
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 4, AUGUST 2015 2247

Vehicle Type Classification Using a Semisupervised
Convolutional Neural Network
Zhen Dong, Yuwei Wu, Mingtao Pei, and Yunde Jia, Member, IEEE

Abstract—In this paper, we propose a vehicle type classification
method using a semisupervised convolutional neural network from
vehicle frontal-view images. In order to capture rich and discrimi-
native information of vehicles, we introduce sparse Laplacian filter
learning to obtain the filters of the network with large amounts
of unlabeled data. Serving as the output layer of the network,
the softmax classifier is trained by multitask learning with small
amounts of labeled data. For a given vehicle image, the network
can provide the probability of each type to which the vehicle
belongs. Unlike traditional methods by using handcrafted visual
features, our method is able to automatically learn good features
for the classification task. The learned features are discriminative
enough to work well in complex scenes. We build the challeng-
ing BIT-Vehicle dataset, including 9850 high-resolution vehicle
frontal-view images. Experimental results on our own dataset and
a public dataset demonstrate the effectiveness of the proposed
method.

Index Terms— Feature learning, filter learning, multitask learn-
ing, neural network, vehicle type classification.

I. INTRODUCTION

V EHICLE type classification is one of the essential parts
in intelligent traffic system, and has a wide range of

applications including traffic flow statistics, intelligent parking
systems, and vehicle type detection. Existing methods are com-
monly based on ultrasonic, magnetic induction, and cameras.
With the extensive use of traffic surveillance cameras, image-
based methods have received significant attention in computer
vision community. So far, numerous image-based methods
have been proposed, and they roughly fall into two categories:
model-based methods and appearance-based methods. Model-
based methods [1]–[4] compute the vehicle’s 3D parameters
such as length, width, and height to recover the 3D model of the
vehicle. Appearance-based methods [5]–[9] extract appearance

Manuscript received June 27, 2014; revised October 21, 2014 and
December 26, 2014; accepted February 2, 2015. Date of publication March 6,
2015; date of current version July 31, 2015. This work was supported in part by
the National Natural Science Foundation of China under Grant 61203291, by
the Specialized Research Fund for the Doctoral Program of Higher Education
of China under Grant 20121101120029, and by the Specialized Fund for Joint
Building Program of Beijing Municipal Education Commission. The Associate
Editor for this paper was P. Grisleri. (Corresponding author: Yuwei Wu.)

The authors are with Beijing Laboratory of Intelligent Information Tech-
nology, School of Computer Science, Beijing Institute of Technology,
Beijing 100081, China (e-mail: dongzhen@bit.edu.cn; wuyuwei@bit.edu.cn;
peimt@bit.edu.cn; jiayunde@bit.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITS.2015.2402438

features (e.g., SIFT [10], Sobel edges [11]) to represent the
vehicle for classification. Most of these methods are based on
vehicle side view images. Currently, large numbers of vehicle
frontal view images are captured by traffic surveillance cam-
eras, so we focus on vehicle type classification from vehicle
frontal view images.

There has been less effort on methods based on vehicle
frontal view images. Petrovic and Cootes [12] modeled the ve-
hicle appearance from vehicle frontal view images by extracting
many features, such as Sobel edge response, edge orientation,
direct normalized gradients, locally normalized gradients, and
Harris corner response. Negri et al. [13] presented a voting
algorithm based on oriented-contour points for their multiclass
vehicle type recognition system. Psyllos et al. [14] used SIFT
features to recognize the logo, manufacturer, and model of a ve-
hicle. Zhang [15] fused the PHOG feature and the Gabor trans-
form feature to represent the vehicle and proposed a cascade
classifier scheme to recognize the type of the vehicle. Peng et al.
[16] represented a vehicle by license plate color, vehicle front
width, and type probabilities for vehicle type classification.
However, these methods use multiple hand-crafted features
which might not be discriminative enough in complex scenes.

In this paper, we propose a novel framework of vehicle type
classification from vehicle frontal view images using a convo-
lutional neural network. The convolutional neural network is a
multi-layer feed-forward neural network which is biologically-
inspired. Unlike traditional methods by using hand-crafted fea-
tures, the convolutional neural network is able to automatically
learn multiple stages of invariant features for the specific task
[17]. It has been used to learn good features in face detection
[18], [19], facial point detection [20], pedestrian detection [21],
human attribute inference [22], image quality assessment [23],
image classification [24], and video classification [25].

The convolutional neural network in our method takes an
original vehicle image as the input and outputs the probabil-
ity of each vehicle type to which the vehicle belongs. The
network contains two stages, and each stage consists of the
convolutional layer, the absolute rectification layer, the local
contrast normalization layer, the average pooling layer, and
the subsampling layer. The convolutional layer computes the
convolutions between the input and a set of filters (filter bank),
and provide a nonlinear representation of the input signal by
using a point-wise nonlinear function. The absolute rectification
layer and local contrast normalization layer perform a non-
linear transformation on the output of the convolutional layer.
The average pooling layer and subsampling layer reduce the
spatial resolution of the representation to achieve the robustness
to both geometric distortions and small shifts.

1524-9050 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2248 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 4, AUGUST 2015

Fig. 1. The flowchart of the proposed method. Our convolutional neural network is semi-supervised. In order to capture rich and discriminative information
of vehicles, the sparse Laplacian filter learning is employed to learn the filters of the network with a large number of unlabeled vehicles. The softmax classifier
layer which is trained by multi-task learning with a small number of labeled vehicles is used as the output layer. For a given vehicle image, the network is able to
automatically learns good features to represent the vehicle and outputs the probability of each type which the vehicle belongs to. The type of the vehicle can be
predicted by picking the label which makes the probability achieving maximum.

Our network is semi-unsupervised, as shown in Fig. 1.
The filter bank of the convolutional layer is learned in an
unsupervised manner with large amounts of unlabeled data,
and the parameters of the output layer are learned in a super-
vised manner with a certain amount of labeled data. Motivated
by great success of unsupervised pre-training for multi-layer
neural networks [26]–[29], we introduce the sparse Laplacian
filter learning (SLFL), an unsupervised learning method, to
learn the filter bank of the convolutional layer. Different from
traditional sparsity constraints like l0, l1 or l2 norms, the SLFL
uses the sparse function sps(·) with properties of population
sparsity, high dispersal, and lifetime sparsity to measure the
sparsity of representations. During learning filters, the manifold
assumption [30] is considered to ensure that similar input image
patches have similar high-level representations. The learned
filters are able to capture rich and discriminative information
of vehicles for improving the classification performance.

We adopt a softmax classifier as the output layer to calculate
the probability of each vehicle type. A supervised learning
method is introduced to learn the parameters of the classifier.
We observe that many vehicle types share large number of com-
mon appearance patterns. For example, the vehicles of “truck”
and “minivan” have the similar parts layouts, and both of them
have a hopper. The multi-task learning [31] is used to learn the
shared common appearance patterns. The appearance pattern is
regarded as a latent task, and the parameter of each type model
is reconstructed by the linear combination of the latent tasks.
The constraints of the latent tasks and combination coefficients
are important to obtain a robust model for classification. To en-
hance the discriminative power of the latent task, we represent
the important appearance patterns by employing the l1-norm.
The l1-norm of each category’s combination coefficient vector
is able to reduce the noise of reconstruction.

The rest of the paper is organized as follows. In Section II, we
show the architecture of the convolutional neural network and
its implementation. In Section III, the learning methods of the
network parameters are described, including learning the filer

bank and the parameters of the softmax layer. Experimental
results and discussions are reported in Sections IV and V
concludes this paper.

II. ARCHITECTURE OF THE CONVOLUTIONAL

NEURAL NETWORK

The architecture of our convolutional neural network is
shown in Fig. 2. The network contains two stages which gen-
erate low-level local features and high-level global features,
respectively. The high-level global features provide holistic
descriptions of vehicles, and the low-level features aim to char-
acterize vehicle parts precisely. In order to take full advantage
of both global features and local features, the network is with
layer-skipping which integrates the features learned in both
the 1st and the 2nd stage for classification. There are five
layers in each stage, i.e., the convolutional layer, the absolute
value rectification layer, the local contrast normalization layer,
the average pooling layer, and the subsampling layer. In the
convolutional layer, the sparse Laplacian filter learning (SLFL)
provides effective filters for the network. The absolute rectifica-
tion layer and local contrast normalization layer provide a non-
linear transformation for the output of the convolutional layer.
The pooling and subsampling layers use the average pooling
operator to reduce the spatial resolution of the representation.
The representations can thus be robust to geometric distortions
and small shifts. We employ a softmax classifier as the output
layer of the network to compute the probability of each vehicle
type. For simplicity, we use x and y to represent the input
and output of each layer, respectively. They are both 3D arrays
where x are with the size of s1 × s2 × s3 and y with the size
of t1 × t2 × t3.

A. Convolutional Layer

In the convolutional layer, convolutions between the input
and a series of filters are first computed. An element-wise non-
linear activation function is then executed on the convolutions.

DONG et al.: VEHICLE TYPE CLASSIFICATION USING A SEMISUPERVISED CONVOLUTIONAL NEURAL NETWORK 2249

Fig. 2. The architecture of our semi-supervised convolutional neural network. The network contains two stages. Each stage consists of the convolutional layer,
the absolute rectification layer, the local contrast normalization layer, the average pooling layer, and the subsampling layer. The number in brackets behind
“convolution” is the size of the filters. The number in brackets behind “average pooling” is the size of the average filter, and the number in brackets behind
“subsampling” reflects the step of subsampling. The numbers around cuboids describe the size of 3D feature arrays. The network is with layer-skipping which
integrates the features learned in both 1st and 2nd stage together for classification. The softmax classifier is applied as the output layer to compute the type
probability of the input vehicle.

The layer provides a non-linear mapping from the low level
image representation to high level semantic understanding,
which simulates the “simple cells” in the standard models of
the visual cortex [32], [33]. The input x is a 3D array with the
size of s1 × s2 × s3, where s3 is the number of 2D feature
maps, and s1 × s2 is the size of the 2D feature map which
is represented by xi. The output y is also a 3D array whose
size is t1 × t2 × t3. Similar to the 2D feature map xi of the
input, yj is defined as the j-th 2D feature map of the output.
The element-wise sigmoid function sig(·) is chosen as the non-
linear activation function. Hence, yj is computed by

yj = sig

(∑
i

kij ⊗ xi

)
, (1)

where ⊗ denotes the convolution operation, and kij is a 2D
filter learned by the sparse Laplacian filter learning described
in Section III-A. Suppose that the filter size is l1 × l2, we
have t1 = s1 − l1 + 1 and t2 = s2 − l2 + 1 due to the board
effects. The size of input 2D feature map is an important factor.
A large size is beneficial for learning good features of vehicles,
but the computation time cost will be high. A small size saves
time, but may lose too much information, which leads to low
classification accuracy. As shown in Fig. 2, in the 1st stage
of the network, the size of the input 2D feature map is set as
143 × 143 to take a balance between the computation time
cost and the accuracy. The size of output 2D feature map is
135 × 135 since the filters are with the size of 9 × 9 which is
set according to the size of the input 2D feature map.

B. Absolute Value Rectification Layer

In this module, all the elements are passed into the absolute
value rectification function

yi,j,k = |xi,j,k|, (2)

where xi,j,k and yi,j,k represent each element of x and y,
respectively. The absolute value rectification layer is inspired by
the fact that the relationship between two items in real world is
always positive or zero, but not negative. It is clear that the sizes
of the input and the output of the absolute value rectification
layer are the same.

C. Local Contrast Normalization Layer

The purpose of the local contrast normalization layer is to en-
force local competitions between one neuron and its neighbors,
which is motivated by the computational neuroscience [34],
[35]. The neighbors include nearby neurons in the same feature
map and the ones at the same 2D location in different feature
maps. To do this, two normalization operations are performed,
i.e., subtractive and divisive. For the element xi,j,k in the input
3D array size of s1 × s2 × s3, the subtractive normalization
operator is given by

zi,j,k = xi,j,k −
4∑

p=−4

4∑
q=−4

s3∑
r=1

ωp,qxi+p,j+q,r, (3)

where ωp,q is a normalized Gaussian filter with the size of 9 ×9,
z is the output of the subtractive normalization and the input of
the divisive normalization. The divisive normalization operator
is defined as

yi,j,k =
zi,j,k

max (M,M(i, j))
, (4)

where

M(i, j) =

√∑4

p=−4

∑4

q=−4

∑s3

r=1
ωp,qz2

i+p,j+q,r, (5)

M =
(∑s1

i=1

∑s2

j=1
M(i, j)

)
/(s1 × s2). (6)

2250 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 4, AUGUST 2015

In both operations, the filtering by ωp,q is computed with the
zero-padded edges. It is obvious that the size of the output is
the same as the input in the local contrast normalization layer.

D. Average Pooling and Subsampling Layers

The pooling and subsampling layers aim to make the repre-
sentation robust to both geometric distortions and small shifts.
Their roles are essentially equivalent to the “complex cells”
in the standard models of the visual cortex [32], [33]. We
adopt the average pooling method in the pooling layer. The
convolution between the 2D feature map and the average filter is
formulated as

yi,j,k =
∑
p,q

αp,qxi+p,j+q,k, (7)

where αp,q = 1/(f1 × f2) is the average filter with the size
of f1 × f2, x and y are the input and output 3D arrays of the
average pooling layer, respectively.

The subsampling procedure is performed on the output of
the average pooling layer with the rate of p1 horizontally and
p2 vertically. Suppose that the input 2D feature maps of these
two layers are size of s1 × s2, and the size of the output 2D
feature map is t1 × t2, we have

t1 =

⌊
s1 − f1

p1

⌋
+ 1,

t2 =

⌊
s2 − f2

p2

⌋
+ 1, (8)

where �δ� denotes the maximum integer less or equal than δ.
For example, the input 3D array of the pooling layer in the
1st stage is with the width and height of s1 = s2 = 135. The
appropriate average filter size and subsampling rate are set for
simplicity. The average filter size is f1 = f2 = 10, and the
subsampling rates are 5 in both the horizontal direction and the
vertical direction. Therefore, the size of the output 2D array is
t1 = t2 = �(135 − 10)/5�+ 1 = 26.

E. Softmax Classifier Layer

In order to calculate the probability of each vehicle type,
the softmax classifier is employed as the output layer of the
convolutional neural network. As shown in Fig. 2, the input
of the softmax classifier layer is the feature vector learned by
previous layers, and the output is the type probability vector. A
linear function is applied to model the relationship between the
feature and the probability distribution of the vehicle type

v = W�x+ b, (9)

where x ∈ R
D×1 represents the input feature, v ∈ R

C×1 is
a intermediate variable for describing the distribution, and
C is the number of vehicle types. For simplicity, Eq. (9) is
rewritten as

v = W�x+ b = [W� b]

[
x
1

]
= W�

[
x
1

]
, (10)

where W = [w1,w2, · · · ,wC] ∈ R
(D+1)×C , and each column

of W is the corresponding vehicle type model parameter. Be-
cause the probability has the properties of nonnegativity and
unitarity, v is normalized as

yi =
1

V
evi , i = 1, 2, · · · , C,

V =

C∑
i=1

evi ,
(11)

where vi is the i-th element of v, and y = [y1,y2, · · · ,yC]
� is

the output of the softmax classifier layer. The parameter W can
be learned by the multi-task learning described in Section III-B.

III. PARAMETERS LEARNING

As discussed in Section II, two kinds of parameters of the
network should be learned, i.e., the filter bank of the convolu-
tional layer and the parameter of the softmax classifier. In this
section, we elaborate how to learn these two parameters.

A. Sparse Laplacian Filter Learning

We introduce the sparse Laplacian filter learning (SLFL),
an unsupervised learning method, to learn the filter bank of
the convolutional neural network. Define a data matrix as U =
[u1,u2, · · · ,un] ∈ R

d×n, where the columns are data points.
Our goal is to learn the filter bank K ∈ R

d×t which consists
of t filters. Using this filter bank, the input data points U can
be mapped to sparse representations A. The nonlinear map
function is given by

A = sig(K�U), (12)

where sig(·) is the element-wise sigmoid function which is
commonly used as the activation function of the neural network.
A ∈ R

t×n is the feature distribution matrix over U , where the
row is a feature and the column is an example. The element Ai,j

represents the activation of the i-th feature on the j-th example
of A. We formulate the sparse Laplacian filter learning as

min
B,A,K

‖U − BA‖2F + αsps(A)

+ βtr(ALA�) + γ‖A − sig(K�U)‖2F , (13)

where ‖ · ‖F denotes the Frobenius norm of the matrix, tr(·)
represents the trace of a matrix, L is the Laplacian matrix,
α, β, and γ are the regularized parameters. Similar to the
sparse coding, the first term pursues accurate reconstruction
by the dictionary B, in other words, each data point ui can be
linearly represented by the bases of the dictionary B, meanwhile
keeping the reconstruction error as small as possible.

The sps(·) function in Eq. (13) is optimized for the sparsity in
the feature distribution [36]. It avoids modeling the data distri-
bution explicitly, which gives rise to a simple formulation and
permits the effectiveness of learning. Let A(i,�) ∈ R

1×n(i =
1, 2, · · · , t) be the i-th row of A, and A(�,j) ∈ R

t×1(j =
1, 2, · · · , n) the j-th column of A. The sps(·) function is
computed in three steps: normalizing the feature distribution
matrix by rows, normalizing the feature distribution matrix

DONG et al.: VEHICLE TYPE CLASSIFICATION USING A SEMISUPERVISED CONVOLUTIONAL NEURAL NETWORK 2251

by columns, and summing up the absolute values of all en-
tries. In the first step, each feature is divided by its �2-norm
across all examples, i.e., Ã(i,�) = A(i,�)/‖A(i,�)‖2. In this
way, the feature is equally active. In the second step, each
example is divided by its �2-norm across all features, Â(�,j) =

Ã(�,j)/‖Ã(�,j)‖2, to ensure that all examples lie on the unit
�2-ball. In the third step, we sum up the absolute values of all
the entries in Â. The sps(·) function is given by

min
K

‖Â‖∗ =
t∑

i=1

n∑
j=1

|Âi,j |

=
n∑

j=1

‖Â(�,j)‖1 =
n∑

j=1

∥∥∥∥∥ Ã(�,j)

‖Ã(�,j)‖2

∥∥∥∥∥
1

, (14)

where ‖M‖∗ denotes summing up the absolute values of all
the elements in the matrix M. The minimization of the sparse
function makes the feature distribution A have three properties,
i.e., population sparsity, high dispersal, and lifetime sparsity
[37], [38].

Population Sparsity: The population sparsity requires that
the example should only have a few active (non-zero) features,
and it is considered to be an efficient coding method in early

vision cortex. The term ‖Â(�,j)‖1 =

∥∥∥∥ ‖Ã(�,j)

‖Ã(�,j)‖2

∥∥∥∥
1

in Eq.(14)

reflects the population sparsity property of the features on the
j-th example. Since Â(�,j) has been constrained to lie on
the unit �2-ball, the objective function is minimized when the
features are sparse. In other words, the objective tends to place
the examples close to feature axes, and the example which has
similar values on the features would have a high penalty.

High Dispersal: The high dispersal property denotes that the
statistics of the features should be similar, which implies that
the contributions of all features are similar. Here, the statistics
are taken as the mean squared activations by averaging the
squared values in the feature matrix across all the examples

Ti =
1
n

n∑
j=1

A2
ij =

1
n
‖A(i,�)‖22. (15)

Each feature is divided by its �2-norm across all examples in
the first step of computing the objective function, which makes
the features equally active. Therefore, the objective function is
optimized for high dispersal.

Lifetime Sparsity: The property that the feature should be
active only on a few examples is called lifetime sparsity. This
property guarantees that the feature is discriminative enough
to distinguish different examples. Specifically, each row of
the feature distribution matrix should only have a few active
(non-zero) entries. In the sparse filtering algorithm, the lifetime
sparsity property is ensured by the population sparsity property
and the high dispersal property. The feature distribution matrix
should have a great many non-active (zero) elements due to the
population sparsity property. These non-active elements could
not be placed in a few specific rows, otherwise it would be
against the high dispersal property. Therefore, the feature would
have a significant number of non-active elements and thus be
lifetime sparse.

The third term of Eq. (13) incorporates the manifold as-
sumption into the objective function. The manifold assump-
tion implies that close-by data points tend to have similar
representations and distant ones are less likely to take similar
representations. This can be achieved by approximating the
structure of the manifold with a graph. Each point of the graph
represents a data point xi, and the edge weight matrix R is
defined as

Rij =

{
u�

i uj

‖ui‖‖uj‖ if ui ∈ Nε(uj) or uj ∈ Nε(ui)

0 otherwise,
(16)

where Nε(ui) represents the set of ε nearest neighbors of
ui. The edge weight matrix satisfies that large values Rij is
corresponding to nearby data points. The manifold assumption
is formulated as the minimization of

1
2

n∑
i,j=1

‖A(�,i) −A(�,j)‖2 = Tr(ALA�), (17)

where L = D −R is the Laplacian matrix, and D is a diagonal
matrix whose elements are column (or row) sums of R.

The last term of Eq. (13) pursuits the minimal error between
A and the nonlinear mapping of U . The term is added into
the objective function to optimize B,A, and K jointly. The
optimization procedure contains two alternating steps.

STEP 1: Keeping parameters B and K fixed, learn the
representation A by solving the optimization problem:

min
A

‖U − BA‖2F + α sps(A)

+ βTr(ALA�) + γ‖A − sig(K�U)‖2F . (18)

In our implementation, the L-BFGS optimization method [39]
is used. The gradient of the objective function in Eq. (18) with
respect to A is easy to solve. The gradient of sps(·) function
is computed by the back propagation algorithm. As the sps(·)
contains absolute value operators which are nondifferentiable,
we ignore the absolute value operators when calculating the
gradient to get an approximation.

STEP 2: With the optimal value of A from STEP 1, minimize
Eq. (13) with respect to B and K. The optimization problem is
rewritten as

min
B,K

‖U − BA‖2F + γ‖A − sig(K�U)‖2F . (19)

Because two terms of the objective function are not correlated,
they can be solved independently. The optimal dictionary B can
be achieved by minimizing

min
B

‖U − BA‖2F . (20)

An analytical solution of B is obtained that B =
UA�(AA�)−1. The columns of B are then re-scaled to unit
norm to avoid trivial solutions that are due to the ambiguity
of the linear reconstruction. Unlike the first term, K cannot be
solved analytically due to the element wise function. Instead,

2252 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 4, AUGUST 2015

the L-BFGS optimization method [39] is used to minimize the
second term with respect to K:

min
K

∥∥A− sig(K�U)
∥∥2
F
. (21)

The overall optimization procedure of the sparse Laplacian
filter learning is summarized in Algorithm 1, where the “con-
vergence” is the value difference of the objective function in
Eq. (12) smaller than a threshold, or the iterative times exceeds
another threshold. Since the Step 2 and 3 of Algorithm 1 are
both based on L-BFGS, the computation complexity of the
algorithm is O(kt2(n2 + d2)) where k is the iterative times.

B. Multi-Task Learning

We provide a supervised learning procedure for the param-
eters of the softmax layer. The learning method is based on
the observation that many vehicle types share a great many
common appearance patterns. We use the multi-task learning
method [31] to learn the shared knowledge between different
vehicle types. The shared knowledge is corresponding to the la-
tent tasks, and the model of each vehicle type can be combined
by the latent tasks.

Specifically, each column of W is a vehicle type classifier
and can be represented by the linear combination of the latent
tasks. Define T ∈ R

(D+1)×K as the shared latent task matrix
with each column characterizing a latent task, and K is the
number of latent tasks. The linear combination weight matrix
is defined as C ∈ R

K×C with each column representing the
combination coefficients of the corresponding vehicle type. We
thus have

W = T C. (22)

We will learn T and C simultaneously instead of learning W
directly.

Denote the training samples as {(x(i),d(i))|i =
1, 2, · · · , N} where x(i) ∈ R

(D+1)×1 is the input feature
vector (with the additional constant dimension), d(i) is the
probability distribution of the type of x(i). If x(i) belongs to
the j-th type (1 ≤ j ≤ C), the j-th element of d(i) will be 1

and others will be 0. In order to learn T and C, we introduce the
Kullback-Leibler (KL) divergence as the optimization principle

min
T ,C

N∑
i=1

KL(d(i)‖y(i))

= min
T ,C

N∑
i=1

(C∑
j=1

d
(i)
j ln

1

y
(i)
j

−
C∑

j=1

d
(i)
j ln

1

d
(i)
j

)

= min
T ,C

−
N∑
i=1

C∑
j=1

d
(i)
j lny

(i)
j , (23)

where d
(i)
j and y

(i)
j represent the j-th element of d(i) and y(i),

respectively.
The constraints to T and C are also very important to learn

a robust model for vehicle type classification. Discriminative
information may be lost if vehicle types share too much holistic
information. We expect that the latent tasks focus on the basic
visual patterns that can be shared by vehicle types. To achieve
this goal, the �1-norm of the latent task is employed. We assume
that the vehicle type model can be reconstructed by only a small
number of latent tasks. Latent tasks are thus shared only among
related vehicle types and hold high discriminative power. This
can be achieved by minimizing the �1-norm of each row of C.
The Frobenius-norm regularization of T is used to avoid over-
fitting. Taking these three constraints into account, the objective
function for learning T and C is formulated as

min
T ,C

−
N∑
i=1

C∑
j=1

d
(i)
j lny

(i)
j + λ‖T ‖2F

+ μ‖T ‖∗ + η‖C‖∗, (24)

where ‖ · ‖∗ denotes summing up the absolute values of all the
elements in the matrix.

The objective function of Eq. (24) is not jointly convex in
T and C, but it is convex in C with fixed T and convex in T
with fixed C. Therefore, we adopt the alternating optimization
strategy to solve Eq.(24). The two steps of the optimization
method are as follows.

STEP 1: With fixed T , the optimal combination weight
matrix C can be obtained by solving

min
C

−
N∑
i=1

C∑
j=1

d
(i)
j lny

(i)
j + η‖C‖∗. (25)

The objective function is not smooth with respect to C as the
existence of ‖ · ‖∗. Fortunately, the first term is a differentiable
convex function, and the second term is convex but non-smooth.
The accelerated proximal gradient method (APG) [40] is able
to solve the optimization problem. For simplicity, we define

f(C) = −
N∑
i=1

C∑
j=1

d
(i)
j lny

(i)
j ,

g(C) = η‖C‖∗. (26)

Following the update scheme in [40], the APG uses the linear
combination of previous two points Ci−1 and Ci−2 as the next

DONG et al.: VEHICLE TYPE CLASSIFICATION USING A SEMISUPERVISED CONVOLUTIONAL NEURAL NETWORK 2253

search point Ci:

Ci =
ri−1 + ri−2 − 1

ri−1
Ci−1 −

ri−2 − 1
ri−1

Ci−2,

Ci =h

(
Ci −

1
ξ
∇Cf(Ci);

η

ξ

)
, (27)

where ξ is the Lipschitz constant calculated by the backtracking
search method, r is initialized as 1 and updated as ri = (1 +√

1 + 4r2i−1)/2, and h(x;α) = max(|x| − α, 0) sgn(x) is the

shrinkage operator.
STEP 2: Keeping C fixed, the optimal latent task matrix T is

learned by solving

min
T

−
N∑
i=1

C∑
j=1

d
(i)
j lny

(i)
j + λ‖T ‖2F + μ‖T ‖∗. (28)

Similar to STEP 1, Eq. (28) is also solved by using the APG
algorithm [40], where f(T) and g(T) are defined as

f(T) = −
N∑
i=1

C∑
j=1

d
(i)
j lny

(i)
j + λ‖T ‖2F ,

g(T) =μ‖T ‖∗. (29)

The overall algorithm for learning W is summarized in
Algorithm 2. The algorithm is converged when the value dif-
ference of the objective function in Eq. (24) is under a small
threshold. Since the second and third step of Algorithm 2 are
both based on APG, their convergence rates are O(k−2

1) and
O(k−2

2) where k1 and k2 are the iterative times of the two steps,
respectively.

Obtaining the optimized parameters, we calculate the type
probability of the test vehicle image by using the convolutional
neural network. The type of the test vehicle can be predicted
by picking the label which makes the probability achieving
maximum.

IV. EXPERIMENTS

A. Datasets, Settings, and Preprocessing

We constructed a complex and challenging vehicle dataset
called BIT-Vehicle Dataset1 which includes 9,850 vehicle im-
ages to test the proposed method. The proportion of nightlight
images in the whole dataset is about 10%. Fig. 3 shows the
example images of the dataset, there are images with sizes of
1600 × 1200 and 1920 × 1080 captured from two cameras at
different time and places. The images contain changes in the
illumination condition, the scale, the surface color of vehicles,
and the viewpoint. The top or bottom parts of some vehicles
are not included in the images due to the capturing delay and
the size of the vehicle. As shown in Fig. 3, there may be one
or two vehicles in one image, so the location of each vehicle
is pre-annotated. The dataset can also be used for evaluating
the performance of vehicle detection. All vehicles in the dataset

1The BIT-Vehicle Dataset can be accessed for research purpose by the link
of http://iitlab.bit.edu.cn/mcislab/vehicledb.

Fig. 3. The example images of BIT-Vehicle Dataset. All vehicles in our
dataset fall into 6 types: Bus, Microbus, Minivan, Sedan, SUV, and Truck.

are divided into six categories: Bus, Microbus, Minivan, Sedan,
SUV, and Truck. The numbers of vehicles per vehicle type are
558, 883, 476, 5,922, 1,392, and 822, respectively. For each
vehicle type, we randomly select 200 samples for training the
softmax parameters and 200 samples as test samples. In order
to give a better estimation of the generalization performance,
the reported results of the dataset are the averages of 20
independent experiments.

We also test our method on the dataset in [41]. There are to-
tally 3,618 daylight and 1,306 nightlight images with the image
size of 1600 × 1264 in the dataset. All the images are captured
in highways with a fixed camera. The vehicles in the images
fall into five categories: Truck, Minivan, Bus, Passenger car,

2254 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 4, AUGUST 2015

Fig. 4. The example images of the dataset in [41]. This dataset consists of
5 types of vehicles: Bus, Minivan, Passenger car, Sedan, and Truck.

TABLE I
CONFUSION MATRIX OF OUR METHOD ON BIT-VEHICLE DATASET

and Sedan(including sport-utility vehicle (SUV)). The dataset
contains some challenging factors, including illumination vari-
ations, rain blurring, different color surfaces of vehicles, and
background interferences, as shown in Fig. 4. For both datasets,
we learn the filters by the SLFL with the parameters as α = 0.3,
β = 0.2, and γ = 0.5. The parameters for solving W of the
softmax classifier are λ = 0.1, μ = 0.4, and η = 0.1, and the
threshold is set as ε = 10−4.

B. Results on BIT-Vehicle Dataset

We test our method on BIT-Vehicle dataset and report the
performance. Our approach achieves 88.11% accuracy. The
confusion matrix is shown in Table I. From the matrix, we
find that most of the misclassifications are between “SUV” and
“Sedan”. This is because they have quite similar appearances.
Fig. 5 shows some of the classified real word images together
with their classification results. Our model can precisely clas-
sify vehicle types in some challenging situations, such as differ-
ent lighting conditions, vehicle parts invisible, and viewpoint
changes. The primary reason is that our convolutional neural
network is able to learn discriminative features for vehicle type
classification. As shown in the last row of Fig. 5, most of
the misclassifications are due to visually similar appearance
patterns in different vehicle types (e.g., “Sedan” and “SUV”)
and significant image blurring.

To evaluate the effect of filters learned by the sparse Lapla-
cian filter learning (SLFL), we replace them by random values.
The classification accuracy is displayed in Table II. It shows that
the network with learned filters outperforms that with random
filters. The performance is significantly improved by using the

Fig. 5. Some real world images with classification results.

TABLE II
THE CLASSIFICATION ACCURACIES VERSUS DIFFERENT FILTER

LEARNING METHODS ON BIT-VEHICLE DATASET

SLFL as the sparse filters learned from unlabeled vehicles are
able to capture rich discriminative information of vehicles. The
effect of the manifold assumption involving in the SLFL is
also verified. We simply set β in Eq. (13) as 0 to remove
the Laplacian term. The filters are learned and applied in the
convolutional neural network. The classification accuracy is
also shown in Table II. The performance difference between
the “SLFL” and the “SLFL without Laplacian” demonstrates
the effectiveness of the manifold assumption during learning
filters. The sparse function sps(·) in Eq. (13) is the same
with the objective function of sparse filtering [36]. We use the
sparse filtering to learn filters for classification and compare
the accuracy with the SLFL. The high performance of “SLFL”
shows that the SLFL is more effective in learning filters. The
reason is that the SLFL takes the reconstruction, the sparse
property, and the manifold assumption all into account, while
the sparse filtering method only considers the sparse property.

We further investigate the contribution of the criterion for
learning the parameters W of the softmax layer. We use the
simple KL divergence which is the same with the objective
function of Eq. (23) as the criterion for learning W . The
effectiveness of the constraints for the latent task matrix and
the combination coefficient matrix is also evaluated. We remove
‖T ‖∗ and ‖C‖∗ from Eq. (24) and report the classification
performances, respectively. The results are all described in
Table III. As shown in the table, all the three constraints are
beneficial for learning the softmax parameter. The benefits of
the observation that many vehicle types are highly correlated
can be clearly seen from the accuracy difference between the
“KL divergence” and the “Multi-task learning”. The learned

DONG et al.: VEHICLE TYPE CLASSIFICATION USING A SEMISUPERVISED CONVOLUTIONAL NEURAL NETWORK 2255

TABLE III
CLASSIFICATION ACCURACIES VERSUS DIFFERENT CLASSIFIERS

ON BIT-VEHICLE DATASET

TABLE IV
CLASSIFICATION ACCURACIES VERSUS DIFFERENT FEATURES

ON BIT-VEHICLE DATASET

shared knowledge between vehicle types is demonstrated to be
effective for classification. The constraints of latent task matrix
and coefficient matrix are also beneficial to generate robust
model, as illustrated in Table III.

Furthermore, the effect of the network depth and the benefit
of the layer-skipping strategy are verified. We evaluate two
types of features. For the first one, only the 1st stage is used
to learn vehicle features, and the dimensionality of the final
feature is 2304. For the second one, the 2nd stage is added but
without layer-skipping strategy, and the dimensionality of the
final feature is 4096. Their average classification accuracies are
shown in Table IV, and the performance difference emphasizes
that multi-stage is better than one stage for vehicle feature
learning. The layer-skipping strategy connects the features
learned from the 1st stage and the 2nd stage. The features
learned from the 1st stage are low-level and local, and the
outputs of the 2nd stage are high-level global features. Our
model uses the high-level global features to capture rich and
discriminative information. With low-level local features, our
model is able to describe the details of the vehicle precisely.
Therefore, these two types of features can be effectively used
by adding the layer-skipping strategy into the network, as
illustrated in Table IV.

C. Comparison Results

We test our method on the dataset in [41]. Similar to [41],
the experiments on daylight images and nightlight images are
performed respectively. Since there is only one vehicle in an
image of the dataset, the image is directly used as the input
of the convolutional neural network to learn features without
vehicle detection. The reported results of the dataset are the
averages of 20 independent experiments for a better estima-
tion of the generalization performance. Our method achieves
96.1% classification accuracy on daylight images and 89.4% on
nightlight images, better than the results of previous methods,
as demonstrated in Table V. The underlying reason is that the
convolutional neural network we use is able to learn discrimi-
native and reliable features for vehicle type classification. The
unsupervised pre-trained filters can capture rich and discrimina-

TABLE V
COMPARISON RESULTS OF DIFFERENT METHODS ON

THE DATASET IN [41]

tive information of vehicles. The multi-task learning is able to
learn the robust model for classification. In addition, the layer-
skipping strategy allows the classifier use both high-level global
and low-level local features. It should be noted that our method
outperforms other methods even without vehicle detection.

V. CONCLUSION

We have proposed a vehicle type classification method from
vehicle frontal view images by using a semi-supervised convo-
lutional neural network. The filters of the network are learned
by the proposed sparse Laplacian filter learning method to
capture rich and discriminative information of vehicles. Serving
as the output layer, the softmax classifier is trained by the multi-
task learning. The network takes the vehicle image as the input
and outputs the probability of each type to which the vehicle
belongs. The features learned by the network are discriminative
enough to work well in complex scenes. Experimental results
on our own BIT-Vehicle dataset and a public dataset demon-
strate the effectiveness of the proposed method.

REFERENCES

[1] A. H. Lai, G. S. Fung, and N. H. Yung, “Vehicle type classification from
visual-based dimension estimation,” in Proc. IEEE Intell. Transp. Syst.
Conf., 2001, pp. 201–206.

[2] S. Gupte, O. Masoud, R. F. Martin, and N. P. Papanikolopoulos, “De-
tection and classification of vehicles,” IEEE Trans. Intell. Transp. Syst.,
vol. 3, no. 1, pp. 37–47, Mar. 2002.

[3] J.-W. Hsieh, S.-H. Yu, Y.-S. Chen, and W.-F. Hu, “Automatic traffic
surveillance system for vehicle tracking and classification,” IEEE Trans.
Intell. Transp. Syst., vol. 7, no. 2, pp. 175–187, Jun. 2006.

[4] Z. Zhang, T. Tan, K. Huang, and Y. Wang, “Three-dimensional
deformable-model-based localization and recognition of road vehicles,”
IEEE Trans. Image Process., vol. 21, no. 1, pp. 1–13, Jan. 2012.

[5] X. Ma and W. E. L. Grimson, “Edge-based rich representation for vehi-
cle classification,” in Proc. IEEE Int. Conf. Comput. Vis., 2005, vol. 2,
pp. 1185–1192.

[6] C. Zhang, X. Chen, and W.-B. Chen, “A PCA-based vehicle classification
framework,” in Proc. IEEE 22nd Int. Conf. Data Eng. Workshops, 2006,
pp. 17–17.

[7] P. Ji, L. Jin, and X. Li, “Vision-based vehicle type classification using
partial Gabor filter bank,” in Proc. IEEE Int. Conf. Autom. Logist., 2007,
pp. 1037–1040.

[8] Y. Shan, H. S. Sawhney, and R. Kumar, “Unsupervised learning of dis-
criminative edge measures for vehicle matching between nonoverlap-
ping cameras,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 4,
pp. 700–711, Apr. 2008.

[9] M. Jiang and H. Li, “Vehicle classification based on hierarchical support
vector machine,” in Computer Engineering and Networking, Dordrecht,
Switzerland: Springer-Verlag, 2014, pp. 593–600.

[10] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Jan. 2004.

2256 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 4, AUGUST 2015

[11] I. Sobel, “Camera models and machine perception,” Stanford Univ. Artif.
Intell. Lab, Stanford, CA, USA, Tech. Rep. AIM-21, 1970.

[12] V. S. Petrovic and T. F. Cootes, “Analysis of features for rigid structure ve-
hicle type recognition,” in Proc. Brit. Mach. Vis. Conf., 2004, pp. 1–10.

[13] P. Negri, X. Clady, M. Milgram, and R. Poulenard, “An oriented-contour
point based voting algorithm for vehicle type classification,” in Proc.
IEEE Int. Conf. Pattern Recog., 2006, vol. 1, pp. 574–577.

[14] A. Psyllos, C.-N. Anagnostopoulos, and E. Kayafas, “Vehicle model
recognition from frontal view image measurements,” Comput. Std.
Interfaces, vol. 33, no. 2, pp. 142–151, Jun. 2011.

[15] B. Zhang, “Reliable classification of vehicle types based on cascade
classifier ensembles,” IEEE Trans. Intell. Transp. Syst., vol. 14, no. 1,
pp. 322–332, Mar. 2013.

[16] Y. Peng et al., “Vehicle type classification using data mining techniques,”
in The Era of Interactive Media, New York, NY, USA: Springer-Verlag,
2013, pp. 325–335.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[18] C. Garcia and M. Delakis, “A neural architecture for fast and robust face
detection,” in Proc. IEEE 16th Int. Conf. Pattern Recog., 2002, vol. 2,
pp. 44–47.

[19] M. Osadchy, Y. L. Cun, and M. L. Miller, “Synergistic face detection and
pose estimation with energy-based models,” J. Mach. Learn. Res., vol. 8,
pp. 1197–1215, 2007.

[20] Y. Sun, X. Wang, and X. Tang, “Deep convolutional network cascade for
facial point detection,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recog., 2013, pp. 3476–3483.

[21] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun, “Pedestrian
detection with unsupervised multi-stage feature learning,” in Proc. IEEE
CVPR, 2013, pp. 3626–3633.

[22] N. Zhang, M. Paluri, M. Ranzato, T. Darrell, and L. Bourdev, “PANDA:
Pose aligned networks for deep attribute modeling,” in Proc. IEEE Com-
put. Soc. Conf. Comput. Vis. Pattern Recog., 2014, pp. 1637–1644.

[23] L. Kang, P. Ye, Y. Li, and D. Doermann, “Convolutional neural networks
for no-reference image quality assessment,” in Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recog., 2014, pp. 1733–1740.

[24] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification with
deep convolutional neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2012, pp. 1106–1114.

[25] A. Karpathy et al., “Large-scale video classification with convolutional
neural networks,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recog., 2014, pp. 1725–1732.

[26] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
Jul. 2006.

[27] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” in Proc. Adv. Neural Inf. Process. Syst.,
2007, vol. 19, pp. 153–160.

[28] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best
multi-stage architecture for object recognition?” in Proc. IEEE Int. Conf.
Comput. Vis., 2009, pp. 2146–2153.

[29] K. Kavukcuoglu et al., “Learning convolutional feature hierarchies for
visual recognition,” in Proc. Adv. Neural Inf. Process. Syst., 2010,
pp. 1090–1098.

[30] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A
geometric framework for learning from labeled and unlabeled examples,”
J. Mach. Learn. Res., vol. 7, pp. 2399–2434, 2006.

[31] A. Kumar and H. Daume III, “Learning task grouping and over-
lap in multi-task learning,” in Proc. Int. Conf. Mach. Learn., 2012,
pp. 1383–1390.

[32] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex,” J. Physiol., vol. 160,
no. 1, pp. 106–154, Jan. 1962.

[33] K. Fukushima and S. Miyake, “Neocognitron: A new algorithm for pat-
tern recognition tolerant of deformations and shifts in position,” Pattern
Recognit., vol. 15, no. 6, pp. 455–469, 1982.

[34] S. Lyu and E. P. Simoncelli, “Nonlinear image representation using di-
visive normalization,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recog., 2008, pp. 1–8.

[35] N. Pinto, D. D. Cox, and J. J. DiCarlo, “Why is real-world visual object
recognition hard?” PLoS Comput. Biol., vol. 4, no. 1, p. e27, Jan. 2008.

[36] J. Ngiam, Z. Chen, S. A. Bhaskar, P. W. Koh, and A. Ng, “Sparse filter-
ing,” in Proc. Adv. Neural Inf. Process. Syst., 2011, pp. 1125–1133.

[37] D. J. Field, “What is the goal of sensory coding?” Neural Comput., vol. 6,
no. 4, pp. 559–601, Jul. 1994.

[38] B. Willmore and D. J. Tolhurst, “Characterizing the sparseness of neu-
ral codes,” Netw., Comput. Neural Syst., vol. 12, no. 3, pp. 255–270,
Aug. 2001.

[39] J. Nocedal, “Updating quasi-Newton matrices with limited storage,”
Math. Comput., vol. 35, no. 151, pp. 773–782, Jul. 1980.

[40] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding al-
gorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2, no. 1,
pp. 183–202, Jan. 2009.

[41] Y. Peng, J. S. Jin, S. Luo, M. Xu, and Y. Cui, “Vehicle type classification
using PCA with self-clustering,” in Proc. IEEE Int. Conf. Multimedia
Expo Workshops, 2012, pp. 384–389.

[42] D. Zhen and Y. Jia, “Vehicle type classification using distributions of
structural and appearance-based features,” in Proc. Int. Conf. Image
Process., 2013, pp. 4321–4324.

Zhen Dong received the B.S. degree in computer
science in 2011 from Beijing Institute of Technology,
Beijing, China, where he is currently a Ph.D. candi-
date. His research interests include computer vision
and machine learning.

Yuwei Wu received the Ph.D. degree in computer
science from Beijing Institute of Technology (BIT),
Beijing, China, in 2014.

He is a Research Fellow with the School of Elec-
trical and Electronic Engineering, Nanyang Techno-
logical University, Singapore. His research interests
are in computer vision, video analytics, machine
learning, and pattern recognition.

Dr. Wu received the National Scholarship for
Graduate Students and the Academic Scholarship for
Ph.D. Candidates from the Ministry of Education

of China, the Outstanding Ph.D. Thesis Award and the Xu Teli Excellent
Scholarship from BIT, and the CASC Scholarship from China Aerospace
Science and Industry Corporation (CASIC).

Mingtao Pei received the Ph.D. degree in com-
puter science from Beijing Institute of Technology,
Beijing, China, in 2004.

He is an Associate Professor with the School of
Computer Science, Beijing Institute of Technology.
From 2009 to 2011, he was a Visiting Scholar with
the Center for Image and Vision Science, University
of California, Los Angeles. His main research inter-
est is computer vision with an emphasis on event
recognition and machine learning.

Dr. Pei is a member of China Computer Federation.

Yunde Jia (M’11) is a Professor of computer science
with Beijing Institute of Technology, Beijing, China.

He is the Director of Beijing Laboratory of Intelli-
gent Information Technology. He was a Visiting Sci-
entist at Carnegie Mellon University between 1995
and 1997 and a Visiting Fellow with the Australian
National University in 2011. His research interests
include computer vision, media computing, and in-
telligent systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

