and input videos.

D. Anomaly Score

In the testing procedure, with one forward pass, the average
reconstruction error et of all the pixel values in the frame t
is computed by the Euclidean distance between the input video
S ∈ RT×W×H and the reconstructed videoR∗θ(S) ∈ RT×W×H ,
where T is the number of frames in a video, H and W are the
height and width of the frame. The reconstruction error of the
t-th frame is calculated by

et =
1

W ×H

W∑
i=1

H∑
j=1

∥∥∥R∗θ(S)[t, i, j]− S[t, i, j]
∥∥∥2, (13)

where S[t, i, j] represents the pixel value at the position [i, j] in
the t-th frame of the video S. It should be noted that similar to
the denoising auto-encoder [41], we do not add Gaussian noise
when testing. Then the calculated Euclidean distances of each

frame are normalized to the range of [0,1) and the abnormal
events are detected with a larger anomaly score. The anomaly
score st of the frame t is given by

st =
et −mint et
maxt et

, (14)

where mint et is calculated by selecting the minimum recon-
struction error among all frames in a video and maxt et denotes
the maximum frame-level reconstruction error in a video.

To detect abnormal events according to anomaly scores, we
select the local maximum in the time series of anomaly scores in
a video. Specifically, we use the persistence1D algorithm [42] to
identify the meaningful local maximum and span the region with
a fixed temporal window. We follow the work of [12] to group
nearby overlapped local maximum regions to obtain the final
abnormal temporal regions, where abnormal events are localized
into the temporal regions.

IV. EXPERIMENTS

A. Datasets

We evaluate our method on four benchmark datasets: the Sub-
way [43], UCSD [44], Avenue [45], and ShanghaiTech [46]
datasets. All the training videos in the experiments consist only
of normal events.

The Subway dataset contains two scenarios: the entrance (1
hour 36 minutes with 144249 frames) and exit (43 minutes with
64900 frames) gates. The types of abnormal events are walking
in the wrong direction, no payment, loitering, irregular interac-
tions between people, and miscellaneous.

The UCSD dataset consists of two sub-datasets: Ped1 and
Ped2, which records the pedestrian walkways. The abnormal
events of these two datasets include carts, cars, person skating,
bicycling among pedestrians, etc.

The Avenue dataset has 16 training and 21 testing videos with
35240 frames, totally. Each video lasts about 2 minutes long. The
abnormal events are running, walking in opposite directions,
throwing objects, loitering, etc.

The ShanghaiTech dataset contains 13 scenes with complex
light conditions and various viewpoints. This dataset has 130
abnormal events and over 270,000 training frames.

B. Evaluation Metric

We apply the Receiver Operating Characteristic (ROC) by
gradually changing the threshold of anomaly scores. Then we
calculate the corresponding Area Under Curve (AUC↑) as the
evaluation metric, which is commonly used in abnormal event
detection. Moreover, the Equal Error Rate (EER↓) [12] is in-
troduced to evaluate the equal probability of miss-classifying a
positive or negative sample in the ROC curve. We evaluate our
method based on the frame level. Besides, we select the suitable
threshold of the anomaly score to detect abnormal events and
evaluate our method with the event counts. We count the number
of detected abnormal events (True Positives ↑) and the number
of detected non-abnormal events (false alarm ↓) for evaluation.
Here, ↑ implies that higher scores represent better performance,
and ↓ indicates that lower is better.
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TABLE I
ABNORMAL EVENT DETECTION RESULTS IN TERMS OF FRAME-LEVEL

AUC AND EER ON THE AVENUE DATASET

TABLE II
ABNORMAL EVENT DETECTION RESULTS IN TERMS OF FRAME-LEVEL

AUC AND EER ON THE UCSD DATASET

TABLE III
ABNORMAL EVENT DETECTION RESULTS IN TERMS OF FRAME-LEVEL

AUC AND EER ON THE SUBWAY DATASET

C. Implementation

We first extract frames of gray images from videos and resize
them to 224× 224. Then we normalize the images. The pixel
values of each image are subtracted from its global mean image
calculated by averaging the pixel values of each frame in the
training set. We follow the data augmentation algorithm in [12]
to generate videos containing 16 frames for training and testing.
We set the standard deviation σ of Gaussian noise to 0.005 and
0 during training and testing, respectively.

In the 3D convolutional auto-encoder, a Batch Normalization
(BN) [51] layer and a Tanh activation layer follow each convo-
lutional or de-convolutional layer, except for the last layer of the
decoder. The discriminator is constructed with several 3D con-
volutional layers and fully connected layers, without any BN
layers. The auto-encoder and the discriminator are both trained
with RMSprop optimizer with 0.0002 learning rate and other
default parameters, where we use the PyTorch toolkit [52] to
implement the proposed network.

D. Comparisons With Existing Methods

Tables I, II, III and IV show the quantitative comparisons
of our method with several state-of-the-art methods on four

TABLE IV
ABNORMAL EVENT DETECTION RESULTS IN TERMS OF FRAME-LEVEL

AUC ON THE SHANGHAITECH DATASET

datasets regarding the AUC and the EER. The performance of
the compared methods is taken from the original papers. Among
these works, some of them are not evaluated on all of these four
datasets [49], [53], and several methods do not report the result
of the EER [46], [49].

1) Results on the Avenue Dataset: From Table I, we can see
that our method outperforms all existing methods on both the
AUC and EER evaluations in the Avenue dataset. The perfor-
mances of existing state-of-the-art methods are shown in Table I,
where Liu et al. [49], Wang et al. [6] and Morais et al. [48]
achieve the AUC of 84.9%, 85.3%, and 86.4%, respectively.
In comparison, our method gains a relatively significant im-
provement of 2.6% on the AUC evaluation compared with the
state-of-the-art method [48] and an improvement of 2.5% on the
EER evaluation, which verifies that our method is effective and
robust.

2) Results on the UCSD Dataset: Table II reports experiment
results on the UCSD dataset. Our method performs better than
most existing methods except the method in [11], because Ra-
vanbakhsh et al. [11] use both RGB images and optical-flow
images as the input, while we only use RGB images as input.
It is noted that the work of [11] also reports the AUC score
of 84.1% when only using RGB images on the Ped1 dataset,
and we achieve the AUC score of 90.2% that is 6.1% higher
than their work. This can verify the effectiveness of our method
when only using RGB as the input. Furthermore, we investigate
the improvement brought by optical-flow images in the later
section.

3) Results on the Subway Dataset: Table III compares eval-
uations of AUC and EER between our method and other state-
of-the-art methods on the Subway dataset. We observe that our
method obtains the best results on the Subway Exit dataset. Al-
though our method achieves less AUC of 90.2% on the Subway
Entrance dataset compared with [12], our method significantly
outperforms the work of [12] on the Subway Exit dataset, where
the AUC evaluation has increased from 80.7% to 94.6% with a
gain of 13.9%. From the overall AUC performance, our method
also outperforms the state-of-the-art methods [12], [14], with
significant gains of 5.2% and 3.3% respectively.

4) Results on the ShanghaiTech Dataset: Table IV presents
the evaluation of our method on the ShanghaiTech Dataset. The
ShanghaiTech dataset has complex scenes and various actions,
which are recognized challenges of abnormal event detection.
Our method performs best with the grains of 1.2% compared
with the state-of-the-art method [48], which clearly validates
the effectiveness and robustness of our method.
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TABLE V
THE AUC AND EER RESULTS OF DIFFERENT COMPONENTS OF THE ADVERSARIAL 3D CONVOLUTIONAL AUTO-ENCODER ON THE FOUR PUBLIC DATASETS

E. More Evaluation of the Proposed Method

1) Ablation Study: Table V shows the contributions of differ-
ent components in our method. “w/o 3D convolution” stands for
replacing 3D convolutional layers and 3D pooling layers with 2D
convolutional layers and 2D pooling layers, respectively, where
temporal frames are stacked into the dimensions of channels.
“w/o 3D pooling” represents replacing the 3D pooling opera-
tions with 2D pooling operations, where all sliding windows
are set to 1× 2× 2. “w/o GAN” refers to training the 3D con-
volutional auto-encoder without the adversarial learning strat-
egy. “w/o recording locations” means that, during un-pooling,
we put the input response values into the fixed upper-left posi-
tions of the sliding window instead of the locations recorded by
max-pooling. From Table V, it is interesting to observe that: (1)
The performance is significantly improved by employing the 3D
convolutional layers, since the 3D convolutional layers can cap-
ture the spatio-temporal structures within videos simultaneously.
(2) When discarding the 3D pooling, our method drops more
than 5%, probably because our auto-encoder does not main-
tain the bottleneck structure in the time dimension without 3D
pooling, which makes it difficult to effectively model the im-
plicit distribution of sequence data. (3) Adopting the adversarial
learning strategy can improve the performance, since the adver-
sarial learning strategy enhances discrimination of our method.
(4) The recorded locations of maximum input for un-pooling
can improve the reconstruction performance. Due to the small
size of the sliding window (2× 2× 2), the contribution of the
recorded locations during max-pooling may not be as great as
that of other components of our methods, such as “GAN,” “3D
convolution,” etc.

To further verify the effect of the adversarial learning strategy,
we calculate the aforementioned gap (Δs) proposed by [49] be-
tween normal and abnormal scores. The larger gap represents the
more separability between normal and abnormal frames. Fig. 4
shows that the adversarial learning strategy ensures the discrimi-
nation of our method, which is more suitable for abnormal event
detection.

2) Evaluation of Different Noise: We evaluate the contribu-
tion of the noise in our method, as shown in Table VI. “w/o
noise” denotes that we do not add any noise to the input video
during training. “salt-and-pepper noise” represents that we use
the salt-and-pepper noise, where the signal to noise ratio (SNR)
is set to 95%. “Poisson noise” means that we add Poisson noise
to each frame in a video sequence. We observe that the perfor-
mance of Gaussian noise and salt-and-pepper noise is similar,
and is better than other format noise.

Fig. 4. The gaps of anomaly scores between normal and abnormal frames in
the Avenue, UCSD Ped1 and UCSD Ped2 datasets with and without GAN. A
discriminative and reliable detector for abnormal event detection often requires
a larger score gap.

TABLE VI
THE AUC AND EER RESULTS OF DIFFERENT FORMAT

NOISE ON THE AVENUE DATASET

TABLE VII
COMPARISON OF THE SPEED OF ABNORMAL EVENT

DETECTION ON THE AVENUE DATASET

3) Speed Comparison: As shown in Table VII, we compare
the detection speed of our method with that of the 2D convo-
lutional auto-encoder (Conv-AE) [12] and convolutional LSTM
auto-encoder (ConvLSTM-AE) [14] on the Avenue dataset. Be-
cause auto-encoders in both [12] and [14] has 6 layers, we also
show the detection speed of our network with 6 layers for fair
comparisons, where the last two layers of the encoder and the
corresponding decoder layers are removed. The detection speed
is measured using a single NVIDIA RTX2080Ti GPU and an
Intel i7-7800X CPU.

Among all 6-layer auto-encoders in Table VII, the speed of
our method (729.4fps) is slightly slower than that (946.1fps)
of [12], and faster than that (467.5fps) of [14]. This shows that
3D operations take more time than 2D convolutions, but are more
efficient than ConvLstm operations when processing temporal
information. Our network with 6 layers significantly improves
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TABLE VIII
THE AUC RESULTS OF DIFFERENT COMPONENTS OF THE ADVERSARIAL

3D CONVOLUTIONAL AUTO-ENCODER

the performance, with gains of 4.5% and 14..6% compared with
the methods in [12] and [14], respectively, which verifies the
effectiveness of our method. Besides, due to the deeper struc-
ture, our 10-layer auto-encoder takes more time, but meanwhile
achieves the best detection results.

4) Pre-Processing Using Object Detection: As our method
is based on the pixel-level reconstruction setting, it can achieve
high true-positives while usually suffers from high false-positive
errors [31]. Several recent methods adopt divided patches [57],
[58] or detected object regions [13], [24] to overcome the prob-
lem of a high false-positive error, with the price of inference
speed. To further investigate the effectiveness of our method,
we use the same pre-processing strategy of object detection
proposed in [13], and the comparison results are shown in Ta-
ble VIII. We directly use the object bounding boxes at the
t-frame to crop objects at frames from (t− 3)-th to (t+ 3)-th,
and these regions are stacked as the input. We use a shal-
lower network to reconstruct them, where layers of “Conv4,”
“Conv5,” “De-Conv1” and “De-Conv2” are removed. The final
frame-level anomaly scores are determined by the maximum re-
construction error of all the object regions in the frame. From
Table VIII, we observe that the pre-preprocessing of object de-
tection helps our method achieve significant improvements on
the ShanghaiTech dataset, increasing the AUC from 74.6% to
84.0%. Our method outperforms the work of [13] on the Avenue
dataset, and achieves comparable results on the UCSD Ped2 and
ShanghaiTech datasets. Our method also performs best com-
pared with the state-of-the-art method [57] on the Subway Exit
dataset, with the gains of 3.6%.

5) Exploiting Optical-Flow Images: Optical-flow images
can bring a great improvement in the crowded scenes for abnor-
mal event detection but their calculation is time-consuming. We
exploit optical-flow images on the UCSD dataset to verify the ef-
fectiveness of optical-flow images in our method. we follow [11]
to extract optical-flow images, and reconstruct the RGB and
optical-flow images through two independent auto-encoders. As
shown in Table IX, when both RGB images and optical-flow
images are used, our method outperforms the state-of-the-art
method [11] on the UCSD Ped2 dataset, but the AUC value
of our method is 1.7% worse than that of [11] on the UCSD
Ped1 dataset. The possible reasoning is that we do not de-
sign a special two-branch structure for our 3D convolutional
auto-encoder, but simply combine the reconstruction of RGB
images and optical-flow images to detect abnormal events. From
Table IX, we can also observe that when only using RGB im-
ages, we achieve the AUC score of 90.2% that is 6.1% higher
than the work of [11]. This can verify the effectiveness of our
method.

6) Visualizing Feature Maps: We visualize some feature
maps of the ConvLSTM auto-encoder [14] and our 3D con-
volutional auto-encoder on the UCSD dataset in Fig. 5 to verify
that our method is more conducive to capturing subtle spatio-
temporal changes. For a fair comparison, we set the kernel size
of the ConvLSTM auto-encoder in [14] to 3× 3.

Fig. 5(a) shows a gray image of input videos with some subtle
behaviors indicated by blue bounding boxes. The behaviors are
easily overlooked due to their similarities to the background and
their small regions. Fig. 5(b) shows two feature maps of Conv1
and Conv2 layers of the ConvLSTM auto-encoder. Fig. 5(c)
shows two corresponding feature maps of our 3D convolutional
auto-encoder. We resize the feature maps to the same size as
the original gray image, and then select the feature maps with
the highest mean response values of the foreground objects in
the blue-box regions in all channels. We observe that [14] en-
hances the patterns of the salient foreground objects outside
the blue-box regions, but falls short of response to the subtle
behaviors in the blue-box regions, which is particularly obvi-
ous in the Conv2 feature maps. In contrast, our method models
subtle behaviors in the blue-box regions better, which can ver-
ify that our method is more conducive to modeling fine-grained
spatio-temporal patterns by performing information correlations
on low-level pixel spaces.

7) Event Count: We set the appropriate threshold of the
anomaly scores to detect abnormal events and evaluate our
method based on the event counts. Following the settings in [12],
we assume that the local minima within 50 frames belong to the
same abnormal event to reduce the noise in the anomaly scores. It
is reasonable as an abnormal event should be at least 2-3 seconds
long to be meaningful. Table X shows the number of detected
abnormal events and a false alarm on the three datasets. For both
the Ped1 and Ped2 of the UCSD dataset, we achieve better results
than [12], [30]. For the Avenue dataset, our method can detect the
abnormal event more precisely, despite it generates more false
alarms. For the subway dataset, we achieve better performance
than other methods. The results demonstrate that our method
can determine the temporal region of the abnormal events more
accurately, which makes it more practical in real scenes.

8) Qualitative Results: Fig. 6, Fig. 7 and Fig. 8 list several
examples of the detected abnormal events using our method on
the Avenue, Subway Entrance and Subway Exit datasets. The
detected abnormal events are “throwing papers” on the Avenue
dataset, “running” and “wrong direction” on the Subway En-
trance video, and “clean the wall” on the Subway Exit video.
Fig. 6, From Fig. 7 and Fig. 8, we can clearly see that there is
a large score gap between normal and abnormal events, which
validates the effectiveness of our method.

F. Time Complexity Analysis

We analyze the time and space complexity of a 2D convolu-
tional layer, a 3D convolutional layer and a convolutional LSTM
layer.

1) Time Complexity: A standard 2D convolutional layer per-
forms one 2D convolution operation with a kernelW , one 2D ad-
dition operation with a bias b, and one tanh activation operation.
Its time complexity is O((Kx ·Ky · Ci + n) ·Dx ·Dy · Co),
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TABLE IX
ABNORMAL EVENT DETECTION RESULTS IN TERMS OF FRAME-LEVEL AUC AND EER ON THE UCSD DATASET

Fig. 5. Feature maps of the ConvLSTM auto-encoder and our 3D convolutional auto-encoders on the UCSD dataset.

TABLE X
THE NUMBER OF DETECTED ABNORMAL EVENTS AND FALSE ALARM ON THE THREE PUBLIC DATASETS.

GT STANDS FOR GROUDTRUTH VALUES OF EVENT COUNT

Fig. 6. Qualitative results on the Avenue dataset.

Fig. 7. Qualitative results on the Subway Entrance dataset.

where the kernel size is Kx ×Ky and the feature map size is
Dx ×Dy . We assume that activation functions take n FLOPs.

Fig. 8. Qualitative results on the Subway Exit dataset.

The number of input channels is Ci, and the number of out-
put channels is Co. A standard 3D convolutional layer takes
one 3D convolution operation, one 3D addition operation with a
bias as well as a tanh activation operation. The time complexity
is O((Kt ·Kx ·Ky · Ci + n) ·Dt ·Dx ·Dy · Co), where Kt

refers to the temporal kernel size and Dt represents the tem-
poral size of the feature map. The time complexity of a con-
volutional LSTM layer proposed by Chong and Tay [14] is
given by O((4 ·Kx ·Ky · (Ci + Co) + 5 · n+ 12) ·Dx ·Dy ·
Co), where a convolutional LSTM layer performs four convolu-
tions on the input layer, four convolutions on the hidden layer,
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five 2D activations of sigmoid and tanh, three 2D Hadamard
Products, and nine 2D additions.

We observe that the temporal dimensions of convolutional
kernels and feature maps increase the time complexity of 3D
convolutions compared with 2D convolutions. However, exper-
iment results show that the processing of temporal information
in videos can significantly improve detection performance. We
need to repeat the convolutional LSTM operation T times to
process a video with T frames (T ≥ Dt in general), which
means that the time complexity of the convolutional LSTM
should be O(T · (4 ·Kx ·Ky · (Ci + Co) + 5 · n+ 12) ·Dx ·
Dy · Co). When other parameters are the same and a small value
of Kt (3 in this paper) is selected, the time complexity of 3D
convolutional layers is less than convolutional LSTM layers.

2) Space Complexity: The parameter size of a 2D con-
volutional layer is calculated as (Kx ·Ky · Ci +Dx ·Dy) ·
Co. A convolutional LSTM layer has the parameter size of
4 · (Kx ·Ky · (Ci + Co) +Dx ·Dy) · Co. A 3D convolutional
layer contains the parameter size of (Kt ·Kx ·Ky · Ci +Dt ·
Dx ·Dy) · Co. In contrast to convolutional LSTM layers that
share parameters across time, 3D convolutions have more pa-
rameters, which is helpful to simultaneously learn appearance
patterns and motion patterns to capture robust normal spatio-
temporal patterns.

V. CONCLUSION

In this paper, we have presented an effective abnormal event
detection method of simultaneously learning normal appearance
patterns and motion patterns, which can capture fine-grained
spatio-temporal patterns. We built an adversarial 3D convolu-
tional auto-encoder that can capture low-level correlations be-
tween appearance and motion patterns. The 3D convolutional
encoder can capture appearance and motion information as
well as their correlations into encoded features, and the 3D de-
convolutional decoder can reconstruct original videos from the
encoded features directly. The 3D convolutional auto-encoder
trained with the denoising reconstruction error and adversarial
learning strategy can implicitly learn more accurate data dis-
tributions of normal data that are considered normal patterns,
which can better distinguish normal and abnormal events with-
out any supervised information. Theoretical analysis and exper-
iments on four public datasets have demonstrated the effective-
ness and superiority of our method on abnormal event detection
in videos.

APPENDIX A
PROOF OF THEOREM 1

Theorem 1: The optimal output of the 3D convolutional auto-
encoder calculated by the loss function Lrec in Eq.(7) is

R∗θ(S̃) =
Eη

[
p(S̃ − η)(S̃ − η)

]
Eη

[
p(S̃ − η)

] ,

s.t. For ∀x, p(x) �= 0, (15)

where S̃ denotes the corrupted input sample with Gaussian noise
and η represents the Gaussian noise η ∼ N (0, σ2I).

Proof: The reconstruction loss function Lrec is defined as

Lrec = E
[∥∥Rθ(S + η)− S

∥∥2], (16)

where Rθ(·) is the mapping of the 3D convolutional auto-
encoder. We collect samples S that only contain normal events
for training. The loss function can be rewritten as

Lrec =

∫
S

Eη∼N (0,σ2I)

×
[
p(S)× ∥∥Rθ(S + η)− S

∥∥2]dS, (17)

where p is the density function of the training data. Then we use
the auxiliary variable S̃ = S + η to replace S and get

Lrec =

∫
S̃

Eη∼N (0,σ2I)

×
[
p(S̃ − η)× ∥∥Rθ(S̃)− S̃ + η

∥∥2]dS̃. (18)

Obviously, the minimum value of the loss function Lrec is 0,
that is

Eη∼N (0,σ2I)

[
p(S̃ − η)

(
R∗θ(S̃)− S̃ + η

)]
= 0, (19)

where R∗θ(S̃) denotes the optimal solution. The Eq. (19) can be
rewritten as

Eη∼N (0,σ2I)

[
p(S̃ − η)R∗θ(S̃)

]
= Eη∼N (0,σ2I)

[
p(S̃ − η)(S̃ − η)

]
. (20)

The optimal output of the 3D convolutional auto-encoder is

R∗θ(S̃) =
Eη

[
p(S̃ − η)(S̃ − η)

]
Eη

[
p(S̃ − η)

] ,

s.t. For ∀x. p(x) �= 0. (21)

APPENDIX B
PROOF OF THEOREM 2

Theorem 2: When the noise level σ asymptotically ap-
proaches to 0 (σ → 0), the loss function Lrec can be rewritten
as

Lrec = E

[∥∥Rθ(S)− S
∥∥2 + σ2

∥∥∥∥∂ (Rθ(S))

∂S

∥∥∥∥
2
]
+ o(σ2).

(22)
The optimal output calculated by Eq. (22) during testing is

R∗θ(S) = S + σ2 ∂ log p(S)

∂S
+ o(σ2). (23)

Proof: The reconstruction loss function Lrec is defined as

Lrec = E
[∥∥Rθ(S + η)− S

∥∥2] , (24)

The Taylor expansion around S is

Rθ(S + η) = Rθ(S) +
∂Rθ(S)

∂S
η + o(σ2). (25)

Substituting it into Lrec, we get

Lrec = E

[∥∥∥∥S −
(
Rθ(S) +

∂Rθ(S)

∂S
η + o(σ2)

)∥∥∥∥
2
]
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=

(
E
[∥∥Rθ(S)− S

∥∥2]− 2ET [η]E

[
∂Rθ(S)

T

∂S

× (Rθ(S)− S)

])
+ Tr

(
E
[
ηηT

]

× E

[
∂Rθ(S)

T

∂S

∂Rθ(S)

∂S

])
+ o(σ)2

=

(
E
[∥∥Rθ(S)− S

∥∥2]+ σ2E

[∥∥∥∂Rθ(S)

∂S

∥∥∥2]
)
+ o(σ)2.

(26)

The premise of the Eq. (26) are: (1) the noise η is independent
from S; (2) E[η2η] = σ2I; (3) E[η] = 0.

The input S ∈ RT×H×W is a video matrix containing normal
events and the output Rθ(S) ∈ RT×H×W is its reconstruction,
where T is the number of frames, H and W are the height and
width of the frame, respectively. For simple representation, we
assume that the matrix S ∈ RT×H×W is converted into a vector
S ∈ Rd, where d = T ×H ×W and the F-norm of the matrix
transfers into the 2-norm of the vector. In the following proof
process, we derive the optimal solution based on the work of
Alain and Bengio [17] by operating on each element of S.

We rewrite the loss function Lrec into the integral form as

Lrec =

∫
Rd

p(S)

[∥∥Rθ(S)− S
∥∥2
2

+ σ2

∥∥∥∥∂Rθ(S)

∂S

∥∥∥∥
2
]
. (27)

The extremum of Eq. (27) can be solved by constructing Euler-
Lagrange equation. Before constructing, we expand Eq. (27)
with each element as

Lrec =

∫
Rd

p(S)

[ d∑
i=1

(
Ri

θ(S)− Si
)2

+ σ2
d∑

i=1

d∑
j=1

(
∂Ri

θ(S)

∂Sj

)2 ]
dS

=
d∑

i=1

∫
Rd

p(S)

[ (
Ri

θ(S)− Si
)2

+ σ2
d∑

j=1

(
∂Ri

θ(S)

∂Sj

)2 ]
dS, (28)

whereRi
θ(S) represents the i-th dimension ofRθ(S) ∈ Rd. The

Eq. (28) indicates that each dimension Ri
θ(S) can be optimized

separately.
Then we construct the Euler-Lagrange equation based on the

work of Dacorogna [61] as

f
(
S,Rθ(S), Rθ(S)

′
)
= p(S)

[∥∥Rθ(S)− S
∥∥2
2

+ σ2

∥∥∥∥∂Rθ(S)

∂S

∥∥∥∥
2
]
, (29)

where Rθ(S)
′
is ∂Rθ(S)

∂S . The Euler-Lagrange equation satisfied
at the optimal 3D convolutional auto-encoder Rθ(·) is given by

∂f

∂Rθ
=

d∑
j=1

∂

∂Sj

(
∂f

∂Rj
θ(S)

′

)

=

d∑
j=1

∂

∂Sj

(
2σ2p(S)

[
∂R1

θ

∂Sj

∂R2
θ

∂Sj
· · · ∂R

d
θ

∂Sj

]T)

= 2σ2
d∑

j=1

(
∂p(S)

∂Sj

[
∂R1

θ

∂Sj

∂R2
θ

∂Sj
· · · ∂R

d
θ

∂Sj

]T

+ p(S)

[
∂2R1

θ

∂(Sj)2
∂2R2

θ

∂(Sj)2
· · · ∂2Rd

θ

∂(Sj)d

]T)

= 2σ2
d∑

j=1

⎡
⎢⎢⎣

∂p(S)
∂Sj

∂R1
θ

∂Sj + p(S)
∂2R1

θ

∂(Sj)2

...
∂p(S)
∂Sj

∂Rd
θ

∂Sj + p(S)
∂2Rd

θ

∂(Sj)2

⎤
⎥⎥⎦ . (30)

At the same time, from Euler-Lagrange Eq. (29), we get

∂f

∂Rθ
= 2 (Rθ(S)− S) p(S). (31)

Substituting Eq. (31) into Eq. (30) is

(Rθ(S)− S) p(S) = σ2
d∑

j=1

⎡
⎢⎢⎣

∂p(S)
∂Sj

∂R1
θ

∂Sj + p(S)
∂2R1

θ

∂(Sj)2

...
∂p(S)
∂Sj

∂Rd
θ

∂Sj + p(S)
∂2Rd

θ

∂(Sj)2

⎤
⎥⎥⎦ .

(32)

Each dimension Ri
θ(S) can be optimized separately, that is

(
Ri

θ(S)− Si
)
p(S) = σ2

d∑
j=1

(
∂p(S)

∂Sj

∂Ri
θ(S)

∂Sj

+ p(S)
∂2Ri

θ(S)

∂(Sj)2

)
. (33)

Due to for ∀S, p(S) �= 0, we can divide the Eq. (33) by p(S).
According to ∂p(S)

∂Si

/
p(S) = ∂ log p(S)

∂Si , we get

Ri
θ(S)− Si = σ2

d∑
j=1

(
∂ log p(S)

∂Sj

∂Ri
θ(S)

∂Sj
+

∂2Ri
θ(S)

∂(Sj)2

)
.

(34)

Obviously, the Eq. (34) is recursive about a Ri
θ(S). Since the

noise levelσ asymptotically approaches to 0 (σ → 0), we can get
rid of the items that contain the coefficient of high-order (e.g.
(σ2)2 or higher). Thus, we get the recursive equation (some
expansion steps here are omitted)

Ri
θ(S) = Si + σ2 log ∂p(S)

∂Si
+ o(σ2). (35)

The optimal output is given by

R∗θ(S) = S + σ2 log ∂p(S)

∂S
+ o(σ2), as σ → 0. (36)

�
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