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A Hybrid Data Association Framework for
Robust Online Multi-Object Tracking
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Abstract— Global optimization algorithms have shown impres-
sive performance in data-association-based multi-object tracking,
but handling online data remains a difficult hurdle to overcome.
In this paper, we present a hybrid data association framework
with a min-cost multi-commodity network flow for robust online
multi-object tracking. We build local target-specific models inter-
leaved with global optimization of the optimal data association
over multiple video frames. More specifically, in the min-cost
multi-commodity network flow, the target-specific similarities
are online learned to enforce the local consistency for reduc-
ing the complexity of the global data association. Meanwhile,
the global data association taking multiple video frames into
account alleviates irrecoverable errors caused by the local data
association between adjacent frames. To ensure the efficiency of
online tracking, we give an efficient near-optimal solution to the
proposed min-cost multi-commodity flow problem, and provide
the empirical proof of its sub-optimality. The comprehensive
experiments on real data demonstrate the superior tracking
performance of our approach in various challenging situations.

Index Terms— Multi-object tracking, data association,
optimization, multi-commodity flow.

I. INTRODUCTION

ONLINE multi-object tracking estimates the spatio-
temporal trajectories of multiple objects in an online

video stream (i.e., the video is provided frame-by-frame),
which is a fundamental problem for numerous real-time appli-
cations, such as video surveillance, autonomous driving, and
robot navigation. Assume that an object detector is available to
detect potential locations of multiple objects in each frame, the
tracking problem is consequently reduced to a data association
procedure which links these individual detections to form
consistent trajectories.

Data association is a challenging problem in many
situations, especially in complex scenes, due to the presence
of occlusions, inaccurate detections, and interactions
among similar-looking objects. Standard approaches for
data association are to recursively link detections frame
by frame [1]–[8], resulting in a bi-partite matching
between the existing trajectories and the newly obtained
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detections, as shown in Fig. 1(a). These approaches are
temporally local and computationally efficient, making
them suitable for the online setting. However, using only
the local information for data association might lead to
irrecoverable errors when an object is undetected or confused
with clutters. To overcome this shortcoming, the global
data association over entire video frames (or a batch of
frames) has been devoted to inferring optimal trajectories
[9]–[17], as shown in Fig. 1(b). Such a data association
problem can be solved in an optimization framework
with carefully designed cost functions. Unfortunately, global
association methods can not be directly applied to online video
streams. Overlapping temporal window is a common choice
to handle online data [10], [12], [13], but the connection
between consecutive batches remains an open problem.

In this paper, we propose a hybrid data association approach
for online multi-object tracking, which characterizes the supe-
riorities of both local and global data association methods. The
core of our approach lies on the association between the exist-
ing trajectories and the detections from multiple video frames
within a temporal window, as shown in Fig. 1(c). We exploit
a min-cost multi-commodity flow which is with respect to a
cost-flow network constructed by the detections from multiple
frames. The proposed mini-cost multi-commodity network is
able to formulate a hybrid data association strategy to handle
online data with an efficient near-optimal solution.

In our framework, all possible associations among the
detections are represented by edges in the network, where
the corresponding edge costs account for the association
likelihoods. Each existing trajectory is then supposed to be a
specific commodity, and its optimal associations can be found
by sending specific commodity flows through the network
with a minimum cost. The following three issues need to be
studied: (i) identifying newly appeared objects automatically;
(ii) computing edge cost for different commodities; (iii) solv-
ing the min-cost multi-commodity flow problem efficiently.
Our contributions are three-fold.

• We introduce a dummy commodity into our network to
automatically identify a new object. The dummy com-
modity corresponds to a target-independent model, and
its commodity flows indicate the permissible tracks of
objects newly appeared in a temporal window.

• We present an online discriminative appearance modeling
approach to build target-specific models for different
existing trajectories. The edge costs of multiple commodi-
ties in the network are estimated by exploiting the target-
specific information to discriminate a specific target from
both other targets and the background.
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Fig. 1. Illustration of our hybrid data association approach. (a) Local association is performed between two consecutive frames t and (t + 1), and a bi-partite
matching between the existing trajectories (marked as color arrows) at the current frame t and the detections (marked as circles) from the next frame (t + 1)
is usually solved. (b) Global association is performed over a batch of frames (length T in this example), and an optimization problem is usually solved to
infer optimal trajectories based on the pairwise affinity between detections. (c) The hybrid association finds globally optimal associations for the existing
trajectories within a temporally local window (length �t in this example), and the target-specific information from the existing trajectories provides helpful
local constraints to guide the global optimization.

• We propose a near-optimal solution algorithm to the
min-cost multi-commodity flow problem, and provide an
empirical proof of its sub-optimality. By using the column
generation strategy, our solution is extremely efficient and
performs well in multi-object tracking.

The proposed hybrid strategy offers several advantages over
existing methods. First, it makes the global optimization of
trajectories applicable to online data. The local association
between consecutive frames is extended to account for more
hypotheses from multiple frames. Irrecoverable errors caused
by noisy detections or frequent occlusions can be alleviated
to improve online tracking performance. Second, the target-
specific information from the existing trajectories is explicitly
modeled to guide the global optimization over the current
batch of frames. In practice, it enforces local constraints
to reduce the complexity of the optimization problem as
the associated detections are restricted to be consistent with
the target-specific models. Both qualitative explanation and
experimental confirmation are provided to support this claim.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III describes details of our
online multi-object tracking method using the hybrid data
association including min-cost multi-commodity flow formu-
lation and its edge costs. Section IV presents the globally-
optimal solution of our model. We report and discuss the
experimental results in Section V, and conclude the paper
in Section VI.

II. RELATED WORK

In multi-object tracking, data association based methods fall
into a sub-domain known as the tracking-by-detection tech-
nique, which has shown impressive tracking performance in
unconstrained environments. A thorough review can be found
in [18]. As evidenced in Section I, the local association method
has aroused considerable research interests. Especially with
the success of recurrent neural networks (RNNs) in computer
vision community [19], RNNs-based methods have witnessed
significant advances on MOT problems. Based on the pioneer
work introduced by Ondruska and Posner [20], RNNs-based
method quickly sparked significant interest to model the local

association, and inspired a number of extensions including
[21]–[23]. Nevertheless, the RNNs usually come with high
computational and memory demands both during the model
training and inference. We here enforce the locality constraint
into the global data association formulation, and introduce a
hybrid data association framework that is able to integrate the
advantages of both local and global association methods.

Maintaining locality for global data association is critical for
multi-object tracking performance, since global optimization
might scale poorly for the complex scenario and long
batches without local constraints. Many global association
methods enforce locality by iteratively optimizing trajectories
[24]–[27], or using tracklets (i.e., short-term trajectory
fragments) instead of individual detections [9], [15], [28].
However, these strategies are hardly applied to online video
streams. Alternatively, one can divide an online video stream
into consecutive batches with temporal sliding windows,
and apply global data association to each video batch [10],
[12], [13]. In order to produce consistent trajectories, the
connection between optimized trajectories from adjacent
batches need to be considered. However, most existing
methods adopt heuristic strategies to connect adjacent batches
and can not ensure the optimality of the trajectories.

To retain the ability of handling online data, we turn to
explicitly model the target-specific information from previ-
ous observations, similar to local data association methods,
to cooperate with the global data association over multiple
frames. Integrating local and global data association is rarely
mentioned in the literature. Lenz et al. [29] proposed an
approximate online solution to the min-cost network flow
problem with bounded memory and computation. The local
consistency, however, is ignored in the optimization of tra-
jectories. Choi [30] proposed an online multi-object tracking
method to formulate the data association between previously
tracked objects and detections in a temporal window. The
method has a similar problem setting with our method, while
the difference is that a highly non-convex formulation is
adopted to select appropriate hypotheses for the objects. The
solution heavily relies on both the affinity measures and the
generated trajectory hypotheses. In contrast, we use a more
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Fig. 2. Illustration of the multi-object tracking process with our hybrid data association. At each time step t , we solve a data association problem between
the set of existing trajectories Tt and the set of detection responses X(t+1):(t+�t) in a temporal window [t + 1, t + �t]. After that, the trajectory set Tt is
updated to Tt+1 by incorporating the associated detections at the frame (t + 1), and the temporal window moves one time step forward.

compact formulation, i.e., the min-cost multi-commodity flow,
to address the hybrid data association. The target-specific
information contained in the existing trajectories is incorpo-
rated into the flow costs in a natural way, ensuring that the
objective is still convex. We also propose an optimization algo-
rithm to the network flow problem, and show its effectiveness
in multi-object tracking.

Recently, multi-commodity flow has been introduced into
multi-object tracking in [31] and [32]. Ben Shitrit et al. [31]
employed the multi-commodity network to account for dif-
ferent appearance groups which are fixed beforehand. Each
appearance group (e.g., a basketball team) is supposed
to be a specific commodity in the network, and solving
multi-commodity flow problems is able to distinguish dif-
ferent appearance groups during the optimization process.
Dehghan et al. [32] have focused on integrating object detector
learning and multi-object tracking, where the multi-commodity
network is used to track a fixed number of objects in a short
video batch. Our approach is different from these methods in
that we use a multi-commodity network to formulate a hybrid
data association strategy to handle online data. Furthermore,
a high-quality near-optimal solution to the min-cost multi-
commodity flow problem can be achieved by an efficient algo-
rithm, especially when the number of objects (commodities)
is relatively large. Thus we do not need to heuristically prune
the graph [31] or iteratively relax the hard constraints [32].

III. HYBRID DATA ASSOCIATION

Let X = {xi }N
i=1 denote the set of detections from the video

with xi the i -th detection and N the number of detections.
Assume that, at each time step t , we have a set of existing
trajectories Tt and observe multiple video frames in a tem-
poral window [t + 1, t + �t]. A set of detection responses
X(t+1):(t+�t) is obtained by applying an object detector to each
video frame within the temporal window. The task of hybrid
data association is to find globally optimal associations of Tt

over the detections X(t+1):(t+�t), and simultaneously identify
newly appeared objects. Then the trajectory set Tt is updated
to Tt+1 by incorporating the associated detections at the

frame (t + 1), and the temporal window moves one time step
forward, as shown in Fig. 2. In practice, it causes a latency
of (�t − 1) to output tracking results, as the trajectories at
the frame (t + 1) are not updated until the frame (t + �t)
is observed. Nevertheless, our approach operates in an online
manner to handle online data. Note that the traditional local
or global data association methods can be regarded as special
cases of the proposed hybrid framework by adjusting the
length of the temporal window as �t = 1 or �t = T (total
length of the video), respectively.

In this section, the data association between Tt and
X(t+1):(t+�t) is formulated as a min-cost multi-commodity flow
problem, as shown in Fig. 3. For the convenience of discus-
sion, we drop the time index in the following description, and
denote the current set of existing trajectories as T = {Tk}K

k=1,
where Tk is the k-th existing trajectory and K is the number
of existing trajectories.

A. Our Min-Cost Multi-Commodity Flow

Given the set of existing trajectories T and the set of detec-
tions X = {xi }N

i=1, we introduce a directed network G(X )
with multiple sources sk and sinks nk , k ∈ {0, 1, . . . , K }.
The directed network G(X ) is constructed by the set of
detections X . Each detection xi ∈ X corresponds to a pair of
nodes (ui , vi ) in G connected by an observation edge with
cost ci and flow fi . The cost ci indicates the confidence
of observing the detection xi , and the flow fi encodes the
selection of the detection xi in some tracks. Each transition
between a pair of detections (xi , x j ) is represented by a
transition edge (vi , u j ) with cost ci j and flow fi j . The cost ci j

represents the coherence between detections xi and x j , and
the flow fi j indicates that the two detections are connected
through the same track. The set of permissible transitions
between detections is denoted as E . It could be a subset of
all pairs of detections in successive frames by using choice
heuristics (e.g., spatial proximity). Finally, the source s and
sink n are introduced with track start edges (s, ui ) (with
cost csi and flow fsi ) and track termination edges (vi , n) (with
cost cin and flow fin ). Then the multi-object tracking problem
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Fig. 3. An example of the directed network with multiple sources and
sinks. Each detection xi ∈ X is represented by a pair of nodes connected
by an observation edge. Possible transitions between detections are modeled
by transition edges. To allow tracks to start and terminate at any detections
from the video, each detection is connected to both a source s and a sink n.
We use f k

i , f k
i j , f k

si , and f k
in to represent the amount of the k-th commodity

flows on the observation edge (ui , vi ), the transition edge (vi , u j ), the track
start edges (sk , ui ), and the track terminate edge (vi , nk ), respectively. We
add a dummy commodity 0 with the source s0 and sink n0 to represent a
target-independent model.

is formulated as sending a set of flows from the source s to
sink n, which minimizes the total cost

C( f ) =
∑

i

ci fi +
∑

i

csi fsi +
∑

i j∈E

ci j fi j +
∑

i

cin fin . (1)

In this work, each existing trajectory Tk is supposed to be
a target-specific commodity k which corresponds to a source-
sink pair (sk, nk). Specifically, sources sk and sinks nk are
introduced with track start edges (sk, ui ) and track termination
edges (vi , nk) connected to all detections, indicating that the
existing trajectories or newly appeared trajectories are allowed
to start and terminate at any detection from the temporal
window. For each commodity k, sending flows from sk to
nk through the network incurs a specific set of edge costs.
Formally, we use f k

i , f k
i j , f k

si , and f k
in to represent the

amount of the k-th commodity flows on the observation edge
(ui , vi ), the transition edge (vi , u j ), the track start edges
(sk, ui ), and the track terminate edge (vi , nk), respectively.
The corresponding edge costs, in a similar way, are denoted
as ck

i , ck
i j , ck

si , and ck
in .

To identify newly appeared objects, we add a dummy
commodity 0 with the source s0 and sink n0 to represent a
target-independent model. We call a flow sent from sk to nk

as the k-th commodity flow. That is, the source and sink are
extended to account for multiple commodities (see an example
in Fig. 3). Then the optimal associations of Tk over X can
be found by sending the k-th commodity flow through the
network. It leads to a multi-commodity flow problem in the
community of network flow [33].

With the network G(X ), the hybrid data association prob-
lem is formulated as finding an optimal set of flows between

multiple source and sink pairs {(sk, nk)}K
k=0, which minimizes

the total cost
K∑

k=0

(∑

i

ck
si f k

si +
∑

i

ck
i f k

i +
∑

i j∈E

ck
i j f k

i j +
∑

i

ck
in f k

in

)
. (2)

Intuitively, each flow path connects a set of coherent detections
over time and thus can be interpreted as an object track.
In practice, the flow should subject to the following constraints
to satisfy the physical conditions in a real world:

∀k, f k
i , f k

i j , f k
si , f k

in ∈ {0, 1}, (3)

∀k, f k
si +

∑

j : j i∈E

f k
j i = f k

i =
∑

j :i j∈E

f k
i j + f k

in , (4)

∀e ∈ {i, i j, si, in},
K∑

k=0

f k
e ≤ 1, (5)

∀k,
∑

i

f k
si = dk =

∑

i

f k
in . (6)

The constraint (3) is an edge capacity constraint which means
that each detection belongs to at most one track. The flow
conservation constraint (4) encodes that the sum of flows
arriving at any detection xk

i is equal to the flow of its
observation edge f k

i , which also is the sum of outgoing flows
from the detection xk

i . The constraints (3), (4), and (5) ensure
that all permissible flows in the network come in the form
of flow paths from sources to sinks, and also ensure that
there is no overlap between multiple paths. The flow variables
f k
i , f k

i j , f k
si , f k

in act as binary indicators taking the value 1
when the corresponding edge is selected in a flow path of the
commodity k. The constraint (6) restricts the total amount of
flows sent from sk to nk to be a certain value dk . Consequently,
each flow path in the network can be interpreted as an object
track which connects a set of coherent detections over time.
A flow path of commodity k with k �= 0 is the success track of
the existing trajectory Tk within the temporal window. We thus
set dk = 1 for k �= 0 to ensure that each existing trajectory
has only one success track. For the dummy commodity, we
set d0 = 20 to capture a sufficient number of new objects.

To simplify the notation, we collect the flow variables f k
i ,

f k
i j , f k

si , f k
in in a long vector fk and the edge cost variables

ck
i , ck

i j , ck
si , and ck

in in a long vector ck , respectively. Then
the optimization problem that minimizes the cost (2) with
constraints (3), (4), (5), and (6) can be rewritten as

min
f

K∑

k=0

(
ck

)�
fk

s.t . ∀k, fk ≥ 0,

∀k, U fk = 0,

∀k, V fk = dk1,

∀k, fk integer,
K∑

k=0

fk ≤ 1, (7)

where the constraints are rearranged into the matrix form. The
vectors with all zero and one entries are denoted as 0 and 1,
respectively.
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B. Computing Edge Costs

In our min-cost multi-commodity flow formulation, sending
flows of a commodity k through the network incurs a specific
set of edge costs ck . Therefore, local information contained in
the existing trajectories can be incorporated into the edge costs
in a natural way, and thus guides the global data association
over multiple video frames. In this subsection, we show that
the edge costs can be computed by exploiting the target-
specific information from the existing trajectories.

1) Observation Cost: Given an existing trajectory Tk and a
detection xi , the observation cost ck

i encodes the possibility of
xi belonging to Tk . ck

i is computed by

ck
i = −φk (̃ak, ai ), (8)

where φk(·, ·) is the similarity function used to recognize
the specific object corresponding to Tk , and ãk and ai are
the appearance feature of the existing trajectory Tk and the
detection xi , respectively. We use Convolutional Neural Net-
work (CNN) features to capture the appearance information
of an object, as described in Section V-C. The appearance
feature of Tk is represented by the average feature vector
over the last 10 frames, and the appearance feature of xi is
extracted from the image region corresponding to its location.
The similarity function φk(·, ·) assigns high similarity scores
to pairs of appearance features when both of them originate
from the same object corresponding to Tk , while producing
low similarity scores when more than one of them originate
from other objects. We utilize an online similarity learning
approach to learn the target-specific similarity function φk(·, ·),
as described in Section III-C. For the dummy commodity, we
set c0

i to the negative detector score of the detection xi .
Note that the observation costs take negative values when

the appearance similarity scores or the detector scores are
larger than zero, which facilitates the generation of long
trajectories. Furthermore, the observation costs taking negative
values ensure the appearance consistency for each trajectory
since the total cost of the network flows is minimized in our
model.

2) Transition Cost: The transition cost ck
i j indicates the

confidence of connecting the detections xi and x j in the same
success track of Tk , which can be computed by

ck
i j = −φk(ai , a j ), (9)

where ai and a j are the appearance feature of the detection xi

and the detection x j , respectively. For the dummy commodity,
the transition cost c0

i j is computed by using the cosine of
the angle between two feature vectors as a target-independent
similarity function.

3) Track Start/Termination Cost: The track start cost ck
si

encodes the possibility that a success track Tk starts at the
detection xi . Given the frame index ti of the detection xi , we
use a constant velocity model to obtain a prediction of Tk at
the frame ti , denoted as p(Tk, ti ). Then the track start cost ck

si
is given by

ck
si = −ηti−ψ(Tk ) · o (p(Tk, ti ), xi ), (10)

where η is a decay factor (set to 0.95) which discounts long
term prediction, ψ(Tk) is the last associated frame of Tk ,

and the function o denotes the overlap rate between two
bounding boxes. For the dummy commodity, we set the
track start cost c0

si to be a large positive value (10 in
our implementation) to reduce the priority of identifying
new objects while facilitating the association of the existing
trajectories.

Similarly, the track termination cost ck
in encodes the pos-

sibility that a success track of the Tk ends at the detec-
tion xi . Suppose that an object trajectory ends at all detections
with the same probability, we simply set ck

in = 10 for
all k.

C. Online Similarity Learning

Given an existing trajectory Tk , we learn a target-specific
similarity function φk(·, ·) to distinguish the corresponding
object from the others. Formally, we use a parametric similar-
ity function that has a bi-linear form to estimate the appearance
similarity between two appearance features xi and x j ,

φk(ai , a j ) = a�
i Wka j , (11)

where Wk ∈ R
m×m with m the dimensionality of appearance

features. The task of online similarity learning is to estimate an
appropriate parameter matrix Wk for the existing trajectory Tk

in the process of online tracking.
At each time t , we assume that a detection from time

(t + 1), whose appearance feature is denoted as a(t+1)
k , is

associated with the existing trajectory T (t)k . The parameter
matrix W(t)

k of T (t)k at the current time t is needed to
be updated to account for the newly observed appearance
feature a(t+1)

k . The principle of updating W(t)
k is to recognize

a(t+1)
k as a relevant appearance and {a(t+1)

l |l �= k} as
irrelevant appearances. We therefore construct a set of triplets
S(t+1)

k = {(̃a(t)k , a(t+1)
k , a(t+1)

l )|l �= k}, where ã(t)k is the
appearance feature of T (t)k at the current time t . Each triplet
(a, b, c) indicates that the similarity between a and b is
apparently larger than the similarity between a and c. Forcing
the current matrix W(t)

k to satisfy the triplet set S(t+1)
k leads

to the updated matrix W(t+1)
k at time (t + 1).

We here present an incremental update algorithm to satisfy
the triplets sequentially [34]. Without loss of generality,
assume that we have a parameter matrix Wτ at the τ -th
iteration and observe a triplet (aτ , a+

τ , a−
τ ). The goal of

incremental updating is to obtain a new matrix W satisfying

(aτ )�W(a+
τ ) > (aτ )�W(a−

τ )+ 1, (12)

which means that it fulfills the definition of a triplet with
a safety margin of 1. Meanwhile, applying the Passive-
Aggressive algorithm [35] to maintain smoothness, the new
matrix is selected to remain close to the previous matrix Wτ .

We define a hinge loss function to measure the confidence
that a matrix W satisfies the triplet (aτ , a+

τ , a−
τ ),

LW(aτ , a+
τ , a−

τ )=max
{

0, 1−(aτ )�W(a+
τ )+(aτ )�W(a−

τ )
}
.

(13)
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Then the problem of incremental updating can be expressed
as

Wτ+1 = arg min
W

1

2
‖W − Wτ‖2

F + Cξ

s.t . LW(aτ , a+
τ , a−

τ ) ≤ ξ, ξ ≥ 0, (14)

where ‖ · ‖F is the Frobenius norm, ξ is a slack variable, and
C is a parameter that controls the trade-off between preserving
smoothness and minimizing the loss on the current triplet.

Since Eq. (14) is a constrained convex optimization prob-
lem, we can directly derive its optimal solution by using the
Karush-Kuhn-Tucker (KKT) conditions,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Wτ+1 = Wτ + ατVτ ,

Vτ = aτ (a+
τ − a−

τ )
�,

ατ = min

{
C,

LWτ (aτ , a+
τ , a−

τ )

‖Vτ‖2

}
.

(15)

According to Eq. (15), the update only happens when the hinge
loss LWτ (aτ , a+

τ , a−
τ ) on the triplet is larger than zero.

To summarize, for each existing trajectory T (t)k at time t ,
we incrementally update the similarity function parameterized
by the matrix W(t)

k through the following steps:

• construct the triplet set S(t+1)
k ;

• sequentially update the matrix by using the triplet in
S(t+1)

k one-by-one with Eq. (15);
• obtain the updated matrix W(t+1)

k at the time (t + 1).
Note that the parameter matrix Wk of the existing trajectory Tk

is initialized to an identity matrix when the trajectory is ini-
tialized. The incremental update on each iteration, as defined
by Eq. (15), only involves few matrix operations and thus
is extremely efficient. Moreover, the entire online similarity
learning process for each trajectory is independent and can
be performed parallelly to further improve the computational
efficiency.

IV. OPTIMIZATION

Finding a global minimum of the formulation (7) is exactly
an Integer Linear Program (ILP) which is NP-hard. In addition,
the optimal solution to its Linear Program (LP) relaxation is
not guaranteed to be integral, which serves as an important
requirement for the generation of reasonable object trajecto-
ries. In this section, by exploring the special structure of the
constraints, we propose an efficient optimization algorithm that
is able to provide near-optimal integer solutions with empirical
sub-optimality certificates.

A. Dantzig-Wolfe Decomposition

Most constraints in the problem (7) only involve a single
commodity, we use the Dantzig-Wolfe decomposition [36] to
reformulate the “relatively easy” constraints. Specifically, we
consider the nonnegativity constraints fk ≥ 0 and the flow
conservation constraints U fk = 0 that are exactly identical for
each commodity k. All feasible flow vectors can be treated as
points lying on the polyhedron P = {f ≥ 0 | U f = 0}. It is
a cone and has a single vertex 0 and a finite number of rays

{r1, . . . , rG}. By the Minkowski-Weyl theorem [37], we can
represent a flow vector fk ∈ P as

fk =
∑G

g=1
λk,grg, (16)

where λk,g ≥ 0 is the associated non-negative coefficient.
In our case, the rays {r1, . . . , rG} form the basis of the null
space defined by the constraint matrix U in the flow con-
servation constraints U f = 0, which correspond to indicator
vectors of all possible paths from the source to the sink in our
network.

Substituting the equation (16) into (7), (7) can be rewritten
as

min
λ

K∑

k=0

G∑

g=1

λk,g

((
ck

)�
rg

)

s.t .
K∑

k=0

G∑

g=1

λk,grg ≤ 1,

∀k,
G∑

g=1

λk,g = dk,

∀k, ∀g, λk,g ≥ 0,

∀k, ∀g, λk,g integer. (17)

The formulation (17) can be seen as a path flow problem that
is equivalent to the original edge flow formulation (7). The
variable λk,g is interpreted as the k-th commodity flow on the
path corresponding to rg , indicating whether the path rg is
selected by the k-th commodity or not.

B. Column Generation

Enumerating all possible paths to construct the complete
set {r1, . . . , rG} leads to a very large number of variables for
optimization. Actually, only a few paths among {r1, . . . , rG}
are needed to achieve the optimal solution in practice. We
thus use the column generation algorithm [38] to dynamically
find the critical paths. In the following, we consider the LP
relaxation of the formulation (17), denoted as the master
LP (MLP), by removing the integer constraints, and show later
how to obtain a near-optimal integer solution.

Formally, the MLP problem can be expressed as

(MLP) min
λ

K∑

k=0

∑

g∈I
λk,g

((
ck

)�
rg

)

s.t .
K∑

k=0

∑

g∈I
λk,grg ≤ 1,

∀k,
∑

g∈I
λk,g = dk,

∀k, ∀g ∈ I, λk,g ≥ 0, (18)

where I = {1, . . . ,G} is the whole index set of all possible
paths. The dual problem of the MLP, denoted as DMLP,



YANG et al.: HYBRID DATA ASSOCIATION FRAMEWORK 5673

has the form

(DMLP) max
π,σ

− 1�π +
K∑

k=0

dkσk

s.t . ∀k, ∀g ∈ I, − π�rg + σk ≤
(

ck
)�

rg,

π ≥ 0, (19)

where (π, σk) are the dual variables of the primal vari-
ables λk,g . According to the duality theory, any dual feasible
solution of the DMLP provides a lower bound on the MLP,
being the fundamental of the column generation algorithm.

Assume that, at the iteration τ , only a subset of
paths {rg}g∈Iτ with Iτ ⊂ I is available. Solving the MLP
on the subset Iτ gives rise to the restricted master linear
program (RMLP),

(RMLP) min
λ

K∑

k=0

∑

g∈Iτ
λk,g

((
ck

)�
rg

)

s.t .
K∑

k=0

∑

g∈Iτ
λk,grg ≤ 1,

∀k,
∑

g∈Iτ
λk,g = dk,

∀k, ∀g ∈ Iτ , λk,g ≥ 0. (20)

Let λ∗
k,g and (π∗, σ ∗

k ) be the optimal primal and dual solution
to the RMLP, respectively. We need to check whether the
optimal solution to the RMLP is also optimal for the MLP,
and decide whether the current path set Iτ is needed to be
augmented. It can be realized by solving the following pricing
problem:

ζk = min

{(
ck + π∗)�

rg
∣∣ g ∈ I

}
. (21)

In our case, the pricing problem turns into a shortest path
problem with regard to the modified edge cost (ck + π∗) for
the commodity k, which can be solved very efficiently by
dynamic programming. With the optimal solution ζk to the
pricing problem, we have the following proposition.

Proposition 1: If ζk ≥ σ ∗
k holds for all k, the optimal primal

solution to the RMLP λ∗
k,g optimally solves the MLP.

Proof: Given the optimal primal solution to the
RMLP λ∗

k,g , we can validate that λ∗
k,g is a feasible solution to

the MLP by setting λk,g = 0 for those paths not in the current
set Iτ . Therefore, the optimal value of the RMLP gives an
upper bound on the MLP,

v(RM L P) ≥ v(M L P), (22)

where v(RM L P) and v(M L P) are the optimal values of the
RMLP and the MLP, respectively.

According to the definition of the pricing problem (21),
when ζk ≥ σ ∗

k holds for all k ∈ {0, 1, . . . , K }, we have

∀k, ζk = min

{(
ck + π∗)�

rg
∣∣ g ∈ I

}
≥ σ ∗

k . (23)

(23) can be rewritten as

∀k, ∀g ∈ I, −π∗�rg + σ ∗
k ≤

(
ck

)�
rg, (24)

which implies that the optimal dual solution to the RMLP
(π∗, σ ∗

k ) is also a feasible solution to the DMLP given by (19).
According to the duality theory, the solution (π∗, σ ∗

k ) provides
a lower (dual) bound on the MLP, we therefore have

v(RM L P) ≤ v(M L P). (25)

Note that the above equation uses the fact that the optimal
primal solution λ∗

k,g and the optimal dual solution (π∗, σ ∗
k )

to the RMLP gives the exactly same optimal value of the
objective function.

With the equations (22) and (25), we can conclude that the
RMLP and the MLP have the same optimal value if ζk ≥ σ ∗

k
holds for all k. The optimal primal solution to the RMLP λ∗

k,g
optimally solves the MLP, thereby completing the proof.

If the condition of the Proposition 1 is not satisfied, i.e.,
ζk < σ ∗

k for some k, the shortest path r̃k provided by
the pricing problem (21) has a negative reduced cost. We
introduce r̃k into the subset Iτ , and repeat the process for
the next iteration to decrease the objective value of the MLP.

To obtain a near-optimal integer solution to the ILP (17),
one can retain the feasible solution with the minimum
objective value once the RMLP provides an integer solution
during the column generation process. Since the optimal
solution to the MLP gives a lower bound for the ILP, the
difference between the objective value of the returned integer
solution and the lower bound is thus an upper bound certificate
on its sub-optimality. In our experiments, we obtained small
sub-optimality certificates for the returned integer solutions,
indicating that our optimization algorithm based on
column generation is stable. We summarize our method
in Algorithm 1.

V. EXPERIMENTS

In this section, we evaluate our approach on real world
videos to demonstrate its effectiveness. Specifically, the
performance of our approach is analyzed in three aspects.
(i) We evaluate the influence of the length of the temporal
window,i.e., �t on multi-object tracking performance for
our hybrid data association framework; (ii) We compare the
column generation (CG) solver introduced in this paper and the
exact integer linear programming (ILP) solver in terms of sub-
optimality, convergence speed, and MOTA score; (iii) We show
that our approach produces superior tracking results over the
state-of-the-art via both quantitative and qualitative evaluation.

A. Datasets

We use two publicly available benchmark datasets, i.e., the
PETS 2009 dataset and the MOTChallenge 2015 dataset, for
performance evaluation. The details are listed as follows.

1) PETS 2009: The PETS 2009 dataset [39] shows an
outdoor scene where numerous pedestrians enter, exit, and
interact with each other frequently. The images of the dataset
are recorded in 768×576 pixels at 7 fps. The major challenges
of this dataset are frequent occlusions either caused by people
interaction or static occlusions due to a traffic sign. Apart from
the widely used S2L1 and S2L2 sequence, we also evaluate our
approach on the more challenging S2L3 sequence that captures
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Algorithm 1 The Hybrid Data Association via Column
Generation

much denser crowds. The input detections and ground truth of
these sequences are from Milan et al. [26].

In our experiments, we use the PETS 2009 dataset for
diagnosis analysis, including the investigation of the influence
of the critical parameter �t (see Section V-D) and the com-
parison between the proposed CG solver and the ILP solver
(see Section V-E). The reason is that the S2L1, S2L2, and
S2L3 sequences from the PETS 2009 dataset, respectively,
correspond to three representative application scenarios of
multi-object tracking with low, high, and crowded object
densities.

2) MOTChallenge 2015: The MOTChallenge 2015 dataset
gathers various existing and new challenging video sequences
to evaluate the performance of multi-object tracking methods.
Since our method performs tracking on the image coordinate,
we use the 2D MOT 2015 sequences in the MOTChal-
lenge 2015. The sequences are composed of 11 training
and 11 testing video sequences in which the challenges
include camera motion, low viewpoint, varying frame rates,
and severe weather condition. The training sequences con-
tain over 5500 frames (∼ 7 minutes) and 500 annotated
trajectories (39905 bounding boxes). The benchmark releases
the ground truth of the training sequences publicly, and thus
one can use the training sequences to determine the set
of system parameters. The testing sequences contains over
5700 frames (∼ 10 minutes) and 721 annotated trajectories

(61440 bounding boxes), while the annotations are not avail-
able to avoid (over)fitting of the competing methods to the
specific sequences.

Since it is hard for methods to finetune on such a large
amount of data, we use the 11 testing sequences from
the MOTChallenge 2015 dataset for quantitative comparison
against various state-of-the-art trackers in our experiments
(see Section V-F). Moreover, the tracking results of all com-
peting methods are automatically evaluated by the benchmark
and the performance scores are publicly online, making the
quantitative comparison strictly fair.

B. Evaluation Metrics

We use the widely accepted CLEAR MOT performance
metrics [40] for performance evaluation which include the
multiple object tracking precision (MOTP↑) that measures
average overlap rate between estimated trajectories and the
ground truth, the multiple object tracking accuracy (MOTA↑)
that is a cumulative accuracy combining false positives (FP↓),
false negatives (FN↓) and identity switches (IDS↓). We also
report performance scores defined by Li et al. [41], includ-
ing the percentage of mostly tracked (MT↑) ground truth
trajectories, the percentage of mostly lost (ML↓) ground
truth trajectories, and the number of times that a ground truth
trajectory is interrupted (Frag↓). To be specific, a ground truth
trajectory is determined to be mostly tracked if and only if it
is covered by the estimated trajectories with percentage larger
than 80%, while a ground truth trajectory is determined to be
mostly lost when the coverage percentage is less than 20%.
Additionally, we report the false positive ratio to account for
the accuracy of identifying true targets, which is measured by
the number of false alarms per frame (FAF↓). Here, ↑ means
that higher scores indicate better results, and ↓ represents that
lower is better.

C. Appearance Feature

As for the appearance features, we utilize the region-
based CNN features proposed in [42], where the deep neural
network is trained on the ImageNet dataset and fine-tuned
on the PASCAL VOC dataset. To obtain a more generic
deep representation, we follow the strategy in [43] to use
sum pooling to aggregate the output of the last convolutional
layer, rather than directly use the features from the last fully-
connected layer. For each detection region, the final feature
vector is 256-dimensional with better time and space com-
plexity. Considering that objects of interest tend to be located
close to the geometrical center of an image, we also apply
the centering prior to the sum pooling strategy to improve the
accuracy, which assigns larger weights to the features from
the center of the region.

D. Influence of Large Temporal Window

The length of the temporal window (�t) determines the
number of video frames in which the existing trajectories can
find their associations, and thus is critical for the proposed
hybrid association framework. Intuitively, taking more frames
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Fig. 4. Influence of the length of the temporal window (�t) on tracking performance. (a) MOTA, (b) IDS, and (c) FG scores on the PETS dataset are plotted.

Fig. 5. Sub-optimality comparison between the CG and ILP solvers. The sub-optimality certificates are reported for each frame of (a) PETS-S2L1,
(b) PETS-S2L2, and (c) PETS-S2L3 sequences, respectively. The certificates provided by the CG solver are quite small (equal to zero in most of the cases)
and comparable to the ILP solver, indicating that the CG solver is stable.

into account should be helpful for handling inaccurate detec-
tions and occlusions. To study the influence of �t on multi-
object tracking performance, we conduct an experiment with
�t = {1, 5, 10, 15, 20, 30} on the PETS dataset. Fig. 4 shows
the MOTA, IDS, and FG scores as a function of �t .

We can observe from Fig. 4 that enlarging the temporal
window improves the overall performance and apparently
reduces the number of ID switches and trajectory fragments,
especially compared with the purely local method when the
length of temporal window is set to �t = 1. This result
indicates the importance of the data association across multiple
frames which our hybrid data association framework can
leverage. As we claimed, integrating the local target-specific
model with the global optimization over multiple frames is
able to alleviate the irrecoverable errors caused by making
decision with only local information. Inaccuracy brought by
false alarms and short-term occlusions can be exactly resolved
to improve the multi-object tracking performance.

On the other hand, the performance decreases when the
temporal window is unduly large (> 20). The reason is that the
local consistency enforced by target-specific models becomes
inaccurate with a long temporal distance. Specifically, due to
appearance variations, the target-specific similarity functions
obtained by online learning might be inaccurate when they
are used to evaluate the object appearances coming from the
future. Minimizing the edge costs in the multi-commodity
network is therefore unstable to produce consistent flows
(trajectories). Similarly, the constant velocity model used

TABLE I

COMPARISON OF TRACKING PERFORMANCE AND CONVERGENCE

SPEED OF THE CG AND ILP SOLVERS ON THE PETS DATASET

to estimate the track start cost might provide unstable long
term predictions and thus degrades the tracking accuracy.
To achieve a tradeoff between local consistency and global
association, we set �t = 10 for our hybrid data association
approach and keep it fixed throughout the following
experiments.

E. Solver Comparison

In this paper, we introduce a column generation (CG)
based solver to the min-cost multi-commodity flow problem
in terms of multi-object tracking. Alternatively, one can solve
the problem directly using existing integer linear programming
packages. To demonstrate the superiority of the proposed
CG solver over the standard ILP solver, we report the sub-
optimality certificates of the solutions provided by both the
CG solver and the ILP solver for the PETS dataset in Fig. 5.
The sub-optimality certificates are computed as described in
Section IV-B. For the ILP solver, we employ the commercial
software Gurobi which represents the state of the art in ILP.
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TABLE II

QUANTITATIVE COMPARISON RESULTS OF OUR APPROACH (DENOTED AS HYBRIDDAT) WITH OTHER STATE-OF-THE-ART METHODS ON THE
MOTChallenge 2015 DATASET. WE GROUP THE RESULT LISTINGS INTO LOCAL, GLOBAL, AND HYBRID METHODS. BOLD SCORES

HIGHLIGHT THE BEST RESULTS WHILE ITALIC SCORES INDICATE THE SECOND BEST ONES. (ACCESSED ON 7/6/2016)

Overall, the certificates provided by the CG solver are quite
small (equal to zero in most of the cases) and comparable
to the ILP solver, indicating that the CG solver is stable.
As can be observed in Fig. 5(a), the CG solver provides
zero certificates on each frame of the PETS-S2L1 sequence,
while the ILP solver provides certificates much closer to zero.
It demonstrates that the CG solver exactly finds the optimal
integer solution to the min-cost multi-commodity flow problem
when the ILP has a tight relaxation to a LP. For the situations
where the ILP is not equivalent to a LP, caused by the close
interactions of multiple objects, the CG solver provides a
near-optimal solution in an efficient way by using a column
generation process, as shown in Fig. 5(b) and Fig. 5(c).

To further demonstrate the superiority of the CG solver
in terms of multi-object tracking, we report the tracking
performance (the MOTA score) and convergence speed (the
average run time per frame) of both the CG solver and
the ILP solver for the three sequences with varying object
densities in the PETS dataset. Results are shown in Table I.
As can be observed, the CG solver achieves better results
compared with ILP with a fast speed. For each sequence, the
CG solver achieves higher MOTA scores than the ILP solver,
indicating that the near-optimal solutions produced by the CG
solver are more meaningful for multi-object tracking. It owes
to the path-flow reformulation involved in the CG solver
which conducts a direct connection between the solution and
the estimated trajectories. Furthermore, favorable convergence
speed is provided by the CG solver even though the number
of objects increases quickly from the sequence PETS-S2L1
(∼ 5 objects per frame) to PETS-S2L3 (∼ 30 objects per
frame).

F. Comparison With the State-of-the-Art

We now compare our approach with the state-of-the-art
methods on the MOTChallenge 2015 dataset. The state-of-
the-art methods are selected with available corresponding
publications at the time of our submission to the test
bench, including TC_ODAL [44], RMOT [45], MDP [4],

SCEA [7], TDAM [6], DP_NMS [46], SMOT [47], TBD [48],
CEM [26], MotiCon [49], SegTrack [50], MHT_DAM [51],
JPDA_m [52], TSMLCDE [15], and NOMT [30]. Note that
the TC_ODAL, RMOT, MDP, SCEA and TDAM trackers are
local data-association methods, the NOMT tracker and our
approach perform data association in a hybrid way, while the
other trackers are global data-association methods.

Table II lists detailed quantitative comparison results on the
MOTChallenge 2015 dataset, where the results are grouped
into local, global, and hybrid data-association methods.1 With
only the provided detections and a simple dynamic model,
our approach shows very competitive performance with the
best MOTA score. It demonstrates that our approach performs
favorably over the state-of-the-art and is suitable for various
unconstrained environments. In particular, the MOTA score
and the number of ID switches are substantially improved
compared with both local and global data-association methods.
It is ascribed to the hybrid data association framework that is
able to find optimal associations for the existing trajectories
over multiple video frames. Errors caused by inaccurate detec-
tions and occlusions, which are the most challenging issues in
complex scenes, are significantly alleviated by our approach
to produce consistent trajectories.

As expected, hybrid data-association methods performs bet-
ter than both local and global methods by a large margin.
This superior performance is mainly due to the integration
of local target-specific models and global optimization over
multiple frames. Compared with the local methods, hybrid
data association takes multiple frames into account and there-
fore is much more stable against noise. Moreover, compared
with the global methods, hybrid data association utilizes the
local target-specific models to ensure the local consistency
of estimated trajectories, meanwhile retaining the ability to
handle online data. Benefitting from the superiority of hybrid
data association, the NOMT tracker also achieves good scores
on the challenging dataset, as we can observe in Table II.

1The comparison is also available at the website of the MOTChallenge
http://motchallenge.net/results/2D_MOT_2015/.
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Fig. 6. Sample tracking results of our approach on five representative testing video sequences of the MOTChallenge 2015 dataset (i.e., PETS09-S2L2,
ETH-Jelmoli, ADL-Rundle-1, Venice-1, and KITTI-19). At each frame, we show the bounding boxes together with the past trajectories (last 30 frames). The
color of the bounding boxes and trajectories indicates the ID of the tracked objects. Best viewed in color. (Refer to the tracking videos for more detailed
results.)

In contrast, our approach produces apparently lower FN and
IDS scores with a reasonable number of false alarms, and thus
provides a better MOTA score. The reason is that our min-cost
multi-commodity flow formulation models the multi-object
tracking problem in a compact form and enables the efficient
near-optimal solution to obtain more accurate trajectories.

On the other hand, our approach produces slightly more
fragmented trajectories. The reason is that our approach
can perform multi-object tracking in an online manner,
even though the global optimization over multiple frames

is involved. Our approach tends to terminate the trajectory
when it has no associated detections in the future frames and
thus increases the FG scores. The number of ID switches
is significantly reduced due to the consideration of multiple
future frames, as shown in Table II.

Several qualitative examples of tracking results produced
by our approach on the MOTChallenge 2015 are shown
in Fig. 6. Consistency of the estimated trajectories is indi-
cated by bounding boxes of the same color on the same
object over time. Our method is able to accurately track
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the objects against the influence of abundant false positive
detections, short-term occlusions, abrupt motions etc. (Videos
suitable for qualitative evaluation of the results across all
frames are available at the website of the MOTChallenge
http://motchallenge.net/results/2D_MOT_2015/, as well as the
detailed tracking results provided by our approach and the
state-of-the-art algorithms.)

VI. CONCLUSIONS

In this paper, we have proposed a hybrid data association
approach for multi-object tracking. Instead of only considering
local associations between adjacent video frames, we explored
the superior abilities of global optimization over multiple
frames to carry out online tracking. It was formulated as a min-
cost multi-commodity flow problem where the local target-
specific information is modeled to cooperate with the global
association. We employed a powerful online similarity learning
algorithm to explicitly build target-specific appearance models
to compute the edge costs of our multi-commodity network,
improving the discriminative ability of the framework. In addi-
tion, we introduced an efficient and effective solution with
empirical sub-optimality certificates, and validated its superi-
ority in terms of multi-object tracking. Extensive experiments
on various challenging datasets have demonstrated that our
approach outperforms the state-of-the-art methods.

Our future work will explore more effective approaches to
learn edge costs for the multi-commodity network since it is
the most critical issue for good performance. Online similarity
learning is just one example of using the appearance cue
to compute edge costs, and we believe that our hybrid data
association framework can be further improved in terms of
multi-object tracking by introducing more useful cues such as
motion and shape.
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