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Face Spoofing Detection Using Relativity
Representation on Riemannian Manifold
Chengtang Yao, Yunde Jia, Member, IEEE, Huijun Di , Member, IEEE, and Yuwei Wu

Abstract— Face recognition and verification systems are sus-
ceptible to spoofing attacks using photographs, videos or masks.
Most existing methods focus on spoofing detection in Euclidean
space, and ignore the features’ manifold structure and interre-
lationships, thus limiting their capabilities of discrimination and
generalization. In this paper, we propose a relativity represen-
tation on Riemannian manifold for face spoofing detection. The
relativity representation improves generalization capability while
ensuring discriminability, at both levels of feature description
and classification score. The feature-level relativity representation
generalizes information by modeling interrelationships among
basic features, and would not depend too much on characteristics
of a particular dataset. The score-level relativity representation
makes decisions relatively, not absolutely, according to interrela-
tionships (via Riemannian metric) and competitions (via example
reweighting) among data samples on Riemannian manifold. The
discriminability is ensured by the high-order nature of the
feature-level relativity representation as well as Riemannian
reweighted discriminative learning of the score-level relativity
representation. Moreover, we integrate an attack-sensitive SVM
classifier in Euclidean space to improve spoofing detection.
Experiments demonstrate the effectiveness of our method on both
intra-dataset and cross-dataset testing.

Index Terms— Face spoofing detection, relativity rep-
resentation, Riemannian manifold, Riemannian reweighted
discriminative learning.

I. INTRODUCTION

FACE biometrics, as one of the most popular human
identity authentication technologies, has received sig-

nificant attention owing to its natural, intuitive, and less
human-invasive properties. Unfortunately, face recognition and
verification systems are vulnerable to spoofing attacks using
photographs, videos or 3D masks [1], [2]. Researchers had
spared no effort on this severe security problem and many
methods have been proposed [3], [4]. Texture-based methods
resort to explore very small differences in texture information
via hand-crafted features, such as LBP [5]–[7], HOG [8], [9],
Haralick [10], and SURF [11]. Motion-based methods dis-
tinguish attacks from genuine access through the analysis of
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physiological signs of life [12], or motion cues like eye blink-
ing [13] and mouth movement [14]. Recently, there is a surge
of deep learning methods in face spoofing detection [15]–[21].

The physical generation process of face spoofing artifacts
includes recapture and requantization of live face images.
The recapture step results in texture degradation and much
noise, while the requantization step leads to image distortion.
No matter what disturbances occur in these two steps, they will
eventually cause some subtle differences between genuine and
spoofed faces, which are difficult to distinguish. Traditional
methods use low-order features (such as LBP and HOG) that
are not enough to describe the complex distribution of the
aforementioned subtle changes, deep learning methods provide
a way to learn rich features but rely heavily on training data.
Also, most of these methods focus on spoofing detection in
Euclidean space, and ignore the features’ manifold structure
and interrelationships, thus further limiting their capabilities
of discrimination and generalization.

In this paper, we propose a relativity representation on Rie-
mannian manifold for face spoofing detection. The relativity
representation improves generalization capability while ensur-
ing discriminability, at both levels of feature description and
classification score. The feature-level relativity representation
generalizes information by modeling interrelationships among
basic features, and ensures the discriminability as it is also a
hyper-feature representation capturing high-order information
among basic features. Haralick statistics [22], [23] and kernel
correlation [24] are adopted as options to implement this
relativity representation. We use Haralick statistics to compute
the basic texture feature at each video frame, and use kernel
correlation to generate the hyper-feature over basic features
extracted from the input video sequence. This relativity repre-
sentation is also flexible and generates features with a unified
dimension for the videos with different resolution or number
of frames.

The feature-level relativity representation lies on a sym-
metric positive definite (SPD) Riemannian manifold that is
utilized by the score-level relativity representation, called Rie-
mannian reweighted KNN score, to improve the performance
of face spoofing detection. The Riemannian reweighted KNN
score makes decisions relatively, not absolutely, according
to interrelationships (via Riemannian metric) and compe-
titions (via example reweighting) among data samples on
Riemannian manifold. The Riemannian metric and example
weights are learned to maximize the discriminability of the
score. The weight learning for data examples is driven by their

1556-6013 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on April 13,2024 at 04:08:37 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6432-2127


3684 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

interrelationships described by Riemannian metric. And the
learned weights in turn compensate for the misclassification
made by Riemannian metric. Based on this score-level relativ-
ity representation, we take the advantages of both Riemannian
metric and example reweighting.

We also consider the fusion with other classifiers to fur-
ther improve the performance of face spoofing detection.
We present an attack-sensitive SVM to additionally consider
the differences between photo attacks and video attacks,
and to make use of the features’ distribution information
in Euclidean space. An ensemble classifier is finally built
upon the Riemannian reweighted KNN and the attack-sensitive
SVM. Experiments on four public datasets are conducted to
demonstrate the effectiveness of our relativity representation,
especially in cross-dataset testing. We also perform a compre-
hensive ablation study to show the rationality of each part of
our method.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III presents the formal
formulation of our method. Experiment and ablation study are
discussed in Section IV. Conclusion and future work are given
in Section V.

II. RELATED WORK

A. Face Spoofing Detection

Our method uses texture features as basis for spoofing
detection. Previous texture based methods detect face liveness
using handcrafted features that encode image quality, texture,
and so on. Kim et al. [25] utilized a feature based on
different diffusion speeds of live and spoofed face images.
Agarwal et al. [10] used the block-wise Haralick feature
for spoofing detection. Boulkenafet et al. [6] focused on
the analysis of chromatic components and extracted tex-
ture features based on the Local Binary Pattern (LBP).
Peng et al. [7] designed a guided scale texture descriptor
via LBP variants. A chromatic co-occurrence of LBP fea-
ture (CCoLBP) [26] was also proposed by them for face
spoofing detection. In order to improve the discriminability,
Boulkenafet et al. [11] applied the Fisher vector encoding on
SURF features. Yang et al. [8] proposed a high-level face rep-
resentation extracted by pooling the codes of low-level HOG
descriptors from each face component. Komulainen et al. [9]
also used the HOG feature to detect spoofing. Recently,
there is a surge of deep learning in face spoofing detection.
Yang et al. [15] presented the first detection method based
on Convolution Neural Network (CNN). Atoum et al. [16]
proposed a two-stream CNN-based method that extracts the
local features and depth maps for face spoofing detection.
Jourabloo et al. [17] pioneered a novel view to recognize
the spoofed face images as a rerendering of live face images
with additional noise, and then process them via denois-
ing or deblurring. Due to the lack of training data in face
spoofing detection and the data dependence of deep learning,
Li et al. [18] proposed a deep local binary network to explore
the utilization of hand-crafted features in the neural network.
Different from the above methods that focus on design-
ing/learning specific texture features to encode differences

between live and spoofed face images, we focus on modeling
features’ interrelationships and manifold structure. We present
a relativity representation that is new to the community of face
spoofing detection and is helpful to improve generalization
capability while ensuring discriminability. The features from
the above methods can be used as basic features to calculate
our feature-level relativity representation that is a hyper-
feature representation modeling high-order interrelationships
among basic features. Our score-level relativity representation
further considers interrelationships and competitions among
data samples on Riemannian manifold.

Motion based methods consider temporal information and
detect any physiological sign of life. Motion cues like eye
blinking [13] and mouth movement [14] can be analyzed for
liveness detection. De Freitas Pereira et al. [5] extracted LBP
from three orthogonal planes (LBP-TOP) feature to encode
spatial-temporal information. Tu and Fang [19] used long
short-term memory (LSTM) to explore both spatial infor-
mation and long-range temporal relationships. The remote
photoplethysmography (rPPG) signals, like heart pulse sig-
nal [12], [20], were obtained through spatial-temporal analysis.
Liu et al. [20] learned deep models to estimate both face depth
and rPPG signals with auxiliary supervision. Li et al. [21]
considered the spatial-temporal information via a 3D CNN.
Although our intention is not to use motion cues for spoofing
detection, our method can also provide an option for temporal
information encoding, by modeling interrelationships among
video frames.

As argued by Hadid et al. [2], score-level fusion meth-
ods offer a flexible framework that integrates diverse coun-
termeasure strategies/algorithms to improve the performance
of spoofing detection. Yan et al. [27] utilized weighted
sum rule for the fusion of different countermeasures.
De Freitas Pereira et al. [28] merged normalized scores of
different anti-spoofing methods. Wild et al. [29] utilized
1-median filtering in the fusion process. Boulkenafet et al. [30]
applied average scheme for score fusion. Ning et al. [31] pro-
posed a fusion approach to combine the lower CNN models for
better predictive accuracy. Score-level fusion is also adopted
in our method. We present an ensemble classifier by fusing the
Riemannian reweighted KNN and the attack-sensitive SVM.
The attack-sensitive SVM can also be viewed as a fusion of
two SVMs that handles the differences between photo attacks
and video attacks.

B. SPD Manifold Analysis

Kernel correlation matrix [24] has been widely used as
a global feature representation in many areas. It is a kind
of SPD matrix that lies on a specific Riemannian manifold.
Riemannian metric, like affine-invariant metric [32], Log-
Euclidean metric [33], or learned Log-Euclidean metric [34],
is utilized to measure the geodesic distance between kernel
matrices on the manifold, and to make the decision for
classification, e.g., a nearest neighbor classifier based on
Riemannian metric [34], or kernel subspace clustering [35].
Different from the above methods that use Riemannian metric
without considering its inadequacy or the quality of each
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Fig. 1. An overview of the proposed method. We use Haralick statistics to compute the basic feature in each video frame, and use kernel correlation to
generate the hyper-feature over basic features extracted from the input video sequence. The final classification is achieved by fusing the results from two
classifiers based on Riemannian reweighted discriminative learning and attack-sensitive SVM learning respectively.

training example, we integrate Riemannian metric with exam-
ple reweighting in the score-level relativity representation. The
weights are learned to compensate for the misclassification
made by Riemannian metric.

C. Example Reweighting

Example reweighting is used in learning-based methods to
consider the importance of examples. Kahn and Marshall [36]
reweighted examples to make one distribution match another
one. Freund and Schapire [37] used a multiplicative weight-
update technique to boost the algorithm. The self-paced
learning [38], [39] was used to pick out the examples that
are easier to be optimized, and to approximate the learning
procedure that is from easy to hard knowledge. The meta-
learning [40], [41] was also introduced to compute the weights
of examples. The example reweighting was used in hard
example mining [42], [43] to solve the imbalanced training
data problem. It was also applied to the label noise problem
by finding reliable data to robustify the learning process
[44], [45]. Different from above example reweighting methods
that use only the example weight to determine the importance
of examples, the importance of examples in our score is jointly
determined by Riemannian metric and example weight. Our
score-level relativity representation takes the advantages of
both Riemannian metric and example reweighting. Weight
learning for our score is driven by samples’ interrelationships
characterized by Riemannian metric, while the learned weight
adjusts the contribution of examples to reduce the misclassi-
fication made by Riemannian metric.

III. PROPOSED METHOD

The pipeline of our method is depicted in Fig. 1. Due to
the effectiveness of color space [6], [46] and nonlinear diffu-
sion [25], we first preprocess the video frames through color
space transformation and channel-wise nonlinear diffusion.

Then, our feature-level relativity representation is generated
by computing the hyper-feature over basic features extracted
from the input video sequence. Specifically, we use Haralick
statistics to compute the basic feature in each video frame,
and use kernel correlation to generate the hyper-feature.

After feature extraction, the classification pipeline becomes
two subbranches, Riemannian reweighted discriminative learn-
ing on SPD manifold and attack-sensitive SVM learning in
Euclidean space. We utilize LEML [34] to learn a Riemannian
discriminative metric. Our score-level relativity representation,
Riemannian reweighted KNN score, is formulated by integrat-
ing the Riemannian metric with example reweighting. The
weights of examples are learned to maximize the discrim-
inability of the score. Apart from this subbranch, we also
design an attack-sensitive SVM to additionally consider the
differences between photo attacks and video attacks, and to
explore the features’ distribution information in Euclidean
space. Finally, an ensemble classifier is built upon the two
classifiers via score-level fusion. More concrete details will
be given in the following subsections.

A. Feature-Level Relativity Representation

1) Haralick Statistics: As aforementioned, we use Haralick
statistics [22], [23] to extract basic feature for each video
frame. For the sake of understanding, we give a brief descrip-
tion of it, but no specific calculation formula is presented here.
For more details please refer to [22].

The Haralick statistics are computed from the co-occurrence
matrix that describes the co-occurrence probability of the
values from two pixels with a certain spatial relationship
(i.e., with a certain displacement distance and direction).
We consider only four (8/2) 2D neighborhood relationships
(horizontal, vertical, diagonal, antidiagonal) to define the gray
co-occurrences, and thirteen (26/2) 3D neighborhood relation-
ships to define the color co-occurrences.
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TABLE I

FOURTEEN HARALICK STATISTICS

Fourteen Haralick statistics, as shown in Table I, are then
computed from the co-occurrence matrix under each neigh-
borhood relationship. The Haralick statistics characterize the
distribution information of the values in the co-occurrence
matrix. Similar to [23], [47], we drop the last statistic,
maximal correlation coefficient, as it is ordinarily considered
computationally unstable. The size of the final Haralick feature
for a color image is 169 (13 statistics × 13 neighborhood
relationships), which is independent of the image resolution.
Different from the resolution-dependent features, we do not
need to downsample the high-resolution images anymore,
where the resolution has a considerable influence in face
spoofing detection as discussed in [48].

2) Kernel Correlation Matrix: We use kernel correla-
tion [24] to generate the hyper-feature over basic features
extracted from the input video sequence. The kernel corre-
lation matrix is a kind of SPD matrix and has been widely
used as a global feature representation in many areas. It can
model the nonlinear interrelationships among the basic feature
descriptors.

More concretely, suppose there are n frames in the video
sequence, and the basic feature obtained in each frame is
denoted as xt , t = 1, 2, . . . , n. We reform X = [x1, x2, . . . ,
xn]T ∈ Rn×d as X = [ f1, f2, . . . , fd ], where d is the
feature dimension. The (i, j)th entry of kernel matrix Hd×d

is defined as

hi, j =< φ( fi ), φ( f j ) >= κ( fi , f j ), (1)

where φ(·) is an implicit nonlinear mapping implied by a
kernel function κ(·, ·). Here, we adopt the Gaussian RBF
(radial basis function) kernel

κ( fi , f j ) = exp(−γ ‖ fi − f j ‖2). (2)

It has a high complexity of O(nd2) to compute all the
entries hi, j (i, j = 1, . . . , d). To reduce the computational cost,
we calculate the RBF kernel via integral images. Note that
‖ fi − f j ‖2 = f �

i fi − 2 f �
i f j + f �

j f j , and d2 integral images
can be precomputed for the inner product of any two feature
dimensions.

The dimension of our feature-level relativity representation
is fixed as d ×d and is independent of the resolution or frame
number n in the video. Such a feature-level relativity repre-
sentation lies on an SPD Riemannian manifold allowing us
to further explore the manifold properties to improve face
spoofing detection.

B. Score-Level Relativity Representation

To explore the manifold properties of the feature-level rel-
ativity representation, our score-level relativity representation,

Riemannian reweighted KNN score, is formulated by integrat-
ing Riemannian metric with example reweighting. Specifically,
the Riemannian reweighted KNN score of input feature H is
defined as

Sc(H ) =
K∑

i=1

wi m(Hi , H )li , (3)

where wi , Hi and li are the weight, feature and label
(li ∈ {1,−1}) of the training example i , respectively. The
similarity measurement m(Hi , H ) is defined as

m(Hi, H ) = Dmax(H ) − Dle(Hi , H )

Dmax(H ) − Dmin (H )
, (4)

where Dle is a Riemannian metric (i.e., the geodesic dis-
tance on the Riemannian manifold), Dmax/min(H ) is the
maximum/minimum value of Dle(Hi, H ) over all training
examples. The score Sc(H ) is evaluated from top K training
examples sorted by wi m(Hi, H ). The final predicted label for
spoofing detection of input feature H is obtained by the sign
function on the score:

Pred(H ) = sign(Sc(H )). (5)

The score-level relativity representation defined in
Equation (3) considers interrelationships between the input
feature and training features according to their Riemannian
metric. We will learn a discriminant Riemannian metric to
take the data distributions on the manifold into consideration
to distinguish the spoofing attacks from genuine faces. The
score also considers the competitions among the training
examples by learning their contribution to the classification.
The example weight wi will be learned to maximize the
discriminability of the score. The learning of the Riemannian
metric and example weight is given in the next subsection.

C. Riemannian Reweighted Discriminative Learning

1) Riemannian Discriminative Metric Learning: We adopt
LEML framework [34] to learn a discriminative Riemannian
metric. The goal of the LEML is to seek a transformation
W that defines a map from the original tangent space to a
more discriminative one. Following the derivations in [34],
the geodesic distance on the new transformed SPD manifold
is formulated as

DW
le (Hi, H j ) = ||W T log(Hi)W − W T log(H j )W ||2F , (6)

where DW
le is the geodesic distance under Log-Euclidean

metric, log(·) is the matrix logarithm, H is our feature-level
relativity representation, and || · ||F represents the Frobenius
norms. The Equation (6) can be rewritten as

DQ
le (Hi , H j ) = trace(Q(Ti − Tj )(Ti − Tj )), (7)

where T is equal to log(H ), and Q is equal to W W T W W T .
Then the goal of metric learning is transferred to learning the
matrix Q to improve the discrimination of the spoofed and
live faces.

Specifically, the distance measured by DQ
le (Hi, H j ) between

paired attacks or paired live faces should be less than a small
value, while the distance between attack and live face should
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be greater than a large value. According to this, the objective
function for discriminative metric learning is given by

min
Q,ξ

Dld (Q, Q0) + ηDld (diag(ξ), diag(ξ0)),

s.t . δi j DQ
le (Hi , H j ) ≤ ξi j , (8)

where Dld (Q, Q0) = trace(QQ−1
0 ) − logdet (QQ−1

0 ) − d , d
is the feature dimension size, Q0 and ξ0 are the initialization
of Q and ξ individually, ξ is the slack bound, and δi j is 1 if the
feature Hi and H j are both from live or spoof faces, otherwise
δi j is -1. Then based on [34], the Q is iteratively updated and
optimized according to following equations

ξ t+1
i j = ηξ t

i j

η + δi j αi j ξ
t
i j

, (9)

Qt+1 = Qt + δi j αi j Qt AQt

1 − αi j trace(Qt A)
, (10)

αi j = min(
δi j η

η + 1
(

1

trace(Qt A)
− 1

ξ t
i j

), λi j ), (11)

λi j = λi j − αi j , (12)

where A = (Ti − Tj )(Ti − Tj ).
2) Discriminative Learning of Example Weight: The score-

level relativity representation defined in Equation (3) takes the
advantages of both Riemannian metric and example reweight-
ing. With the discriminative Riemannian metric obtained in the
previous subsection, the example weights are learned to further
boost the discriminability of the score. We use a validation set
to learn the weight w of the training examples, by minimizing
a loss function defined as

L(w) =
M∑

v=1

(|Sc(Hv)|Gv − Sc(Hv))
2, (13)

where M is the size of the validation set, Hv and Gv are the
feature and ground truth label of the vth validation sample,
respectively. It’s important to have such a form of loss function
with Sc(Hv) instead of directly using Pred(Hv), as we want
to punish more on the validation samples seriously deviating
from the ground truth, like G = 1, Sc = −100. In contrast,
other forms such as sigmoid(Sc), tanh(Sc), and Sc/|Sc| will
have an opposite effect.

Gradient descent is adopted to learn the weight wi for
the training example i , and the corresponding derivative and
update formula are


wi = 2
M∑

v=1

δivm(Hi , Hv)li Sc(Hv)(Gv − Pred(Hv))
2,

(14)

wi = wi − 
wi ∗ lr, (15)

where δiv is an indicator function, and lr is the learning rate.
δiv takes 1 when the training example i is the top K nearest
neighbors for the vth validation sample, and takes 0 otherwise.

To generate the validation set when it is not provided,
we randomly split 20% of the training set for validation and
keep the original rate between attacks and genuine faces. After
that, the weights of examples in the split training set is learned

and updated. We continue this random spitting and learning
50 times to ensure all the training examples getting their
updated weights that are initialized to 1 at first.

D. Ensemble Classifier

We also design an attack-sensitive SVM learning to addi-
tionally consider the differences between photo attacks and
video attacks, and explore the features’ distribution informa-
tion in Euclidean space. Ultimately, an ensemble classifier is
built upon the Riemannian reweighted KNN and the attack-
sensitive SVM by a score-level fusion. Specifically, we gener-
ate the predicted scores from the two classifiers separately, and
then compute the final result via a voting scheme. The details
of the attack-sensitive SVM learning are described below.

Previous researches treat the face spoofing detection as
a binary classification problem, i.e., live face vs. spoofed
face. However, the artifacts introduced by photo attacks and
video attacks are different. The mixture of many complicated
patterns would hinder the classification. Therefore, it is better
to split the recognition of photo attacks and video attacks at the
beginning, and then recombine them to facilitate the detection.
At least, this splitting strategy, which we call attack-sensitive
SVM learning, would not deteriorate the recognition of live
and spoofed faces compared to single SVM learning.

Specifically, as illustrated in Fig. 1, we train two SVM
classifiers against photo attacks and video attacks separately.
During the testing, they both receive the vectorized feature
as input. Distance from the hyperplane is treated as the
classification score. The testing example is finally predicted
to be an attack if any of the two classifiers recognize it as a
spoofed face.

IV. EXPERIMENTAL RESULTS

In this section, four datasets are used to evaluate our method.
They are CASIA-FASD [49], Replay-Attack [50], OULU-
NPU [30] and SiW [20]. We compare our method with prior
methods on both intra-dataset and cross-dataset testing and
achieve impressive results, especially in cross-dataset testing.
We further supply a comprehensive ablation study to reveal
the effectiveness of each component in our method.

A. Datasets

The CASIA-FASD [49] dataset has 600 video clips
of 50 different subjects with 150 real-access videos and
450 spoofing attack videos. It contains three quality levels
of captured videos: the low-quality video captured by a long-
time-used USB camera with a resolution of 480×640, the nor-
mal quality video captured by a newly bought USB camera
with a resolution of 480 × 640 and the high-quality video
captured by a Sony NEX-5 camera with maximum resolution
of 1920×1080. It also contains three types of spoofing attacks,
including warped photo attack, cut photo attack, and video
attack.

The Replay-Attack [50] dataset has 1,300 video clips
of 50 different subjects and considers the light of a fluorescent
lamp and the day-light. Additionally, the videos are captured
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TABLE II

PERFORMANCE COMPARISON USING HTER MEASURE ON CASIA-FASD
AND REPLAY-ATTACK DATASETS (D: DEEP LEARNING

METHODS, T: TRADITIONAL METHODS)

by an Apple 13-inch MacBook laptop with a resolution of
320 × 240.

The OULU-NPU [30] dataset consists of 4950 real access
and attack videos from different presentation attack instru-
ments with a resolution of 1080 × 1920. It also contains
4 protocols to evaluate the robustness of the face spoofing
detection method. Protocol I evaluates the performance over
unseen environment conditions including illumination and
background. Protocol II evaluates the influence of different
presentation attack instruments. Protocol III is designed to
verify the generalization on various cameras. And Protocol IV
considers all the factors above.

The SiW [20] dataset pays more attention to the emerging
high-quality spoofing mediums. It contains 3 protocols and
4,478 videos with variations of distance, pose, illumination
and expression. Protocol I evaluates the generalization over
different head poses and facial expressions. Protocol II exam-
ines the robustness on diverse spoofing medium. Protocol III
is proposed for unseen attack, where different attack types are
used for training and testing.

B. Parameter Setting

We preprocess the image sequences with face detection and
face alignment. Specifically, we use the JDA [51] to get the
face bounding box and crop the face. Then we align the face
with 68 feature points extracted by the work of [52].

Similar to other traditional face spoofing detection methods,
we conduct a series of experiments to determine the best
parameter settings. As it is difficult to determine all the
parameters at once, we split out each part to find best initial
choices respectively, and then obtain the overall best set of
parameters via training on the holistic model. If no validation
set is provided, we randomly split 20% of the training set into
the validation set and keep the original rate between attacks
and genuine faces.

In our method, we used RGB+HSV as the input color space.
We then diffuse the input image with an additive operator
splitting scheme [53] and set the iteration as 3, the time step
size as 30. The γ in the kernel function is set as 0.0001 in
Replay-Attack and CASIA-FASD, 0.001 in OULU and 0.01 in
SiW. As for Riemannian reweighted discriminative learning,
we set K as 9, lr = 0.0001e−0.01∗i where i is the current
iteration, and the other parameters are the same with [41].
In the final fusion of scores from the Riemannian reweighted
KNN and the attack-sensitive SVM, we set the weights of them
as 0.3, 0.7 in intra-dataset testing and 0.6, 0.4 in cross-dataset
testing.

C. Evaluation Metrics

On CASIA and Replay-Attack datasets, we evaluate the
performance with the commonly used False Accept Rate
(FAR), False Reject Rate (FRR) and Half Total Error Rate
(HTER):

F AR =
∑Nspoo f

i=1 (Predi == live)

Nspoof
,

F RR =
∑Nlive

i=1 (Predi == spoof )

Nlive
,

H T E R = (F AR + F RR)/2, (16)

where Nlive is the number of live face examples, Nspoof is
the number of spoofed face examples, and Predi represents
the predicted label.

On OULU-NPU and SiW datasets, we use attack presenta-
tion classification error rate (APCER), bona fide presentation
classification error rate (BPCER) and average classification
error rate (ACER) [54] to evaluate the performance:

APC E R = max
k∈SA

(1 − 1

Nk

Nk∑

i=1

Resi ),

B PC E R =
∑NBF

i=1 Resi

NB F
,

AC E R = (APC E R + B PC E R)/2, (17)

where Nk is the number of attacks for the k-th type of
presentation attack in the overall set of attack instruments
SA, NB F is the number of bona fide presentations, and Resi

takes 1 if i -th example is classified as attack otherwise is
assigned to 0.

D. Intra-Dataset Testing

We conduct the intra-dataset testing on CASIA-FASD,
Replay-Attack, OULU-NPU and SiW datasets. For CASIA-
FASD and Replay-Attack datasets, we opt for the last protocol
to evaluate the general performance, just like the mainstream
approaches did. For OULU-NPU and SiW datasets, we follow
the protocols defined in each of them.

As reported in Table II, we get impressive results on Replay-
Attack and CASIA-FASD datasets. For Replay-Attack dataset,
we achieve the best result with the only training set, which
mirrors our method can find the underlying distributions of
live and spoof faces from limited data. For CASIA-FASD

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on April 13,2024 at 04:08:37 UTC from IEEE Xplore.  Restrictions apply. 



YAO et al.: FACE SPOOFING DETECTION USING RELATIVITY REPRESENTATION ON RIEMANNIAN MANIFOLD 3689

TABLE III

PERFORMANCE COMPARISON ON THE PROTOCOL I OF OULU-NPU
DATASET (D: DEEP LEARNING METHODS,

T: TRADITIONAL METHODS)

TABLE IV

PERFORMANCE COMPARISON ON THE PROTOCOL II OF OULU-NPU
DATASET(D: DEEP LEARNING METHODS,

T: TRADITIONAL METHODS)

dataset, we are better than all traditional methods, comparable
to 3 deep learning methods and better than the rest deep
learning methods.

We also test our method on OULU-NPU dataset with four
protocols. The first three protocols aim to evaluate the influ-
ence of light conditions, attack mediums, camera variations
separately, and the last protocol considers all the above three
factors simultaneously. As shown in Table III∼VI, we obtain
the best results among traditional methods, similar results to
2 deep learning methods and better results than all the other
deep learning methods.

Although we do not outperform all deep learning methods,
especially on OULU-NPU dataset, we don’t aim to completely
beat the deep learning in this paper but to provide new idea
and alternatives for face spoofing detection. From this point,
we supply a discussion to show that the current trend, end-to-
end deep learning methods, may also benefit from our view
on face spoofing detection. As illustrated in the above experi-
ments, apart from the traditional approaches, our method gets
better performance than approaches with deep-features + tra-
ditional classifiers (like NWPU [63] on OULU-NPU dataset,
CNN [15], DPCNN [55], and CNN LBP-TOP [56] on

TABLE V

PERFORMANCE COMPARISON ON THE PROTOCOL III OF OULU-NPU
DATASET (D: DEEP LEARNING METHODS,

T: TRADITIONAL METHODS)

TABLE VI

PERFORMANCE COMPARISON ON THE PROTOCOL IV OF OULU-NPU
DATASET (D: DEEP LEARNING METHODS,

T: TRADITIONAL METHODS)

TABLE VII

PERFORMANCE COMPARISON ON SIW DATASET

CASIA dataset), and all the methods on Replay-Attack dataset.
Our method also exceeds deep learning methods using tradi-
tional descriptors (like LBP Net [58] and CNN LBP-TOP [56]
on CASIA dataset), and even exceeds a large part of
end-to-end networks (like DSGN [31] and lsCNN [57] on
CASIA dataset, SZCVI [63], MixedFASNet [63], Recod [63],
VSS [63], and CPqD [63] on OULU-NPU dataset).

We also evaluate our method on SiW dataset in Table VII.
We achieve state-of-the-art performance on both Protocol I and
Protocol II, and a worse result in protocol III. The protocol III
is designed to evaluate the influence of unseen attack types,
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TABLE VIII

PERFORMANCE COMPARISON USING HTER MEASURE IN
CROSS-DATASET TESTING BETWEEN CASIA-FASD AND

REPLAY-ATTACK DATASETS (D: DEEP LEARNING METHODS,
T: TRADITIONAL METHODS). ABLATION STUDY OF THE

ENSEMBLE CLASSIFIER AND EVERY SINGLE CLASSIFIER IS
ALSO SHOWN HERE (RKNN IS THE RIEMANNIAN KNN

WITHOUT EXAMPLE REWEIGHTING, RRKNN IS

THE RIEMANNIAN REWEIGHTED KNN, ASSVM
IS THE ATTACK-SENSITIVE SVM AND OUR

METHOD IS THE ENSEMBLE CLASSIFIER

COMBINING THE RRKNN
AND THE ASSVM

which requires the method to be trained on the photo (video)
attack data and test on the video (photo) attack data. It is tough
to solve such a challenging generalization across attacks. The
completely different patterns between video attacks and photo
attacks seriously deteriorate the performance, especially for
the method based only on texture features, like us. We think
there is a long way to solve the problem that deserves a lot
of effort to design a more systematic method.

E. Cross-Dataset Testing

In real applications, the face spoofing detection system not
only needs to accurately detect the differences between live
faces and attacks in specific situations, but also is expected to
be robust when meeting different data and demands. We pro-
vide cross-dataset testing to validate the generalization capabil-
ity of our method. The cross testing experiments are conducted
on both CASIA-FASD and Replay-Attack datasets, just like
mainstream methods did. The final results and comparisons are
shown in Table VIII. State-of-the-art methods can only achieve
an error rate of around 25%, which discloses the significant
challenge of such cross-dataset testing.

Notably, our method achieves state-of-the-art performance
in the cross-dataset testing, revealing the superior capability
of generalization. While our improvement of generalization
is not at the sacrifice of discriminability. In intra-dataset
testing discussed above, our method can still perform better
than traditional methods and is comparable to deep learning
methods (except for the testing on Protocol 3 of SiW dataset).

TABLE IX

PERFORMANCE COMPARISON IN CROSS-DATASET TESTING BETWEEN
CASIA-FASD AND OULU-NPU DATASETS. WE USE ACER (%)

ON PROTOCOL IV TO EVALUATE THE PERFORMANCE WHEN

TRAINING ON CASIA-FASD AND TESTING ON OULU-NPU.
WE USE HTER (%) TO EVALUATE THE PERFORMANCE

WHEN TRAINING ON OULU-NPU AND

TESTING ON CASIA-FASD

TABLE X

THE COMPARISON BETWEEN THE BASIC FEATURE AND HYPER-FEATURE

ON CASIA-FASD AND REPLAY-ATTACK DATASETS

As shown in Table IX, we also provide another cross-
testing between CASIA-FASD and OULU-NPU. As there is
no existing research does such an experiment, we present
it here with only our results and for future comparison by
other methods. Our cross-testing result on OULU-NPU by
using training data from CASIA-FASD is still better than one
traditional and two deep-learning methods in the intra-dataset
testing shown in Table VI. This reveals our excellent capability
of generalization. We can also observe that using OULU-NPU
can considerably improve the performance on CASIA-FASD
than using Replay-Attack. This is probably due to the higher
fidelity and greater difficulty of OULU-NPU dataset. This
inspires us that it might be possible to pre-train a spoofing
detector on high-fidelity and carefully collected dataset (like
the role of ImageNet), and then use it under the situation
with low-cost sensors, or as a start point for online/offline
fine-tuning.

F. Ablation Study

1) Effectiveness of Feature-Level Relativity Representation:
To show the necessity of our feature-level relativity represen-
tation, we compare the result of pure basic feature (Haralick
statistics) and the feature-level relativity representation (hyper-
feature over basic features). For the situation of pure basic
feature, we get the final representation via averaging the
computed feature over the input video sequence. For both
situations, we trained a SVM classifier on CASIA and Replay
Attack datasets separately, which suffices to show the signifi-
cant differences. As illustrated in Table X, the performance of
the feature-level relativity representation is much better than
that of the basic feature. This experiment provides evidence on
how relativity helps to improve the discriminability, by mod-
eling high-order interrelationships among basic features.

2) Effectiveness of Example Reweighting: As aforemen-
tioned, we integrate the idea of example reweighting in our
score representation. To prove its rationality, we conduct
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TABLE XI

ACER OF THE COMBINED CLASSIFIER AND EVERY SINGLE
CLASSIFIER ON OULU-NPU DATASET (RKNN IS THE RIEMANNIAN

KNN WITHOUT EXAMPLE REWEIGHTING, RRKNN IS THE

RIEMANNIAN REWEIGHTED KNN, SVM IS THE

CLASSIFIER TRAINED WITHOUT DIFFERENT TREATMENT
OF THE ATTACKS, ASSVM IS THE ATTACK-SENSITIVE

SVM AND ENCLS IS THE ENSEMBLE CLASSIFIER

COMBINING THE RRKNN AND THE ASSVM)

comparative tests on OULU-NPU dataset (Table XI) and in the
cross-dataset testing (Table VIII). We compare the classifiers
between the Riemannian KNN (RKNN) and the proposed
Riemannian reweighted KNN (RRKNN). The superior per-
formance of the RRKNN is clear in both the intra-dataset and
cross-dataset testing. This study demonstrates how example
reweighting can compensate for the misclassification made by
Riemannian metric.

3) Effectiveness of Attack-Sensitive Learning: In this part,
we verify the effectiveness of the proposed attack-sensitive
learning scheme that considers the differences between photo
attacks and video attacks. As shown in Table XI, we can find
that the attack-sensitive learning scheme (ASSVM) consider-
ably improves the performance of the single SVM classifier
trained without different treatment of the attacks.

4) Effectiveness of Ensemble Classifier: Our ensemble clas-
sifier is built upon the Riemannian reweighted KNN and the
attack-sensitive SVM. To show how such a fusion can improve
the spoofing detection in further, we compare the ensemble
classifier with every single classifier in the intra-dataset testing
and cross-dataset testing. In the intra-dataset testing shown
in Table XI, the attack-sensitive SVM performs better than
the Riemannian reweighted KNN. While in the cross-dataset
testing shown in Table VIII, we can find that the results of
the Riemannian reweighted KNN are better than the attack-
sensitive SVM’s. The final result of ensemble classifier is
better than two classifiers in each testing, by a fusion of them.
The fusion weights can be chosen according to the situation in
practical applications. When the training data does not reflect
the actual situation (the case of cross-dataset testing), more
fusion weight can be added to the Riemannian reweighted
KNN. While under the opposing situation (the case of intra-
dataset testing), the fusion weight of the attack-sensitive SVM
can be strengthened to obtain a benefit from the available
training data.

G. Discussions

1) Relativity Representation: The above experiments
validate that the proposed relativity representation is
helpful to improve generalization capability while ensuring
discriminability, at both levels of feature description and
classification score. Without the score-level relativity represen-
tation, the other classifier based only on the feature-level
relativity representation (i.e., the SVM/ASSVM classifier)

still achieves great performance in the cross-dataset testing
shown in Table VIII, and obtains comparable results in the
intra-dataset testing through comparing the SVM/ASSVM
in Table XI with other methods in Tables III∼VI. Such results
reveal the discriminability and generalization capability of
the feature-level relativity representation. In the cross-dataset
testing shown in Table VIII, we observe that the performance
of the Riemannian reweighted KNN is obviously better than
the attack-sensitive SVM, which mirrors the generalization
capability of the score-level relativity representation. In the
intra-dataset testing shown in Table XI, the Riemannian
reweighted KNN helps to further improve the performance
when we combine it with the attack-sensitive SVM to
construct an ensemble classifier. This demonstrates the
discriminability of the score-level relativity representation.

2) Fusion Scheme: Existing score-level fusion methods
usually integrate countermeasures that are based on different
clues, features, or modalities. In this paper, we present other
fusion schemes that use the same feature input but treat the fea-
ture/data differently. Our ensemble classifier intends to make
use of the features’ distribution information on Riemannian
manifold and in Euclidean space. Experiments validate the
complementarity of these two kinds of distribution informa-
tion. Previous methods treat the face spoofing detection as a
binary classification problem, i.e., live face vs. spoofed face.
The effectiveness of the proposed attack-sensitive learning
scheme shows that it is necessary to consider the problem of
fine-grained attack classification (i.e., to recognize the type of
attack), which can in turn improve the performance of spoofing
detection by fusing the fine-grained results.

3) Generalization Across Attacks: As presented in the
experiment, the performance of spoofing detection under
unseen attacks is significantly reduced due to the completely
distinct patterns between the different attack types in train-
ing and testing. As pointed by Hadid et al. [2], spoofing
attacks are unpredictable and evolving. Therefore, generaliza-
tion across attacks is necessary. It is worth designing new
strategies/algorithms to improve such generalization capability
for spoofing detection in the wild.

4) Quality of Dataset: The quality of data really matters.
As shown in Table VIII and IX, almost all the models trained
on the dataset containing higher resolution and more compli-
cated influence factors have better generalization capability.
Thus, it would be better to collect a larger and better quality
dataset for future research. One can pre-train a spoofing
detector on such a dataset, and then transfer it into other
situations. Moreover, the effectiveness of example reweighting
shows that training examples contribute differently to spoof-
ing detection. Data screening, by removing/suppressing the
noisy or ineffective samples, may also be useful to improve
the quality of dataset or to guide the data collection.

V. CONCLUSION

We present a novel method for face spoofing detec-
tion, by using relativity representation on Riemannian man-
ifold. Our method achieves state-of-the-art performance in
the cross-dataset testing, revealing the superior capability
of generalization. Our improvement of generalization is not at
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the sacrifice of discriminability. In the intra-dataset testing, our
method can still perform better than traditional methods and
is comparable to deep learning methods (except for unseen-
attack testing). The capabilities of our method come from the
proposed relativity representation that is new to the community
of face spoofing detection. Currently, only the texture infor-
mation is modeled in our method, limiting its ability. In future
research, our idea of relativity representation can be extended
to model other types of cues for spoofing detection. We also
plan to explore the utilization of our relativity representation in
deep learning methods, to boost their generalization capability
and to reduce their data dependence. Our method has a
low performance under the unseen-attack testing, and meta-
learning method based on our relativity representation can be
adopted to improve the performance.
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