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Abstract— Stereo matching aims to estimate 3D geometry by1

computing disparity from a rectified image pair. Most deep2

learning based stereo matching methods aggregate multi-scale3

cost volumes computed by downsampling and achieve good4

performance. However, their effectiveness in fine-grained areas5

is limited by significant detail loss during downsampling and the6

use of fixed weights in upsampling. In this paper, we propose7

an inter-scale similarity-guided cost aggregation method that8

dynamically upsamples the cost volumes according to the content9

of images for stereo matching. The method consists of two10

modules: inter-scale similarity measurement and stereo-content-11

aware cost aggregation. Specifically, we use inter-scale similarity12

measurement to generate similarity guidance from feature maps13

in adjacent scales. The guidance, generated from both reference14

and target images, is then used to aggregate the cost volumes15

from low-resolution to high-resolution via stereo-content-aware16

cost aggregation. We further split the 3D aggregation into 1D17

disparity and 2D spatial aggregation to reduce the computational18

cost. Experimental results on various benchmarks (e.g., Scene-19

Flow, KITTI, Middlebury and ETH3D-two-view) show that our20

method achieves consistent performance gain on multiple models21

(e.g., PSM-Net, HSM-Net, CF-Net, FastAcv, and FactAcvPlus).22

The code can be found at https://github.com/Pengxiang-Li/issga-23

stereo.24

Index Terms— Stereo matching, cost aggregation, content-25

aware upsampling.26

I. INTRODUCTION27

STEREO matching aims to estimate a pixel-wise dis-28

parity map from a rectified image pair. It plays an29

important role in various applications including 3D recon-30

struction [1], AR [2], SLAM [3], and autonomous driving [4].31
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The well-known pipeline divides stereo matching into four 32

steps: cost computation, cost aggregation, disparity computa- 33

tion, and disparity refinement [5]. Among these four steps, 34

cost aggregation plays a pivotal role in leveraging neighbor- 35

hood information to rectify the ambiguous matching costs in 36

ill-posed regions such as occluded regions, large textureless 37

areas, repetitive patterns, and thin structures. The cost aggre- 38

gation is commonly embedded into end-to-end deep neural 39

networks with multi-scale processing to enlarge the receptive 40

field. 3D CNNs [6], [7], GRU [8], [9], and attention mecha- 41

nism [10] are the most commonly used basic structures for cost 42

aggregation, effectively correcting ambiguous matching costs 43

and substantially enhancing prediction accuracy in ill-posed 44

regions by aggregating multi-scale cost volumes. 45

However, these cost aggregation methods often struggle in 46

fine-grained areas due to considerable detail loss during down- 47

sampling and fixed weight used in upsampling. Many efforts 48

have been targeted at improving the performance of stereo 49

matching in fine-grained areas, including edge information 50

[11], deformable convolutions [12], group-wise correlation 51

[13] and slanted planes [14]. These methods have achieved 52

good performance, but two challenging problems in cost 53

aggregation are still not well solved: (1) the downsampling 54

causes considerable detail loss during the construction of 55

multi-scale cost volumes, and (2) the upsampling fixed in size 56

and weight is prone to data imbalance between large-smooth 57

areas and fine-grained areas. For example, the HSM-Net [7] 58

with multi-scale cost volumes and upsampling fixed in size and 59

weight may lead to poor performance in fine-grained areas, 60

as illustrated in Fig. 1 (b) and Fig. 1 (c). 61

In this paper, we propose inter-scale similarity-guided cost 62

aggregation that adaptively restores image details by dynam- 63

ically upsampling cost volumes based on image content. 64

Our method comprises two modules: inter-scale similar- 65

ity measurement and stereo-content-aware cost aggregation. 66

We utilize inter-scale similarity measurements to generate 67

similarity guidance from the feature maps of adjacent scales. 68

Subsequently, we employ this guidance to aggregate the 69

multi-scale cost volumes through stereo-content-aware cost 70

aggregation. 71

For the first challenging problem, our idea is to retrieve 72

the fine-grained details lost during the downsampling pro- 73

cess. We use inter-scale similarity measurement to measure 74

the similarity between high-resolution and low-resolution 75

features. The similarity explicitly preserves the connection 76

between high-resolution details and low-resolution features, 77
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Fig. 1. Predictions and upsampling weights visualizations of HSM-Net [7]
using different upsampling strategies.

thereby providing guidance for the upsampling process to78

restore details. Technically, we first project a point xhigh79

from high-resolution to low-resolution features xlow. Then80

we compute the similarity between the point in the high-81

resolution xhigh and the neighbors of the projected point in82

low-resolution Nlow.83

For the second challenging problem, a critical factor leading84

to the suboptimal restoration of fine-grained details is the85

fixed size and weights of existing upsampling strategies,86

which are unable to adapt to the complicated fine-grained87

details. Motivated by this, we replace the fixed upsampling88

with content-aware upsampling. The content-aware upsam-89

pling uses the content information of each point to guide90

the upsampling process, thereby mitigating the impact of91

data imbalance between large-smooth and fine-grained areas.92

In stereo-content-aware cost aggregation, we use similarity93

guidance (generated from both reference and target images) to94

guide the aggregation of matching costs in 3D spatial-disparity95

space. The pair-wise 3D upsampling is computationally expen-96

sive. Thus, we split the upsampling in the 3D space into97

1D disparity and 2D spatial space. As a result, our method98

is able to efficiently and adaptively assemble the proper99

neighbors for cost aggregation and upsampling. Our method100

generates upsampling weight according to the image content101

and achieves much finer details, as shown in Fig. 1 (d). Our102

method can be plugged into any multi-scale cost volume based103

stereo network and achieve higher accuracy, especially in fine-104

grained areas.105

Our contributions are summarized as follows:106

1) We propose an inter-scale similarity guided cost aggre-107

gation method to adaptively recover the details of cost108

volumes under the guidance of similarity generated from 109

images. 110

2) We introduce an inter-scale similarity measurement to 111

dynamically generate guidance by incorporating infor- 112

mation from both low-resolution and high-resolution 113

feature maps. The explicit utilization of high-resolution 114

feature maps ensures the preservation of fine-grained 115

details. 116

3) We design a decomposition strategy that splits 3D 117

disparity-spatial upsampling into 1D disparity and 2D 118

spatial upsampling, significantly reducing the computa- 119

tional cost of the 3D pair-wise upsampling. 120

II. RELATED WORK 121

A. Stereo Matching 122

Traditional stereo matching methods estimate disparity 123

maps for rectified image pairs using local [15], [16], 124

global [17], [18], and semi-global methods [19], [20], [21]. 125

Deep learning-based stereo matching networks now dominate, 126

delivering state-of-the-art results. Early deep learning methods 127

replaced steps in stereo matching [5]: cost computation [22], 128

[23], [24], cost aggregation [25], [26], [27], disparity compu- 129

tation [28], and disparity refinement [26], [27]. Despite good 130

performance, their non-end-to-end approaches limited data 131

utilization. To overcome this, end-to-end methods compute 132

correlations by warping the target image to the reference 133

image [8], [9], [11], [29]. These achieve excellent results but 134

often lose geometric information. Cost-volume-based mod- 135

els [6], [30], [31], [32], [33], [34], [35] preserve geometric 136

information by concatenating multi-scale cost volumes. State- 137

of-the-art methods use convolution neural networks [36], [37], 138

[38], [39], [40], [41] or attention mechanisms [10], [42], [43], 139

[44] to aggregate these volumes, effectively utilizing image 140

context information. 141

However, multi-scale cost volume-based stereo matching 142

methods often lose fine-grained details due to downsampling. 143

While cost aggregation usually recovers these details, current 144

fixed-size and fixed-weight schemes struggle with data imbal- 145

ances between large smooth, and fine-grained areas. To address 146

this, we developed a content-aware cost aggregation method 147

that mitigates detail loss during multi-scale cost volume cre- 148

ation. Our adaptive upsampling approach also remains robust 149

against data imbalances. 150

B. Cost Aggregation 151

Multi-scale cost aggregation methods [6], [29] enhance 152

matching cost reliability by optimizing multi-scale cost vol- 153

umes for precise disparity estimation. Song et al. [11] used 154

edge information to guide cost aggregation, reducing edge mis- 155

matches. Zhang et al. [45] improved efficiency by replacing 3D 156

CNNs with semi-global aggregation. Yang et al. [7] proposed a 157

hierarchical feature volume decoder for high-resolution image 158

disparity estimation. Xu et al. [12] utilized deformable con- 159

volution for adaptive aggregation. Lipson et al. [8] designed 160

an iterative mixed disparity sampling and aggregation strategy. 161

Liu et al. [46] used local features to address over-smoothing. 162
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Zhang et al. [47] introduced depth-based sampling for bal-163

anced density in close and far regions. Xu et al. [48] utilized164

bilateral grid processing for faster aggregation. Lee et al. [49]165

introduced a cluster-wise cost aggregation algorithm to paral-166

lelized scanline-level disparity computation.167

The aforementioned methods demonstrate commendable168

performance, even in ill-posed areas. However, they still169

suffer from the loss of details in downsampling, and their170

strategies for multi-scale cost aggregation are susceptible to171

data imbalance. These strategies commonly rely on either172

bilinear interpolation or deconvolution for upsampling. Both173

bilinear interpolation and deconvolution employ a fixed inter-174

polation rule or deconvolution kernel across all data points,175

thus failing to exploit the content information of images176

fully. Constrained by computational memory limitations, these177

methods are unable to perform direct aggregation at full178

resolution. Instead, they resort to upsampling to full resolution179

without introducing additional parameters after aggregat-180

ing at 1/2 or 1/4 resolution. However, relying solely on181

parameter-free upsampling is inadequate for recovering lost182

details.183

C. Upsampling184

Upsampling is used to transform data from low-resolution185

to high-resolution. Traditional upsampling strategies fit a curve186

of a small neighborhood of the upsampled points to com-187

pute values for interpolated points, including nearest neighbor188

interpolation [50], bilinear interpolation [51], trilinear interpo-189

lation [52], and bicubic interpolation [53], etc. The advantage190

of these methods lies in their low computational cost. How-191

ever, these parameter-free upsampling strategies underutilize192

image content, resulting in blurred recovery results in fine-193

grained areas. Deconvolution [54], [55], [56], [57] offers a194

learning-based approach to upsampling, where weights are195

optimized through backpropagation. Learning-based upsam-196

pling kernels enable the utilization of contextual information197

learned from extensive data. However, deconvolution has lim-198

itations as it struggles in various scenes due to fixed kernel199

sizes and weights, making it susceptible to data imbalances.200

Several works [58], [59], [60] use content-aware upsampling201

operators to solve the fixed-weight problem. Wang et al. [58],202

[59] presented a content-aware reassembly approach and203

argued that traditional feature upsampling methods struggle204

to capture rich semantic information. While content-aware205

upsampling mitigates the fixed-weight problem, it relies solely206

on information from the low-resolution side (i.e., the upsam-207

pling process could be regarded as a unary low-resolution to208

high-resolution mapping). However, the upsampling process209

inherently consists of both low-resolution and high-resolution210

components, and relying solely on low-resolution features for211

upsampling may not suffice. Instead of employing a unary212

upsampling mapping, we introduce an inter-scale similarity213

measurement approach to produce a pair-wise upsampling214

mapping, represented by similarity guidance derived from215

information gathered across adjacent scales. In other words,216

we actually model the upsampling process as a binary mapping217

between low-resolution and high-resolution.218

III. OPTIMIZATION IN MULTI-SCALE COST AGGREGATION 219

In this section, we model the optimization objectives for 220

each layer of multi-scale cost aggregation. Given a cost volume 221

Cl−1 ∈ RHl−1×Wl−1×Dl−1 at level l−1 as input, Cl is computed 222

via a network with learning weights W l . The generation of Cl 223

can be formulated as 224

p(Cl) = p(Cl |Cl−1, W l)p(W l)p(Cl−1) 225

= p(Cl |Cl−1, W l)p(W l). (1) 226

The probability p(Cl) of cost volume is commonly computed 227

by p(Cl) = softmax(−Cl), and p(Cl−1) is supposed to be 1 as 228

Cl−1 has already been given. Then, the optimization objective 229

is to find the best W l that recovers the details lost in Cl−1, 230

which can be formulated as 231

W l = argmax
W l

p(W l |Cl , Cl−1), 232

= argmax
W l

p(W l |Cl), 233

= argmax
W l

p(Cl |W l) · p(W l)∑
W l

p(Cl |W l)p(W ′

l)dW ′

l ,
234

a.s.
= argmax

W l

p(Cl |W l) · p(W l), 235

a.s.
= argmax

W l

p(Cl). (2) 236

In the aforementioned cost aggregation process, it becomes 237

impractical to recover the details lost during downsampling 238

using bilinear upsampling or deconvolution. This is because 239

W l is optimized by cost volumes at level [0, 1, . . . , l −1], and 240

it doesn’t consider the image content at level l. In other words, 241

only minimal details at level l contribute to the optimization of 242

W l . Furthermore, the kernel weights are influenced by the con- 243

tent that appears more frequently in the image. Consequently, 244

it becomes challenging to utilize these fixed kernel weights 245

effectively for recovering details that constitute only a small 246

proportion of the image content such as the fine-grained areas. 247

IV. PROPOSED METHOD 248

A. Problem Formulation 249

Detail loss and biased upsampling are two challenging 250

problems that cause poor performance in fine-grained areas. 251

To address these two problems, we optimize cost aggregation 252

with image features at levels l and l − 1. In our method, 253

the optimization objective of cost aggregation at each level 254

is given by 255

W l = argmax
W l

p(Cl) · p(W l |Fl , Fl−1), (3) 256

where Fl is the feature map at level l. 257

In particular, the optimization objective of cost aggregation 258

with deconvolution is actually one special case of ours, where 259

p(W l |Fl , Fl−1) = p(W l). Besides, the optimization objective 260

of cost aggregation with bilinear interpolation is one special 261

case of deconvolution, i.e., Eq. (2). With substituting p(W l) = 262

1 into Eq. (2), Eq. (2) can be reformulated as 263

W l = argmax
W l

p(Cl), (4) 264
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Fig. 2. The visualization of aggregation weight and disparity distribution in
cost volume. The upper row shows the aggregation weight and the under row
shows the distribution of the cost volume along the disparity dimension for
a single point. The point in each distribution map is the ground truth for the
point in the reference image. Both the bilinear upsampling and deconvolution
predict wrong results, while ours not only predicts the correct disparity but
also corrects for multi-modality in the distribution.

which is just the optimization objective of cost aggregation265

with bilinear interpolation.266

In our method, W l is automatically adjusted from the267

change of Fl and Fl−1 during inference, whereas the weights268

of deconvolution or bilinear interpolation remain static. Our269

method generates aggregation weight related to the image270

content and achieves unimodal distribution results, while oth-271

ers get multimodal distribution or wrong distribution. Fig. 2272

provides a visual representation of aggregation using various273

upsampling strategies. As shown in Fig. 2, the weights for274

bilinear interpolation remain constant, the weights for decon-275

volution are repetitive kernels, while our method’s weights are276

content-aware, closely linked to the image’s content. It’s also277

worth noting that our method effectively addresses the issue of278

multiple peaks in the disparity distribution (see the distribution279

curves of Deconvolutions vs. Ours in Fig. 2). In our method,280

the disparity distribution exhibits only a single prominent peak281

precisely at the ground truth disparity, whereas deconvolution282

may exhibit multiple peaks, potentially leading to incorrect283

disparity results.284

B. Implementation285

Given an image pair, we extract multi-scale feature maps286

Fl at each level l for reference and target images. We then287

use the feature maps to construct the cost volume at the lowest288

level. As for the cost volume at the high level, we iteratively289

upsample the cost volume from the low level to the high290

level through two steps, the inter-scale similarity measurement,291

and the stereo-content-aware cost aggregation. The inter-scale292

similarity measurement uses feature maps from adjacent scales293

to generate similarity guidance. The stereo-content-aware cost294

aggregation uses the similarity guidance from two views to295

guide the cost volume upsampling. At last, we use the cost296

volume at the highest level to compute the disparity map as297

the output of our network. Fig. 3 illustrates the pipeline of our298

method.299

1) Inter-Scale Similarity Measurement: The inter-scale sim-300

ilarity measurement takes the feature maps Fl and Fl−1 as301

input. We compute the similarity by the summation of the302

products of Fl(h′, w′) and the neighbors of Fl−1(h, w) with 303

the formula as 304

Sl(h′, w′) =
1

M · M
φ(

∑
(h,w)∈NF

Fl(h′, w′)Fl−1(h, w)), (5) 305

where (h′, w′) and (h, w) are the location at high-level and 306

low-level respectively, (h′, w′) = (h · s, w · s), s is the scale 307

change in resolution from level l − 1 to level l, and · is the 308

scalar multiplication operation. Sl ∈ RHl
×Wl

is the similarity 309

guidance at level l, Sl(h′, w′) is the value of the pixel at 310

location (h′, w′), NF ∈ RM×M is a 2D neighborhood of the 311

pixel at location (h, w) with the size of M × M . φ(·) is a 312

subnetwork composed of convolution layers, relu layers, and 313

batch normalization layers. 314

2) Stereo-Content-Aware Cost Aggregation: 3D convolution 315

based methods [6], [7] usually perform window based cost 316

aggregation: 317

Cl(h′, w′, d ′) =

∑
(h,w,d)∈Nc

W l(h′, w′, d ′)Cl−1(h, w, d), (6) 318

where Nc is a 3D neighborhood of the point at 319

(h′/s, w′/s, d ′/s). 320

In our method, we replace the 3D weight W l with the 321

2D similarity guidance Sl . For each level, we use the feature 322

maps of the stereo images, i.e., reference and target images, 323

to compute the content-aware similarity guidance SR
l and ST

l 324

by inter-scale similarity measurement, respectively. Then we 325

perform the cost aggregation guided by SR
l and ST

l : 326

Cl(h′, w′, d ′) =

∑
(h,w,d)∈Nc

SR
l (h′, w′)ST

l (h′, w′
− d ′) 327

Cl−1(h, w, d). (7) 328

The memory and computational cost of 3D cost aggregation 329

are unaffordable. Accordingly, we introduce a decomposition 330

strategy to reduce the computation cost. We split the upsam- 331

pling in full 3D spatial-disparity space into 1D disparity and 332

2D spatial upsampling by leveraging the property of cost vol- 333

ume on the disparity dimension. The property is that position 334

(h, w, d) in cost volume represents the (h, w) in the reference 335

image and (h, w −d) in the target image. We warp ST
l to SR

l , 336

and then split the mapping of cost volume into 1D disparity 337

dimension and 2D spatial dimension. Specifically, we replace 338

Eq. (7) with a two-step decomposed cost aggregation. 339

In the first step, 1D disparity upsampling, the positions 340

(h, w, d − ⌊M/2⌋), . . . , (h, w, d), . . . , (h, w, d + ⌊M/2⌋) in 341

cost volume along disparity dimension correspond to (h, w) 342

in the reference image and (h, w − d + ⌊M/2⌋), . . . , (h, w − 343

d), . . . , (h, w −d −⌊M/2⌋) in the target image. Formally, the 344

updating along the disparity dimension is given by 345

Cl(h, w, d ′) =

∑
d∈Nd

SR
l (h′, w′)ST

l (h′, w′
− d ′)Cl−1(h, w, d), 346

(8) 347

where Nd = {d ′/s − ⌊M/2⌋, . . . , d ′/s, . . . , d ′/s + ⌊M/2⌋}. 348

In the second step, 2D spatial upsampling, all voxels with 349

location (h′, w′, :) in cost volume correspond to the pixel with 350
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Fig. 3. The overall architecture. Given an image pair, our method extracts multi-scale features at each level l. L is the total number of levels. w⃝ is the
warping operation used for generating the initial cost volume in the lowest resolution. ×⃝ represents element-wise multiplication.

location (h′, w′) in the reference image. The update along the351

spatial dimension is given by352

Cl(h′, w′, d ′) =

∑
(h,w)∈Nsp

SR
l (h′, w′)Cl(h, w, d ′), (9)353

where Nsp ∈ RM×M is a 2D neighborhood of the pixel with354

location (h′/s, w′/s) at level l − 1.355

After all these operations, we complete the transformation356

from the shape of Hl−1 × Wl−1 × Dl−1 to Hl−1 × Wl−1 × Dl357

and then to Hl × Wl × Dl , where Hl = Hl−1 · s, Wl = Wl−1 · s358

and Dl = Dl−1 · s.359

3) Loss Function: We use a multi-scale loss function that360

applies smooth L1 loss to each level. The smooth L1 loss361

function is not sensitive to outliers or noises. The loss function362

is defined as363

Dl =

∑

d∈{dn}
N
n=1

d · σ(−Cl), (10)364

L =

∑
l=0

λl · Ll(Dl − Gl), (11)365

Ll(x) =

{
0.5 x2, if |x | < 1
|x | − 0.5, otherwise ,

(12)366

where {dl
n}

N
n=1 is the disparity hypothesis at level l, σ(·) is the367

softmax operation, Dl is the predicted disparity map at level l,368

λl denotes the coefficients for the disparity prediction at level369

l, and Gl is the ground-truth disparity map at level l.370

C. Computational Cost Analysis371

To further demonstrate the superiority of our decomposition372

strategy in computational complexity, we conducted the fol-373

lowing analysis and complexity experiments (in Section V).374

We separate the 3D upsampling into 1D upsampling plus 2D375

upsampling, reducing the parameters and calculations.376

1) Parameters: For deconvolution, the number of param- 377

eters per layer is given by C × 1 × k3
= Ck3, where k is 378

the kernel size, C is the number of input channels, and the 379

output channel is set to 1. In contrast, our method requires 380

Ck2 parameters per layer. Both our method and deconvolution 381

utilize the same number of layers. 382

2) Calculations: For the computational complexity of 3D 383

upsampling, comparing 3D deconvolution with our method for 384

a feature volume of size C × D × H × W to be upsampled 385

by a scale of s, the computational cost for deconvolution 386

is O(s3k3)C DH W , while ours is O(s2k2
+ sk)C DH W = 387

O(s2k2)C DH W . 388

V. EXPERIMENTS 389

A. Datasets 390

1) SceneFlow Dataset: SceneFlow [29] is a large synthetic 391

dataset containing 34896 training images and 4248 testing 392

images with the size of 540 × 960. This dataset has three 393

rendered sub-datasets: FlyingThings3D, Monkaa, and Driving. 394

FlyingThings3D is rendered from the ShapeNet dataset and 395

has 21828 training data and 4248 testing data. Monkaa is 396

rendered from the animated film Monkaa and has 8666 training 397

data. The Driving is constructed by the naturalistic, dynamic 398

street scene from the viewpoint of a driving car and has 399

4402 training samples. 400

2) KITTI 2015 Dataset: KITTI 2015 [61] is a real-world 401

dataset with street views from a driving car. It contains 402

200 training stereo image pairs with sparse ground-truth dis- 403

parities obtained using LiDAR and another 200 testing image 404

pairs without ground-truth disparities. During the training pro- 405

cess, we take 160 images for training and reference 40 images 406

for validation. 407

3) Middlebury-v3 Dataset: Middlebury-v3 is a subset of the 408

2014 dataset [62] and is collected in the real world with static 409

indoor scenes containing complicated and rich details. There 410

are 15 stereo pairs for training and 15 stereo pairs for testing. 411
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Each pair is provided in 3 kinds of resolution, full, half, and412

quarter resolution; where we used the quarter resolution in the413

experiment.414

4) ETH3D-Two-Iew Dataset: ETH3D (two view) [63] com-415

prises grayscale stereo pairs captured from diverse indoor and416

outdoor scenes. The dataset includes 27 training and 20 testing417

image pairs with sparsely labeled ground truth. Disparities418

range from 0 to 64 pixels, and bad 1.0 (percentage of pixels419

with errors larger than 1 pixel) are reported.420

B. Evaluation Metrics421

The end-point error (EPE) is the mean disparity error in422

pixels. The 3-px error refers to the proportion of points423

in the full map where the absolute value of the differ-424

ence between the predicted disparity and the true value is425

greater than 3 pixels. The percentage of disparity outliers426

in the background (D1-bg), foreground (D1-fg), or all pixels427

(D1-all) for both noc regions and all regions are applied for428

evaluation. Disparity outliers are the pixels if their disparity429

EPE is more than 3 or 5% pixels. avgerr is the average430

absolute error in pixels. RMS represents the root mean square431

of the differences between the estimated and actual disparities.432

A90 and A95 are the 90% and 95% error quantile in pixels,433

respectively. Bad 1.0 and Bad 2.0 percentage of pixels with434

errors larger than 1 pixel or 2 pixels, respectively.435

C. Model Details436

To prove the effectiveness of our method, we extend five437

stereo baseline networks with our method, CF-Net [30], HSM-438

Net [7] and PSM-Net [6], FastAcv [44] and FastAcvPlus [44].439

All networks are implemented via PyTorch and tested on440

NVIDIA RTX 3090 GPU. For all baselines, the neighborhood441

size M is set to the scale change s at each level.442

For PSM-Net+ours, the model is optimized using Adam443

[64] with β1 of 0.9, β2 of 0.999. During training, the batch size444

is fixed to 8, and we perform color normalization to each input445

image and crop them into 256 × 512 resolution. We train our446

network on SceneFlow for 10 epochs and change the learning447

rate from 0.001 to 0.0001 in the 7th epoch. We then fine-448

tune the network on KITTI 2015 and set the learning rate to449

0.001, 0.0001, and 0.00003 in the first 200 epochs, the next450

400 epochs, and the final 600 epochs, respectively. As for451

Middlebury-v3, we also fine-tune the model pre-trained on452

SceneFlow. The learning rate is set to 0.001 for 300 epochs and453

then changed to 0.0001 for the rest of 600 epochs. For HSM-454

Net+ours, we use AdamW [65] with β1 of 0.9, β2 of 0.999.455

During training, the batch size is fixed to 12, and we perform456

the same data augmentation [7] of the original HSM-Net and457

crop the images into 256 × 512 resolution. We train our458

network for 10 epochs using the same dataset as HSM-Net459

and change the learning rate from 0.001 to 0.0001 in the 9th460

epoch. For CF-Net, FastAcv, and FastAcvPlus, we follow all461

the training strategies of the official repositories.462

Furthermore, we downsample the ground truth for our multi-463

scale loss. We use bilinear downsampling in SceneFlow and464

nearest downsampling in KITTI 2015 and Middlebury-v3.465

TABLE I
EVALUATION RESULTS OF CURRENT STEREO MATCHING

ALGORITHMS ON THE SCENEFLOW TEST SET

Additionally, we reduced the computational cost without sacri- 466

ficing accuracy by moving the averaging operation before the 467

aggregation at each layer. Although we observe better results 468

of bilinear downsampling in the experiment on SceneFlow, the 469

ground truth disparities of the two real-world datasets contain 470

invalid values, like 0 and INF, which will lead to wrong dis- 471

parity results after bilinear downsampling. In all experiments, 472

no post-processing or unsupervised learning methods are used. 473

D. Comparison With Stereo Matching Methods 474

Our method mainly focuses on recovering the fine-grained 475

details lost during cost volume downsampling. Therefore, 476

we conduct experiments on the SceneFlow dataset, specifi- 477

cally targeting fine-grained areas, and we compare the results 478

against mainstream baseline methods. Additionally, we per- 479

form experiments on real datasets, including KITTI and 480

Middlebury, to validate the effectiveness of our approach. 481

1) SceneFlow: The experimental results in Table I 482

show that our proposed method significantly improves 483

the performance of stereo matching algorithms, with the 484

FastAcvPlus+ours achieving the lowest EPE of 0.57. The con- 485

sistent reduction in EPE across various models demonstrates 486

the robustness and efficacy of our method. 487

a) Fine-grained areas: We test different baselines in the 488

fine-grained region on the SceneFlow dataset to verify the 489

accuracy improvement of our method in the fine-grained (FG) 490

areas and full areas, as shown in Table II. We use the calculated 491

HOG [66] descriptor of the reference image as a mask of fine- 492

grained areas. The results in Table II show the superiority of 493

our method in fine-grained areas. Our method can improve 494

the accuracy significantly in fine-grained areas, and 37.6%, 495

32.9%, 16.2%, 11.4% and 10.4% EPE reduction in PSM-Net, 496

HSM-Net, CF-Net, FastAcv and FastAcvPlus, respectively. 497

Our method is effective for different baselines with good 498

universality. Our method also brings no or small increase in 499

runtime. For PSM-Net, we remove the time-consuming 3D 500

convolution layers in the hourglass modules at RES 1/16 and 501

RES 1/8. For the rest baselines, we directly plug our method 502

into them without additional model modification. 503

The visualization results for the fine-grained regions are 504

depicted in Fig. 4. Our method successfully recovers more 505

details, notably improving estimation results for fine-grained 506

areas like the spokes of the wheel and plant spikes in the 507

left column of Fig. 4 compared to the baseline. Furthermore, 508

our approach enhances results in less refined regions, such as 509

inside the bounding box in the right column of Fig. 4. 510
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TABLE II
RESULTS OF DIFFERENT BASELINE IN FULL AREAS (FULL) AND FINE-

GRAINED (FG) AREAS ON THE SCENEFLOW DATASET. FOR PSM-NET,
WE REMOVE THE TIME-CONSUMING 3D CNNS AT RES 1/16

AND RES 1/8

Fig. 4. The results of PSM-Net [6] and PSM-Net+ours on the SceneFlow
dataset.

b) Full areas: Our method brings improvement for full511

areas across different baselines. Visualization of the results512

(Fig. 5) reveals that our method exhibits certain corrective513

effects on large-scale weakly-textured regions as well. The514

experimental results demonstrate that our approach achieves515

significant accuracy improvement when applied to datasets516

with complete depth information as ground truth.517

2) Kitti: Table III displays the performance and runtime518

of various algorithms evaluated on the KITTI stereo2015519

benchmark. Across different baselines, our method enhances520

the accuracy of the original baselines with only a marginal521

increase in processing time. Notably, CF-Net combined with522

our method surpasses other competing methods in the Noc523

D1-all and All D1-all. Next, we would like to provide a more524

detailed explanation of the comparison between our method525

and stereo matching methods based on attention mechanisms,526

as well as methods based on decomposition strategies.527

TABLE III
EVALUATION ON KITTI 2015 BENCHMARK. THE BEST RESULTS FOR

EACH EVALUATION METRIC ARE SHOWN IN BOLD

a) Compared with the attention-based method: HDA- 528

Net [67] proposes an efficient horizontal attention module 529

to adaptively capture the global correspondence clues. Our 530

method uses inter-scale information to generate similarity 531

guidance to improve cost aggregation. As shown in Table III, 532

our method has lower D1-all (HDA-Net 2.03 vs. CF-Net+Ours 533

1.87) with faster running time (HDA-Net 0.42ms vs. 534

CF-Net+Ours 0.22ms) on the KITTI 2015 dataset. 535

b) Compared with the decomposition method: DecNet 536

[31] decomposes the original stereo matching into a dense 537

matching at the lowest resolution and a series of sparse 538

matching at higher resolutions. Unlike DecNet, our method 539

decomposes the 3D upsampling of cost volume into a 2D- 540

spatial and 1D-disparity upsampling. Our method outperforms 541

DecNet in D1-all (Dec-Net 2.37 vs. HSM-Net+Ours 2.09) 542

but is slower in runtime (Dec-Net 0.05ms vs. HSM-Net+Ours 543

0.09ms), as shown in Table III. 544

c) Visualization: Fig. 6 presents the experimental results 545

on the KITTI 2015 dataset, showcasing images from top to 546

bottom. Our method excels in recovering slender structures, 547

as seen in the iron chain at the center of the first row and 548

the fence in the lower left corner of the third row. Moreover, 549

our approach accurately estimates depth-mutation areas such 550

as signboards and utility poles. For instance, unlike PSM-Net 551

and HSM-Net in the first row’s bounding box around the 552

signboard, our method produces correct results. In rows two, 553

five, and six, the other methods misidentify parts of the 554

background as utility poles, which our method avoids. 555

3) Middlebury: We compare our method with several 556

approaches using different aggregation strategies on the 557

Middlebury stereo dataset v3, as shown in Table IV. We out- 558

perform these 3D aggregation based approaches on most of 559

the metrics. The result also demonstrates the effectiveness of 560

our content-aware upsampling method. Based on the visual- 561

izations in Fig. 7, we can draw the following conclusions: 562

1) Improved depth estimation for fine-grained regions: 563

Our method shows superior performance in depth estima- 564

tion for fine-grained regions, demonstrating the effectiveness 565

of explicitly integrating high-resolution and low-resolution 566

information. This is evident in almost all cases, such as the 567
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Fig. 5. The visualization of results on HSM-Net baseline. The first and second columns are the reference input images and ground truth. The rest columns
are results from HSM-Net and HSM-Net+ours.

Fig. 6. The results of different deep stereo networks on KITTI 2015 dataset. Our method performs better in fine-grained areas than other methods, especially
for the region denoted with the boxes. Please zoom in to check the details.

detailed areas in “DjembL” and the water cup on the table in568

“Crusade” (Line 3, PSM-Net vs. PSM-Net + ours), as well as569

the small figurine (Line 3, HSM-Net vs. HSM-Net + ours).570

2) Enhanced foreground and background decoupling: Our571

method has a stronger ability to decouple the foreground from572

the background. Retaining low-resolution information effec-573

tively enhances this capability. Examples include the depth574

estimation of the potted plants and background in “Plants”575

(Line 5) and the estimation of the hollow part of the staircase576

handrail in “Staircase” (Line 4, HSM-Net vs. HSM-Net +577

ours; CF-Net vs. CF-Net + ours). 3) Competitive perfor-578

mance in flat regions: Our method also shows competitive579

performance in flat regions. For instance, the wall in the upper580

left of “Staircase” (Line 4, PSM-Net vs. PSM-Net + ours)581

and the restoration of the table corner in “Crusade” (Line 3, 582

CF-Net vs. CF-Net + ours). However, our method has some 583

shortcomings in certain areas, such as the seats in the PSM-Net 584

case of “Classroom2E” (Line 1, PSM-Net vs. PSM-Net + 585

ours). We will systematically discuss these limitations in the 586

Limitation Analysis section. 587

E. Ablation Studies 588

We conduct all the analysis in ablation studies mainly on 589

the HSM-Net baseline. Ablation studies are performed on the 590

SceneFlow dataset and the KITTI 2015 dataset. 591

1) Effectiveness of Stereo-Content-Aware Cost Aggregation: 592

During Stereo-Content-Aware Cost Aggregation, we use both 593
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Fig. 7. The visualization of results on Middlebury-v3 test set. In the first column are the reference input images. The rest columns are results from PSM-Net
[6], PSM-Net + ours, HSM-Net [7], + ours, CF-Net [30] and CF-Net + ours respectively.

TABLE IV
EVALUATION ON MIDDLEBURY-V3. THE BEST RESULTS FOR EACH

EVALUATION METRIC ARE SHOWN IN BOLD

reference and target images to extract similarity guidance and594

separate the 3D spatial-disparity upsampling into 1D dispar-595

ity / 2D spatial upsampling. We evaluate the effectiveness of596

our method at different resolutions through two experiments:597

i. Training on the SceneFlow dataset and testing on the598

SceneFlow dataset. ii. Training on the SceneFlow dataset and599

testing on the validation set of the KITTI 2015 dataset. Table V600

demonstrates that our decomposition strategy reduces the601

running time by nearly half compared to full 3D upsampling602

at the setting of “RES 1/16 to RES 1/8” and “RES 1/8 to603

RES 1” on the SceneFlow dataset and KITTI 2015 dataset.604

Our decomposition strategy not only proves to be faster but605

also more accurate than full 3D upsampling. When integrating606

our method at “RES 1/16 to 1/8,” HSM-Net+ours experiences607

a decrease in EPE of 18.09% and 15.86% compared to the608

original HSM-Net on the SceneFlow dataset and the KITTI609

2015 dataset, respectively. Plugging our method at higher610

resolutions, i.e., “RES 1/8 to 1”, the EPE of HSM-Net+ours is611

33.51% and 26.21% lower than the original HSM-Net on the612

SceneFlow dataset and the KITTI 2015 dataset, respectively.613

Our method is effective and the higher the resolution at which614

we employ our method, the greater the improvement it brings.615

2) Effectiveness of Inter-Scale Similarity Measurement: 616

We utilize inter-scale similarity measurement to generate a 617

similarity guidance map for cost aggregation. Each pixel in the 618

similarity map corresponds to the content information at the 619

same location. Our method calculates the similarity between 620

high-resolution feature points and their corresponding M × M 621

points in the low-resolution counterpart. Visualizations of 622

similarity maps of a 3 size neighborhood are shown in Fig. 8. 623

We confirm the effectiveness of our inter-scale policy on 624

the SceneFlow dataset through a series of experiments. These 625

experiments are conducted in three settings: without sim- 626

ilarity guidance, with single-scale similarity guidance, and 627

with inter-scale similarity guidance. The results presented 628

in Table VI clearly demonstrate that the use of inter-scale 629

similarity guidance results in higher accuracy when com- 630

pared to single-scale similarity guidance. The inter-scale 631

similarity guidance transforms the unary mapping inherent 632

in single-scale similarity guidance into a pair-wise map- 633

ping, consequently leading to improved accuracy. Furthermore, 634

we verify the significance of employing stereo information, 635

which includes both reference and target images, to achieve 636

favorable results. In Table VI, it is evident that the EPE when 637

using stereo information is significantly lower than when not 638

using stereo information. Utilizing stereo information to model 639

the mapping relationship between cost volumes of different 640

resolutions proves to be more reliable than relying solely on 641

reference images. 642

3) Effectiveness of Our Method in Different Resolution: 643

We further provide visualizations of the results obtained from 644

HSM-Net and HSM-Net+ours at different resolutions on the 645

SceneFlow dataset. These visualizations help us understand 646

how our model enhances the baseline at various resolutions, 647

as shown in Fig. 9. At a resolution of 1/32, HSM-Net 648
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TABLE V
RESULTS OF USING THE GUIDANCE IN MULTIPLE STEPS OF MULTI-SCALE COST AGGREGATION ON SYNTHETIC AND REAL DATASETS. RES 1/16, 1/8, 1

REPRESENTS THE ORIGINAL IMAGE’S 1/16, 1/8, AND 1 RESOLUTION. RES 1/16 TO 1/8 INDICATES WHETHER THE BASELINE IS PLUGGED WITH
OUR METHOD IN COST AGGREGATION FROM RESOLUTION 1/16 TO RESOLUTION 1/8, SO AS RES 1/8 TO 1

Fig. 8. The visualization of similarity. (a) and (b) are the similarity of the two images. The three columns on the right are visualizations of the similarity,
representing the similarity of points in high resolution to their corresponding neighbors in low-resolution projection points. In each map, the brightness
indicates the similarity, which corresponds to the upsampling kernel weight. It can be seen that the aggregation weight is directly related to the image content
and that each weight in the global picture uniquely adapts the content information of the corresponding points.

TABLE VI
THE RESULTS OF USING DIFFERENT SCALES OF GUIDANCE TO GUIDE

COST AGGREGATION. “INTER-SCALE” AND “SINGLE-SCALE” REP-
RESENT THAT THE GUIDANCE MAPS ARE GENERATED FROM

ADJACENT SCALES OR A SINGLE SCALE, RESPECTIVELY.
THE “STEREO INFO” INDICATES WHETHER THE GUIDANCE

MAPS ARE GENERATED WITH STEREO INFORMATION
INCLUDING BOTH REFERENCE AND TARGET IMAGE

FEATURES, OR ONLY FEATURES OF THE
REFERENCE IMAGES

exhibits a failure in recovering the objects within the white649

bounding box, but our method successfully rectifies this error.650

Additionally, our method corrects the gaps within the blue651

bounding box at a resolution of 1/16. From a resolution of 1/32652

to 1, our method effectively recovers the triangular area within653

the black bounding box. It is evident that high-resolution654

cost aggregation is markedly influenced by low-resolution cost655

aggregation. Our method systematically addresses errors in656

the original method at each resolution, commencing with the657

lowest resolution.658

F. Generalization Evaluation659

1) Universality of Cost Aggregation Method on Different660

Baseline: We apply our method to five stereo networks, i.e.,661

PSM-Net [6], HSM-Net [7], and CF-Net [30], FastAcv [44] 662

and FastAcvPlus [44] to verify the university of our method. 663

The results on the SceneFlow dataset are shown in Table II, 664

and the results on the KITTI 2015 dataset are shown in 665

Table III. 666

For PSM-Net, HSM-Net, and CF-Net, our methods have 667

improved by 44.5%, 33.5%, and 32.1% on the SceneFlow 668

dataset, respectively. Moreover, our method has achieved 669

reductions in D-all metrics for all three baselines on the 670

KITTI 2015 dataset. Our method consistently enhances various 671

baselines on both synthetic and real datasets. 672

2) Zero-Shot Generalization Ability: Obtaining large-scale 673

real-world datasets for training is challenging, making the 674

generalization capability of stereo models crucial. To this end, 675

we evaluate the generalization performance of our methods 676

from synthetic datasets to unseen real-world scenes. In this 677

evaluation, we train various baseline models augmented with 678

our approach on the Scene Flow dataset and directly evaluate 679

them on the Middlebury 2014 and ETH3D training sets. 680

As shown in Table VII, our method consistently outper- 681

forms all baselines, demonstrating its strong generalization 682

capability. 683

G. Comparison With Content-Aware Upsamping Methods 684

To demonstrate our superiority over conventional 685

content-aware upsampling operators, we directly applied 686

CARAFE++ [59] to the HSM-Net baseline for comparative 687

analysis. The content-aware operators were implemented 688

at resolutions of 1
32 , 1

16 , and 1
8 of full resolution, aligning 689
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Fig. 9. Results of HSM-Net and HSM-Net+ours at different resolutions. We obtain the disparity map by regressing the cost volume at each resolution.

with the settings of our method. We conducted training and690

testing of HSM-Net with CARAFE++ on the SceneFlow691

dataset, using EPE as the measurement metric. The results692

presented in Table VIII clearly indicate that our method693

outperforms CARAFE++ in terms of accuracy and694

speed. Inter-scale information provides us with a broader695

receptive field for aggregation and access to more content696

information. Furthermore, our approach involves separating697

the 3D upsampling process into 1D and 2D upsampling,698

resulting in a significant reduction in computational699

cost.700

1) Complexity Analysis: To further demonstrate the supe- 701

riority of our decomposition strategy in computational 702

complexity, we conducted the following analysis and com- 703

plexity experiments. We separate the 3D upsampling into 704

1D upsampling plus 2D upsampling, reducing the parameters 705

and calculations. We test the memory cost of different cost 706

aggregation methods of HSM-Net in 1
8 and 1 of the full 707

resolution (540×960) of the SceneFlow dataset and the results 708

are shown in Table IX. At the same resolution, our module 709

exhibits lower memory and time consumption compared to 710

the other two upsampling methods. 711
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TABLE VII
TABLE IX SYNTHETIC TO REAL GENERALIZATION EXPERIMENTS. ALL

MODELS ARE TRAINED ON SCENE FLOW. THE BAD 2.0 ERROR RATE
IS USED FOR MIDDLEBURY-V3, AND THE BAD 1.0 ERROR RATE

FOR ETH3D

TABLE VIII
RESULT OF COMPARISON BETWEEN CARAFE++ [59] AND OURS IN

BASELINE HSM-NET [7]. BOTH CARAFE++ AND OURS ONLY
REPLACE THE UPSAMPLING MODULE AT RES 1/16 TO 1/8

TABLE IX
(COMPLEXITY AND EFFICIENCY ANALYSIS OF DIFFERENT COST AGGRE-

GATION STRATEGIES (THE BASELINE MODEL IS HSM-NET). DUE TO
HARDWARE LIMITATIONS, WE DO NOT RUN CARAFE++ AT 1/8

TO 1 RESOLUTION. THE BEST RESULTS FOR EACH EVALUATION
METRIC ARE SHOWN IN BOLD

H. Limitation712

1) Lack of Dense Outdoor Data: The performance gains713

for outdoor scenes are smaller compared to those in virtual714

and indoor datasets. Additionally, in the CF-Net baseline, our715

method still fails to completely correct the erroneous depth716

estimation for the sky, as shown in Fig. 10 (a). We believe there717

are two main reasons for this: 1) Poor ground truth quality.718

Outdoor datasets like KITTI use LiDAR scanning, resulting in719

sparse depth maps. Ground truth is missing in areas beyond720

the LiDAR scan range, as shown in Fig. 10 (b). This sparsity721

affects model training. 2) Lack of fine-grained regions. Our722

method focuses on fine-grained areas, but the coarse nature723

of LiDAR scans in outdoor datasets means many details are724

overlooked. For this scenario, we believe that employing some725

advanced depth completion methods to refine sparse areas in726

the ground truth could be a reasonable approach.727

2) Future Work: In future work, we aim to delve into728

super-resolution techniques to augment the detail information729

Fig. 10. Failure case and ground-truth in the outdoor scenarios.

within extensive textureless areas, which will significantly 730

bolster the performance in outdoor environments. Furthermore, 731

the present study has adopted a distinct spatial domain mod- 732

eling strategy to address the issue of detail loss. Yet, the 733

utilization of high-frequency components in the frequency 734

domain for such fine-grained information presents itself as 735

an inherently viable alternative. Moving forward, we intend 736

to experiment with frequency domain analysis techniques, 737

including wavelet transformations, to facilitate the restoration 738

of fine-grained regional information. 739

VI. CONCLUSION 740

We have presented an inter-scale similarity guided cost 741

aggregation method designed to adaptively recover details 742

in fine-grained areas. By leveraging both low-resolution 743

and high-resolution information, our approach effectively 744

exploits detail while generating inter-scale similarity measure- 745

ments. Additionally, our stereo-content-aware cost aggregation 746

method employs a decomposition strategy that divides the 3D 747

disparity-spatial space into 1D disparity space and 2D spatial 748

space, significantly reducing computational costs associated 749

with 3D cost volumes. Experimental results across three 750

benchmarks demonstrate the effectiveness of our method with 751

various models. 752
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Inter-Scale Similarity Guided Cost Aggregation
for Stereo Matching

Pengxiang Li , Chengtang Yao, Yunde Jia , Member, IEEE, and Yuwei Wu , Member, IEEE

Abstract— Stereo matching aims to estimate 3D geometry by1

computing disparity from a rectified image pair. Most deep2

learning based stereo matching methods aggregate multi-scale3

cost volumes computed by downsampling and achieve good4

performance. However, their effectiveness in fine-grained areas5

is limited by significant detail loss during downsampling and the6

use of fixed weights in upsampling. In this paper, we propose7

an inter-scale similarity-guided cost aggregation method that8

dynamically upsamples the cost volumes according to the content9

of images for stereo matching. The method consists of two10

modules: inter-scale similarity measurement and stereo-content-11

aware cost aggregation. Specifically, we use inter-scale similarity12

measurement to generate similarity guidance from feature maps13

in adjacent scales. The guidance, generated from both reference14

and target images, is then used to aggregate the cost volumes15

from low-resolution to high-resolution via stereo-content-aware16

cost aggregation. We further split the 3D aggregation into 1D17

disparity and 2D spatial aggregation to reduce the computational18

cost. Experimental results on various benchmarks (e.g., Scene-19

Flow, KITTI, Middlebury and ETH3D-two-view) show that our20

method achieves consistent performance gain on multiple models21

(e.g., PSM-Net, HSM-Net, CF-Net, FastAcv, and FactAcvPlus).22

The code can be found at https://github.com/Pengxiang-Li/issga-23

stereo.24

Index Terms— Stereo matching, cost aggregation, content-25

aware upsampling.26

I. INTRODUCTION27

STEREO matching aims to estimate a pixel-wise dis-28

parity map from a rectified image pair. It plays an29

important role in various applications including 3D recon-30

struction [1], AR [2], SLAM [3], and autonomous driving [4].31
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The well-known pipeline divides stereo matching into four 32

steps: cost computation, cost aggregation, disparity computa- 33

tion, and disparity refinement [5]. Among these four steps, 34

cost aggregation plays a pivotal role in leveraging neighbor- 35

hood information to rectify the ambiguous matching costs in 36

ill-posed regions such as occluded regions, large textureless 37

areas, repetitive patterns, and thin structures. The cost aggre- 38

gation is commonly embedded into end-to-end deep neural 39

networks with multi-scale processing to enlarge the receptive 40

field. 3D CNNs [6], [7], GRU [8], [9], and attention mecha- 41

nism [10] are the most commonly used basic structures for cost 42

aggregation, effectively correcting ambiguous matching costs 43

and substantially enhancing prediction accuracy in ill-posed 44

regions by aggregating multi-scale cost volumes. 45

However, these cost aggregation methods often struggle in 46

fine-grained areas due to considerable detail loss during down- 47

sampling and fixed weight used in upsampling. Many efforts 48

have been targeted at improving the performance of stereo 49

matching in fine-grained areas, including edge information 50

[11], deformable convolutions [12], group-wise correlation 51

[13] and slanted planes [14]. These methods have achieved 52

good performance, but two challenging problems in cost 53

aggregation are still not well solved: (1) the downsampling 54

causes considerable detail loss during the construction of 55

multi-scale cost volumes, and (2) the upsampling fixed in size 56

and weight is prone to data imbalance between large-smooth 57

areas and fine-grained areas. For example, the HSM-Net [7] 58

with multi-scale cost volumes and upsampling fixed in size and 59

weight may lead to poor performance in fine-grained areas, 60

as illustrated in Fig. 1 (b) and Fig. 1 (c). 61

In this paper, we propose inter-scale similarity-guided cost 62

aggregation that adaptively restores image details by dynam- 63

ically upsampling cost volumes based on image content. 64

Our method comprises two modules: inter-scale similar- 65

ity measurement and stereo-content-aware cost aggregation. 66

We utilize inter-scale similarity measurements to generate 67

similarity guidance from the feature maps of adjacent scales. 68

Subsequently, we employ this guidance to aggregate the 69

multi-scale cost volumes through stereo-content-aware cost 70

aggregation. 71

For the first challenging problem, our idea is to retrieve 72

the fine-grained details lost during the downsampling pro- 73

cess. We use inter-scale similarity measurement to measure 74

the similarity between high-resolution and low-resolution 75

features. The similarity explicitly preserves the connection 76

between high-resolution details and low-resolution features, 77

1051-8215 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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Fig. 1. Predictions and upsampling weights visualizations of HSM-Net [7]
using different upsampling strategies.

thereby providing guidance for the upsampling process to78

restore details. Technically, we first project a point xhigh79

from high-resolution to low-resolution features xlow. Then80

we compute the similarity between the point in the high-81

resolution xhigh and the neighbors of the projected point in82

low-resolution Nlow.83

For the second challenging problem, a critical factor leading84

to the suboptimal restoration of fine-grained details is the85

fixed size and weights of existing upsampling strategies,86

which are unable to adapt to the complicated fine-grained87

details. Motivated by this, we replace the fixed upsampling88

with content-aware upsampling. The content-aware upsam-89

pling uses the content information of each point to guide90

the upsampling process, thereby mitigating the impact of91

data imbalance between large-smooth and fine-grained areas.92

In stereo-content-aware cost aggregation, we use similarity93

guidance (generated from both reference and target images) to94

guide the aggregation of matching costs in 3D spatial-disparity95

space. The pair-wise 3D upsampling is computationally expen-96

sive. Thus, we split the upsampling in the 3D space into97

1D disparity and 2D spatial space. As a result, our method98

is able to efficiently and adaptively assemble the proper99

neighbors for cost aggregation and upsampling. Our method100

generates upsampling weight according to the image content101

and achieves much finer details, as shown in Fig. 1 (d). Our102

method can be plugged into any multi-scale cost volume based103

stereo network and achieve higher accuracy, especially in fine-104

grained areas.105

Our contributions are summarized as follows:106

1) We propose an inter-scale similarity guided cost aggre-107

gation method to adaptively recover the details of cost108

volumes under the guidance of similarity generated from 109

images. 110

2) We introduce an inter-scale similarity measurement to 111

dynamically generate guidance by incorporating infor- 112

mation from both low-resolution and high-resolution 113

feature maps. The explicit utilization of high-resolution 114

feature maps ensures the preservation of fine-grained 115

details. 116

3) We design a decomposition strategy that splits 3D 117

disparity-spatial upsampling into 1D disparity and 2D 118

spatial upsampling, significantly reducing the computa- 119

tional cost of the 3D pair-wise upsampling. 120

II. RELATED WORK 121

A. Stereo Matching 122

Traditional stereo matching methods estimate disparity 123

maps for rectified image pairs using local [15], [16], 124

global [17], [18], and semi-global methods [19], [20], [21]. 125

Deep learning-based stereo matching networks now dominate, 126

delivering state-of-the-art results. Early deep learning methods 127

replaced steps in stereo matching [5]: cost computation [22], 128

[23], [24], cost aggregation [25], [26], [27], disparity compu- 129

tation [28], and disparity refinement [26], [27]. Despite good 130

performance, their non-end-to-end approaches limited data 131

utilization. To overcome this, end-to-end methods compute 132

correlations by warping the target image to the reference 133

image [8], [9], [11], [29]. These achieve excellent results but 134

often lose geometric information. Cost-volume-based mod- 135

els [6], [30], [31], [32], [33], [34], [35] preserve geometric 136

information by concatenating multi-scale cost volumes. State- 137

of-the-art methods use convolution neural networks [36], [37], 138

[38], [39], [40], [41] or attention mechanisms [10], [42], [43], 139

[44] to aggregate these volumes, effectively utilizing image 140

context information. 141

However, multi-scale cost volume-based stereo matching 142

methods often lose fine-grained details due to downsampling. 143

While cost aggregation usually recovers these details, current 144

fixed-size and fixed-weight schemes struggle with data imbal- 145

ances between large smooth, and fine-grained areas. To address 146

this, we developed a content-aware cost aggregation method 147

that mitigates detail loss during multi-scale cost volume cre- 148

ation. Our adaptive upsampling approach also remains robust 149

against data imbalances. 150

B. Cost Aggregation 151

Multi-scale cost aggregation methods [6], [29] enhance 152

matching cost reliability by optimizing multi-scale cost vol- 153

umes for precise disparity estimation. Song et al. [11] used 154

edge information to guide cost aggregation, reducing edge mis- 155

matches. Zhang et al. [45] improved efficiency by replacing 3D 156

CNNs with semi-global aggregation. Yang et al. [7] proposed a 157

hierarchical feature volume decoder for high-resolution image 158

disparity estimation. Xu et al. [12] utilized deformable con- 159

volution for adaptive aggregation. Lipson et al. [8] designed 160

an iterative mixed disparity sampling and aggregation strategy. 161

Liu et al. [46] used local features to address over-smoothing. 162
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Zhang et al. [47] introduced depth-based sampling for bal-163

anced density in close and far regions. Xu et al. [48] utilized164

bilateral grid processing for faster aggregation. Lee et al. [49]165

introduced a cluster-wise cost aggregation algorithm to paral-166

lelized scanline-level disparity computation.167

The aforementioned methods demonstrate commendable168

performance, even in ill-posed areas. However, they still169

suffer from the loss of details in downsampling, and their170

strategies for multi-scale cost aggregation are susceptible to171

data imbalance. These strategies commonly rely on either172

bilinear interpolation or deconvolution for upsampling. Both173

bilinear interpolation and deconvolution employ a fixed inter-174

polation rule or deconvolution kernel across all data points,175

thus failing to exploit the content information of images176

fully. Constrained by computational memory limitations, these177

methods are unable to perform direct aggregation at full178

resolution. Instead, they resort to upsampling to full resolution179

without introducing additional parameters after aggregat-180

ing at 1/2 or 1/4 resolution. However, relying solely on181

parameter-free upsampling is inadequate for recovering lost182

details.183

C. Upsampling184

Upsampling is used to transform data from low-resolution185

to high-resolution. Traditional upsampling strategies fit a curve186

of a small neighborhood of the upsampled points to com-187

pute values for interpolated points, including nearest neighbor188

interpolation [50], bilinear interpolation [51], trilinear interpo-189

lation [52], and bicubic interpolation [53], etc. The advantage190

of these methods lies in their low computational cost. How-191

ever, these parameter-free upsampling strategies underutilize192

image content, resulting in blurred recovery results in fine-193

grained areas. Deconvolution [54], [55], [56], [57] offers a194

learning-based approach to upsampling, where weights are195

optimized through backpropagation. Learning-based upsam-196

pling kernels enable the utilization of contextual information197

learned from extensive data. However, deconvolution has lim-198

itations as it struggles in various scenes due to fixed kernel199

sizes and weights, making it susceptible to data imbalances.200

Several works [58], [59], [60] use content-aware upsampling201

operators to solve the fixed-weight problem. Wang et al. [58],202

[59] presented a content-aware reassembly approach and203

argued that traditional feature upsampling methods struggle204

to capture rich semantic information. While content-aware205

upsampling mitigates the fixed-weight problem, it relies solely206

on information from the low-resolution side (i.e., the upsam-207

pling process could be regarded as a unary low-resolution to208

high-resolution mapping). However, the upsampling process209

inherently consists of both low-resolution and high-resolution210

components, and relying solely on low-resolution features for211

upsampling may not suffice. Instead of employing a unary212

upsampling mapping, we introduce an inter-scale similarity213

measurement approach to produce a pair-wise upsampling214

mapping, represented by similarity guidance derived from215

information gathered across adjacent scales. In other words,216

we actually model the upsampling process as a binary mapping217

between low-resolution and high-resolution.218

III. OPTIMIZATION IN MULTI-SCALE COST AGGREGATION 219

In this section, we model the optimization objectives for 220

each layer of multi-scale cost aggregation. Given a cost volume 221

Cl−1 ∈ RHl−1×Wl−1×Dl−1 at level l−1 as input, Cl is computed 222

via a network with learning weights W l . The generation of Cl 223

can be formulated as 224

p(Cl) = p(Cl |Cl−1, W l)p(W l)p(Cl−1) 225

= p(Cl |Cl−1, W l)p(W l). (1) 226

The probability p(Cl) of cost volume is commonly computed 227

by p(Cl) = softmax(−Cl), and p(Cl−1) is supposed to be 1 as 228

Cl−1 has already been given. Then, the optimization objective 229

is to find the best W l that recovers the details lost in Cl−1, 230

which can be formulated as 231

W l = argmax
W l

p(W l |Cl , Cl−1), 232

= argmax
W l

p(W l |Cl), 233

= argmax
W l

p(Cl |W l) · p(W l)∑
W l

p(Cl |W l)p(W ′

l)dW ′

l ,
234

a.s.
= argmax

W l

p(Cl |W l) · p(W l), 235

a.s.
= argmax

W l

p(Cl). (2) 236

In the aforementioned cost aggregation process, it becomes 237

impractical to recover the details lost during downsampling 238

using bilinear upsampling or deconvolution. This is because 239

W l is optimized by cost volumes at level [0, 1, . . . , l −1], and 240

it doesn’t consider the image content at level l. In other words, 241

only minimal details at level l contribute to the optimization of 242

W l . Furthermore, the kernel weights are influenced by the con- 243

tent that appears more frequently in the image. Consequently, 244

it becomes challenging to utilize these fixed kernel weights 245

effectively for recovering details that constitute only a small 246

proportion of the image content such as the fine-grained areas. 247

IV. PROPOSED METHOD 248

A. Problem Formulation 249

Detail loss and biased upsampling are two challenging 250

problems that cause poor performance in fine-grained areas. 251

To address these two problems, we optimize cost aggregation 252

with image features at levels l and l − 1. In our method, 253

the optimization objective of cost aggregation at each level 254

is given by 255

W l = argmax
W l

p(Cl) · p(W l |Fl , Fl−1), (3) 256

where Fl is the feature map at level l. 257

In particular, the optimization objective of cost aggregation 258

with deconvolution is actually one special case of ours, where 259

p(W l |Fl , Fl−1) = p(W l). Besides, the optimization objective 260

of cost aggregation with bilinear interpolation is one special 261

case of deconvolution, i.e., Eq. (2). With substituting p(W l) = 262

1 into Eq. (2), Eq. (2) can be reformulated as 263

W l = argmax
W l

p(Cl), (4) 264
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Fig. 2. The visualization of aggregation weight and disparity distribution in
cost volume. The upper row shows the aggregation weight and the under row
shows the distribution of the cost volume along the disparity dimension for
a single point. The point in each distribution map is the ground truth for the
point in the reference image. Both the bilinear upsampling and deconvolution
predict wrong results, while ours not only predicts the correct disparity but
also corrects for multi-modality in the distribution.

which is just the optimization objective of cost aggregation265

with bilinear interpolation.266

In our method, W l is automatically adjusted from the267

change of Fl and Fl−1 during inference, whereas the weights268

of deconvolution or bilinear interpolation remain static. Our269

method generates aggregation weight related to the image270

content and achieves unimodal distribution results, while oth-271

ers get multimodal distribution or wrong distribution. Fig. 2272

provides a visual representation of aggregation using various273

upsampling strategies. As shown in Fig. 2, the weights for274

bilinear interpolation remain constant, the weights for decon-275

volution are repetitive kernels, while our method’s weights are276

content-aware, closely linked to the image’s content. It’s also277

worth noting that our method effectively addresses the issue of278

multiple peaks in the disparity distribution (see the distribution279

curves of Deconvolutions vs. Ours in Fig. 2). In our method,280

the disparity distribution exhibits only a single prominent peak281

precisely at the ground truth disparity, whereas deconvolution282

may exhibit multiple peaks, potentially leading to incorrect283

disparity results.284

B. Implementation285

Given an image pair, we extract multi-scale feature maps286

Fl at each level l for reference and target images. We then287

use the feature maps to construct the cost volume at the lowest288

level. As for the cost volume at the high level, we iteratively289

upsample the cost volume from the low level to the high290

level through two steps, the inter-scale similarity measurement,291

and the stereo-content-aware cost aggregation. The inter-scale292

similarity measurement uses feature maps from adjacent scales293

to generate similarity guidance. The stereo-content-aware cost294

aggregation uses the similarity guidance from two views to295

guide the cost volume upsampling. At last, we use the cost296

volume at the highest level to compute the disparity map as297

the output of our network. Fig. 3 illustrates the pipeline of our298

method.299

1) Inter-Scale Similarity Measurement: The inter-scale sim-300

ilarity measurement takes the feature maps Fl and Fl−1 as301

input. We compute the similarity by the summation of the302

products of Fl(h′, w′) and the neighbors of Fl−1(h, w) with 303

the formula as 304

Sl(h′, w′) =
1

M · M
φ(

∑
(h,w)∈NF

Fl(h′, w′)Fl−1(h, w)), (5) 305

where (h′, w′) and (h, w) are the location at high-level and 306

low-level respectively, (h′, w′) = (h · s, w · s), s is the scale 307

change in resolution from level l − 1 to level l, and · is the 308

scalar multiplication operation. Sl ∈ RHl
×Wl

is the similarity 309

guidance at level l, Sl(h′, w′) is the value of the pixel at 310

location (h′, w′), NF ∈ RM×M is a 2D neighborhood of the 311

pixel at location (h, w) with the size of M × M . φ(·) is a 312

subnetwork composed of convolution layers, relu layers, and 313

batch normalization layers. 314

2) Stereo-Content-Aware Cost Aggregation: 3D convolution 315

based methods [6], [7] usually perform window based cost 316

aggregation: 317

Cl(h′, w′, d ′) =

∑
(h,w,d)∈Nc

W l(h′, w′, d ′)Cl−1(h, w, d), (6) 318

where Nc is a 3D neighborhood of the point at 319

(h′/s, w′/s, d ′/s). 320

In our method, we replace the 3D weight W l with the 321

2D similarity guidance Sl . For each level, we use the feature 322

maps of the stereo images, i.e., reference and target images, 323

to compute the content-aware similarity guidance SR
l and ST

l 324

by inter-scale similarity measurement, respectively. Then we 325

perform the cost aggregation guided by SR
l and ST

l : 326

Cl(h′, w′, d ′) =

∑
(h,w,d)∈Nc

SR
l (h′, w′)ST

l (h′, w′
− d ′) 327

Cl−1(h, w, d). (7) 328

The memory and computational cost of 3D cost aggregation 329

are unaffordable. Accordingly, we introduce a decomposition 330

strategy to reduce the computation cost. We split the upsam- 331

pling in full 3D spatial-disparity space into 1D disparity and 332

2D spatial upsampling by leveraging the property of cost vol- 333

ume on the disparity dimension. The property is that position 334

(h, w, d) in cost volume represents the (h, w) in the reference 335

image and (h, w −d) in the target image. We warp ST
l to SR

l , 336

and then split the mapping of cost volume into 1D disparity 337

dimension and 2D spatial dimension. Specifically, we replace 338

Eq. (7) with a two-step decomposed cost aggregation. 339

In the first step, 1D disparity upsampling, the positions 340

(h, w, d − ⌊M/2⌋), . . . , (h, w, d), . . . , (h, w, d + ⌊M/2⌋) in 341

cost volume along disparity dimension correspond to (h, w) 342

in the reference image and (h, w − d + ⌊M/2⌋), . . . , (h, w − 343

d), . . . , (h, w −d −⌊M/2⌋) in the target image. Formally, the 344

updating along the disparity dimension is given by 345

Cl(h, w, d ′) =

∑
d∈Nd

SR
l (h′, w′)ST

l (h′, w′
− d ′)Cl−1(h, w, d), 346

(8) 347

where Nd = {d ′/s − ⌊M/2⌋, . . . , d ′/s, . . . , d ′/s + ⌊M/2⌋}. 348

In the second step, 2D spatial upsampling, all voxels with 349

location (h′, w′, :) in cost volume correspond to the pixel with 350
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Fig. 3. The overall architecture. Given an image pair, our method extracts multi-scale features at each level l. L is the total number of levels. w⃝ is the
warping operation used for generating the initial cost volume in the lowest resolution. ×⃝ represents element-wise multiplication.

location (h′, w′) in the reference image. The update along the351

spatial dimension is given by352

Cl(h′, w′, d ′) =

∑
(h,w)∈Nsp

SR
l (h′, w′)Cl(h, w, d ′), (9)353

where Nsp ∈ RM×M is a 2D neighborhood of the pixel with354

location (h′/s, w′/s) at level l − 1.355

After all these operations, we complete the transformation356

from the shape of Hl−1 × Wl−1 × Dl−1 to Hl−1 × Wl−1 × Dl357

and then to Hl × Wl × Dl , where Hl = Hl−1 · s, Wl = Wl−1 · s358

and Dl = Dl−1 · s.359

3) Loss Function: We use a multi-scale loss function that360

applies smooth L1 loss to each level. The smooth L1 loss361

function is not sensitive to outliers or noises. The loss function362

is defined as363

Dl =

∑

d∈{dn}
N
n=1

d · σ(−Cl), (10)364

L =

∑
l=0

λl · Ll(Dl − Gl), (11)365

Ll(x) =

{
0.5 x2, if |x | < 1
|x | − 0.5, otherwise ,

(12)366

where {dl
n}

N
n=1 is the disparity hypothesis at level l, σ(·) is the367

softmax operation, Dl is the predicted disparity map at level l,368

λl denotes the coefficients for the disparity prediction at level369

l, and Gl is the ground-truth disparity map at level l.370

C. Computational Cost Analysis371

To further demonstrate the superiority of our decomposition372

strategy in computational complexity, we conducted the fol-373

lowing analysis and complexity experiments (in Section V).374

We separate the 3D upsampling into 1D upsampling plus 2D375

upsampling, reducing the parameters and calculations.376

1) Parameters: For deconvolution, the number of param- 377

eters per layer is given by C × 1 × k3
= Ck3, where k is 378

the kernel size, C is the number of input channels, and the 379

output channel is set to 1. In contrast, our method requires 380

Ck2 parameters per layer. Both our method and deconvolution 381

utilize the same number of layers. 382

2) Calculations: For the computational complexity of 3D 383

upsampling, comparing 3D deconvolution with our method for 384

a feature volume of size C × D × H × W to be upsampled 385

by a scale of s, the computational cost for deconvolution 386

is O(s3k3)C DH W , while ours is O(s2k2
+ sk)C DH W = 387

O(s2k2)C DH W . 388

V. EXPERIMENTS 389

A. Datasets 390

1) SceneFlow Dataset: SceneFlow [29] is a large synthetic 391

dataset containing 34896 training images and 4248 testing 392

images with the size of 540 × 960. This dataset has three 393

rendered sub-datasets: FlyingThings3D, Monkaa, and Driving. 394

FlyingThings3D is rendered from the ShapeNet dataset and 395

has 21828 training data and 4248 testing data. Monkaa is 396

rendered from the animated film Monkaa and has 8666 training 397

data. The Driving is constructed by the naturalistic, dynamic 398

street scene from the viewpoint of a driving car and has 399

4402 training samples. 400

2) KITTI 2015 Dataset: KITTI 2015 [61] is a real-world 401

dataset with street views from a driving car. It contains 402

200 training stereo image pairs with sparse ground-truth dis- 403

parities obtained using LiDAR and another 200 testing image 404

pairs without ground-truth disparities. During the training pro- 405

cess, we take 160 images for training and reference 40 images 406

for validation. 407

3) Middlebury-v3 Dataset: Middlebury-v3 is a subset of the 408

2014 dataset [62] and is collected in the real world with static 409

indoor scenes containing complicated and rich details. There 410

are 15 stereo pairs for training and 15 stereo pairs for testing. 411
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Each pair is provided in 3 kinds of resolution, full, half, and412

quarter resolution; where we used the quarter resolution in the413

experiment.414

4) ETH3D-Two-Iew Dataset: ETH3D (two view) [63] com-415

prises grayscale stereo pairs captured from diverse indoor and416

outdoor scenes. The dataset includes 27 training and 20 testing417

image pairs with sparsely labeled ground truth. Disparities418

range from 0 to 64 pixels, and bad 1.0 (percentage of pixels419

with errors larger than 1 pixel) are reported.420

B. Evaluation Metrics421

The end-point error (EPE) is the mean disparity error in422

pixels. The 3-px error refers to the proportion of points423

in the full map where the absolute value of the differ-424

ence between the predicted disparity and the true value is425

greater than 3 pixels. The percentage of disparity outliers426

in the background (D1-bg), foreground (D1-fg), or all pixels427

(D1-all) for both noc regions and all regions are applied for428

evaluation. Disparity outliers are the pixels if their disparity429

EPE is more than 3 or 5% pixels. avgerr is the average430

absolute error in pixels. RMS represents the root mean square431

of the differences between the estimated and actual disparities.432

A90 and A95 are the 90% and 95% error quantile in pixels,433

respectively. Bad 1.0 and Bad 2.0 percentage of pixels with434

errors larger than 1 pixel or 2 pixels, respectively.435

C. Model Details436

To prove the effectiveness of our method, we extend five437

stereo baseline networks with our method, CF-Net [30], HSM-438

Net [7] and PSM-Net [6], FastAcv [44] and FastAcvPlus [44].439

All networks are implemented via PyTorch and tested on440

NVIDIA RTX 3090 GPU. For all baselines, the neighborhood441

size M is set to the scale change s at each level.442

For PSM-Net+ours, the model is optimized using Adam443

[64] with β1 of 0.9, β2 of 0.999. During training, the batch size444

is fixed to 8, and we perform color normalization to each input445

image and crop them into 256 × 512 resolution. We train our446

network on SceneFlow for 10 epochs and change the learning447

rate from 0.001 to 0.0001 in the 7th epoch. We then fine-448

tune the network on KITTI 2015 and set the learning rate to449

0.001, 0.0001, and 0.00003 in the first 200 epochs, the next450

400 epochs, and the final 600 epochs, respectively. As for451

Middlebury-v3, we also fine-tune the model pre-trained on452

SceneFlow. The learning rate is set to 0.001 for 300 epochs and453

then changed to 0.0001 for the rest of 600 epochs. For HSM-454

Net+ours, we use AdamW [65] with β1 of 0.9, β2 of 0.999.455

During training, the batch size is fixed to 12, and we perform456

the same data augmentation [7] of the original HSM-Net and457

crop the images into 256 × 512 resolution. We train our458

network for 10 epochs using the same dataset as HSM-Net459

and change the learning rate from 0.001 to 0.0001 in the 9th460

epoch. For CF-Net, FastAcv, and FastAcvPlus, we follow all461

the training strategies of the official repositories.462

Furthermore, we downsample the ground truth for our multi-463

scale loss. We use bilinear downsampling in SceneFlow and464

nearest downsampling in KITTI 2015 and Middlebury-v3.465

TABLE I
EVALUATION RESULTS OF CURRENT STEREO MATCHING

ALGORITHMS ON THE SCENEFLOW TEST SET

Additionally, we reduced the computational cost without sacri- 466

ficing accuracy by moving the averaging operation before the 467

aggregation at each layer. Although we observe better results 468

of bilinear downsampling in the experiment on SceneFlow, the 469

ground truth disparities of the two real-world datasets contain 470

invalid values, like 0 and INF, which will lead to wrong dis- 471

parity results after bilinear downsampling. In all experiments, 472

no post-processing or unsupervised learning methods are used. 473

D. Comparison With Stereo Matching Methods 474

Our method mainly focuses on recovering the fine-grained 475

details lost during cost volume downsampling. Therefore, 476

we conduct experiments on the SceneFlow dataset, specifi- 477

cally targeting fine-grained areas, and we compare the results 478

against mainstream baseline methods. Additionally, we per- 479

form experiments on real datasets, including KITTI and 480

Middlebury, to validate the effectiveness of our approach. 481

1) SceneFlow: The experimental results in Table I 482

show that our proposed method significantly improves 483

the performance of stereo matching algorithms, with the 484

FastAcvPlus+ours achieving the lowest EPE of 0.57. The con- 485

sistent reduction in EPE across various models demonstrates 486

the robustness and efficacy of our method. 487

a) Fine-grained areas: We test different baselines in the 488

fine-grained region on the SceneFlow dataset to verify the 489

accuracy improvement of our method in the fine-grained (FG) 490

areas and full areas, as shown in Table II. We use the calculated 491

HOG [66] descriptor of the reference image as a mask of fine- 492

grained areas. The results in Table II show the superiority of 493

our method in fine-grained areas. Our method can improve 494

the accuracy significantly in fine-grained areas, and 37.6%, 495

32.9%, 16.2%, 11.4% and 10.4% EPE reduction in PSM-Net, 496

HSM-Net, CF-Net, FastAcv and FastAcvPlus, respectively. 497

Our method is effective for different baselines with good 498

universality. Our method also brings no or small increase in 499

runtime. For PSM-Net, we remove the time-consuming 3D 500

convolution layers in the hourglass modules at RES 1/16 and 501

RES 1/8. For the rest baselines, we directly plug our method 502

into them without additional model modification. 503

The visualization results for the fine-grained regions are 504

depicted in Fig. 4. Our method successfully recovers more 505

details, notably improving estimation results for fine-grained 506

areas like the spokes of the wheel and plant spikes in the 507

left column of Fig. 4 compared to the baseline. Furthermore, 508

our approach enhances results in less refined regions, such as 509

inside the bounding box in the right column of Fig. 4. 510
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TABLE II
RESULTS OF DIFFERENT BASELINE IN FULL AREAS (FULL) AND FINE-

GRAINED (FG) AREAS ON THE SCENEFLOW DATASET. FOR PSM-NET,
WE REMOVE THE TIME-CONSUMING 3D CNNS AT RES 1/16

AND RES 1/8

Fig. 4. The results of PSM-Net [6] and PSM-Net+ours on the SceneFlow
dataset.

b) Full areas: Our method brings improvement for full511

areas across different baselines. Visualization of the results512

(Fig. 5) reveals that our method exhibits certain corrective513

effects on large-scale weakly-textured regions as well. The514

experimental results demonstrate that our approach achieves515

significant accuracy improvement when applied to datasets516

with complete depth information as ground truth.517

2) Kitti: Table III displays the performance and runtime518

of various algorithms evaluated on the KITTI stereo2015519

benchmark. Across different baselines, our method enhances520

the accuracy of the original baselines with only a marginal521

increase in processing time. Notably, CF-Net combined with522

our method surpasses other competing methods in the Noc523

D1-all and All D1-all. Next, we would like to provide a more524

detailed explanation of the comparison between our method525

and stereo matching methods based on attention mechanisms,526

as well as methods based on decomposition strategies.527

TABLE III
EVALUATION ON KITTI 2015 BENCHMARK. THE BEST RESULTS FOR

EACH EVALUATION METRIC ARE SHOWN IN BOLD

a) Compared with the attention-based method: HDA- 528

Net [67] proposes an efficient horizontal attention module 529

to adaptively capture the global correspondence clues. Our 530

method uses inter-scale information to generate similarity 531

guidance to improve cost aggregation. As shown in Table III, 532

our method has lower D1-all (HDA-Net 2.03 vs. CF-Net+Ours 533

1.87) with faster running time (HDA-Net 0.42ms vs. 534

CF-Net+Ours 0.22ms) on the KITTI 2015 dataset. 535

b) Compared with the decomposition method: DecNet 536

[31] decomposes the original stereo matching into a dense 537

matching at the lowest resolution and a series of sparse 538

matching at higher resolutions. Unlike DecNet, our method 539

decomposes the 3D upsampling of cost volume into a 2D- 540

spatial and 1D-disparity upsampling. Our method outperforms 541

DecNet in D1-all (Dec-Net 2.37 vs. HSM-Net+Ours 2.09) 542

but is slower in runtime (Dec-Net 0.05ms vs. HSM-Net+Ours 543

0.09ms), as shown in Table III. 544

c) Visualization: Fig. 6 presents the experimental results 545

on the KITTI 2015 dataset, showcasing images from top to 546

bottom. Our method excels in recovering slender structures, 547

as seen in the iron chain at the center of the first row and 548

the fence in the lower left corner of the third row. Moreover, 549

our approach accurately estimates depth-mutation areas such 550

as signboards and utility poles. For instance, unlike PSM-Net 551

and HSM-Net in the first row’s bounding box around the 552

signboard, our method produces correct results. In rows two, 553

five, and six, the other methods misidentify parts of the 554

background as utility poles, which our method avoids. 555

3) Middlebury: We compare our method with several 556

approaches using different aggregation strategies on the Mid- 557

dlebury stereo dataset v3, as shown in Table IV. We outperform 558

these 3D aggregation based approaches on most of the met- 559

rics. The result also demonstrates the effectiveness of our 560

content-aware upsampling method. Based on the visualizations 561

in Fig. 7, we can draw the following conclusions: 1) Improved 562

depth estimation for fine-grained regions: Our method 563

shows superior performance in depth estimation for fine- 564

grained regions, demonstrating the effectiveness of explicitly 565

integrating high-resolution and low-resolution information. 566

This is evident in almost all cases, such as the detailed areas 567
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Fig. 5. The visualization of results on HSM-Net baseline. The first and second columns are the reference input images and ground truth. The rest columns
are results from HSM-Net and HSM-Net+ours.

Fig. 6. The results of different deep stereo networks on KITTI 2015 dataset. Our method performs better in fine-grained areas than other methods, especially
for the region denoted with the boxes. Please zoom in to check the details.

in “DjembL” and the water cup on the table in “Crusade”568

(Line 3, PSM-Net vs. PSM-Net + ours), as well as the569

small figurine (Line 3, HSM-Net vs. HSM-Net + ours).570

2) Enhanced foreground and background decoupling: Our571

method has a stronger ability to decouple the foreground from572

the background. Retaining low-resolution information effec-573

tively enhances this capability. Examples include the depth574

estimation of the potted plants and background in “Plants”575

(Line 5) and the estimation of the hollow part of the staircase576

handrail in “Staircase” (Line 4, HSM-Net vs. HSM-Net +577

ours; CF-Net vs. CF-Net + ours). 3) Competitive perfor-578

mance in flat regions: Our method also shows competitive579

performance in flat regions. For instance, the wall in the upper580

left of “Staircase” (Line 4, PSM-Net vs. PSM-Net + ours)581

and the restoration of the table corner in “Crusade” (Line 3, 582

CF-Net vs. CF-Net + ours). However, our method has some 583

shortcomings in certain areas, such as the seats in the PSM-Net 584

case of “Classroom2E” (Line 1, PSM-Net vs. PSM-Net + 585

ours). We will systematically discuss these limitations in the 586

Limitation Analysis section. 587

E. Ablation Studies 588

We conduct all the analysis in ablation studies mainly on 589

the HSM-Net baseline. Ablation studies are performed on the 590

SceneFlow dataset and the KITTI 2015 dataset. 591

1) Effectiveness of Stereo-Content-Aware Cost Aggregation: 592

During Stereo-Content-Aware Cost Aggregation, we use both 593
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Fig. 7. The visualization of results on Middlebury-v3 test set. In the first column are the reference input images. The rest columns are results from PSM-Net
[6], PSM-Net + ours, HSM-Net [7], + ours, CF-Net [30] and CF-Net + ours respectively.

TABLE IV
EVALUATION ON MIDDLEBURY-V3. THE BEST RESULTS FOR EACH

EVALUATION METRIC ARE SHOWN IN BOLD

reference and target images to extract similarity guidance and594

separate the 3D spatial-disparity upsampling into 1D dispar-595

ity / 2D spatial upsampling. We evaluate the effectiveness of596

our method at different resolutions through two experiments:597

i. Training on the SceneFlow dataset and testing on the598

SceneFlow dataset. ii. Training on the SceneFlow dataset and599

testing on the validation set of the KITTI 2015 dataset. Table V600

demonstrates that our decomposition strategy reduces the601

running time by nearly half compared to full 3D upsampling602

at the setting of “RES 1/16 to RES 1/8” and “RES 1/8 to603

RES 1” on the SceneFlow dataset and KITTI 2015 dataset.604

Our decomposition strategy not only proves to be faster but605

also more accurate than full 3D upsampling. When integrating606

our method at “RES 1/16 to 1/8,” HSM-Net+ours experiences607

a decrease in EPE of 18.09% and 15.86% compared to the608

original HSM-Net on the SceneFlow dataset and the KITTI609

2015 dataset, respectively. Plugging our method at higher610

resolutions, i.e., “RES 1/8 to 1”, the EPE of HSM-Net+ours is611

33.51% and 26.21% lower than the original HSM-Net on the612

SceneFlow dataset and the KITTI 2015 dataset, respectively.613

Our method is effective and the higher the resolution at which614

we employ our method, the greater the improvement it brings.615

2) Effectiveness of Inter-Scale Similarity Measurement: 616

We utilize inter-scale similarity measurement to generate a 617

similarity guidance map for cost aggregation. Each pixel in the 618

similarity map corresponds to the content information at the 619

same location. Our method calculates the similarity between 620

high-resolution feature points and their corresponding M × M 621

points in the low-resolution counterpart. Visualizations of 622

similarity maps of a 3 size neighborhood are shown in Fig. 8. 623

We confirm the effectiveness of our inter-scale policy on 624

the SceneFlow dataset through a series of experiments. These 625

experiments are conducted in three settings: without sim- 626

ilarity guidance, with single-scale similarity guidance, and 627

with inter-scale similarity guidance. The results presented 628

in Table VI clearly demonstrate that the use of inter-scale 629

similarity guidance results in higher accuracy when com- 630

pared to single-scale similarity guidance. The inter-scale 631

similarity guidance transforms the unary mapping inherent 632

in single-scale similarity guidance into a pair-wise map- 633

ping, consequently leading to improved accuracy. Furthermore, 634

we verify the significance of employing stereo information, 635

which includes both reference and target images, to achieve 636

favorable results. In Table VI, it is evident that the EPE when 637

using stereo information is significantly lower than when not 638

using stereo information. Utilizing stereo information to model 639

the mapping relationship between cost volumes of different 640

resolutions proves to be more reliable than relying solely on 641

reference images. 642

3) Effectiveness of Our Method in Different Resolution: 643

We further provide visualizations of the results obtained from 644

HSM-Net and HSM-Net+ours at different resolutions on the 645

SceneFlow dataset. These visualizations help us understand 646

how our model enhances the baseline at various resolutions, 647

as shown in Fig. 9. At a resolution of 1/32, HSM-Net 648
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TABLE V
RESULTS OF USING THE GUIDANCE IN MULTIPLE STEPS OF MULTI-SCALE COST AGGREGATION ON SYNTHETIC AND REAL DATASETS. RES 1/16, 1/8, 1

REPRESENTS THE ORIGINAL IMAGE’S 1/16, 1/8, AND 1 RESOLUTION. RES 1/16 TO 1/8 INDICATES WHETHER THE BASELINE IS PLUGGED WITH
OUR METHOD IN COST AGGREGATION FROM RESOLUTION 1/16 TO RESOLUTION 1/8, SO AS RES 1/8 TO 1

Fig. 8. The visualization of similarity. (a) and (b) are the similarity of the two images. The three columns on the right are visualizations of the similarity,
representing the similarity of points in high resolution to their corresponding neighbors in low-resolution projection points. In each map, the brightness
indicates the similarity, which corresponds to the upsampling kernel weight. It can be seen that the aggregation weight is directly related to the image content
and that each weight in the global picture uniquely adapts the content information of the corresponding points.

TABLE VI
THE RESULTS OF USING DIFFERENT SCALES OF GUIDANCE TO GUIDE

COST AGGREGATION. “INTER-SCALE” AND “SINGLE-SCALE” REP-
RESENT THAT THE GUIDANCE MAPS ARE GENERATED FROM

ADJACENT SCALES OR A SINGLE SCALE, RESPECTIVELY.
THE “STEREO INFO” INDICATES WHETHER THE GUIDANCE

MAPS ARE GENERATED WITH STEREO INFORMATION
INCLUDING BOTH REFERENCE AND TARGET IMAGE

FEATURES, OR ONLY FEATURES OF THE
REFERENCE IMAGES

exhibits a failure in recovering the objects within the white649

bounding box, but our method successfully rectifies this error.650

Additionally, our method corrects the gaps within the blue651

bounding box at a resolution of 1/16. From a resolution of 1/32652

to 1, our method effectively recovers the triangular area within653

the black bounding box. It is evident that high-resolution654

cost aggregation is markedly influenced by low-resolution cost655

aggregation. Our method systematically addresses errors in656

the original method at each resolution, commencing with the657

lowest resolution.658

F. Generalization Evaluation659

1) Universality of Cost Aggregation Method on Different660

Baseline: We apply our method to five stereo networks, i.e.,661

PSM-Net [6], HSM-Net [7], and CF-Net [30], FastAcv [44] 662

and FastAcvPlus [44] to verify the university of our method. 663

The results on the SceneFlow dataset are shown in Table II, 664

and the results on the KITTI 2015 dataset are shown in 665

Table III. 666

For PSM-Net, HSM-Net, and CF-Net, our methods have 667

improved by 44.5%, 33.5%, and 32.1% on the SceneFlow 668

dataset, respectively. Moreover, our method has achieved 669

reductions in D-all metrics for all three baselines on the 670

KITTI 2015 dataset. Our method consistently enhances various 671

baselines on both synthetic and real datasets. 672

2) Zero-Shot Generalization Ability: Obtaining large-scale 673

real-world datasets for training is challenging, making the 674

generalization capability of stereo models crucial. To this end, 675

we evaluate the generalization performance of our methods 676

from synthetic datasets to unseen real-world scenes. In this 677

evaluation, we train various baseline models augmented with 678

our approach on the Scene Flow dataset and directly evaluate 679

them on the Middlebury 2014 and ETH3D training sets. 680

As shown in Table VII, our method consistently outper- 681

forms all baselines, demonstrating its strong generalization 682

capability. 683

G. Comparison With Content-Aware Upsamping Methods 684

To demonstrate our superiority over conventional 685

content-aware upsampling operators, we directly applied 686

CARAFE++ [59] to the HSM-Net baseline for comparative 687

analysis. The content-aware operators were implemented 688

at resolutions of 1
32 , 1

16 , and 1
8 of full resolution, aligning 689
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Fig. 9. Results of HSM-Net and HSM-Net+ours at different resolutions. We obtain the disparity map by regressing the cost volume at each resolution.

with the settings of our method. We conducted training and690

testing of HSM-Net with CARAFE++ on the SceneFlow691

dataset, using EPE as the measurement metric. The results692

presented in Table VIII clearly indicate that our method693

outperforms CARAFE++ in terms of accuracy and694

speed. Inter-scale information provides us with a broader695

receptive field for aggregation and access to more content696

information. Furthermore, our approach involves separating697

the 3D upsampling process into 1D and 2D upsampling,698

resulting in a significant reduction in computational699

cost.700

1) Complexity Analysis: To further demonstrate the supe- 701

riority of our decomposition strategy in computational 702

complexity, we conducted the following analysis and com- 703

plexity experiments. We separate the 3D upsampling into 704

1D upsampling plus 2D upsampling, reducing the parameters 705

and calculations. We test the memory cost of different cost 706

aggregation methods of HSM-Net in 1
8 and 1 of the full 707

resolution (540×960) of the SceneFlow dataset and the results 708

are shown in Table IX. At the same resolution, our module 709

exhibits lower memory and time consumption compared to 710

the other two upsampling methods. 711
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TABLE VII
TABLE IX SYNTHETIC TO REAL GENERALIZATION EXPERIMENTS. ALL

MODELS ARE TRAINED ON SCENE FLOW. THE BAD 2.0 ERROR RATE
IS USED FOR MIDDLEBURY-V3, AND THE BAD 1.0 ERROR RATE

FOR ETH3D

TABLE VIII
RESULT OF COMPARISON BETWEEN CARAFE++ [59] AND OURS IN

BASELINE HSM-NET [7]. BOTH CARAFE++ AND OURS ONLY
REPLACE THE UPSAMPLING MODULE AT RES 1/16 TO 1/8

TABLE IX
(COMPLEXITY AND EFFICIENCY ANALYSIS OF DIFFERENT COST AGGRE-

GATION STRATEGIES (THE BASELINE MODEL IS HSM-NET). DUE TO
HARDWARE LIMITATIONS, WE DO NOT RUN CARAFE++ AT 1/8

TO 1 RESOLUTION. THE BEST RESULTS FOR EACH EVALUATION
METRIC ARE SHOWN IN BOLD

H. Limitation712

1) Lack of Dense Outdoor Data: The performance gains713

for outdoor scenes are smaller compared to those in virtual714

and indoor datasets. Additionally, in the CF-Net baseline, our715

method still fails to completely correct the erroneous depth716

estimation for the sky, as shown in Fig. 10 (a). We believe there717

are two main reasons for this: 1) Poor ground truth quality.718

Outdoor datasets like KITTI use LiDAR scanning, resulting in719

sparse depth maps. Ground truth is missing in areas beyond720

the LiDAR scan range, as shown in Fig. 10 (b). This sparsity721

affects model training. 2) Lack of fine-grained regions. Our722

method focuses on fine-grained areas, but the coarse nature723

of LiDAR scans in outdoor datasets means many details are724

overlooked. For this scenario, we believe that employing some725

advanced depth completion methods to refine sparse areas in726

the ground truth could be a reasonable approach.727

2) Future Work: In future work, we aim to delve into728

super-resolution techniques to augment the detail information729

Fig. 10. Failure case and ground-truth in the outdoor scenarios.

within extensive textureless areas, which will significantly 730

bolster the performance in outdoor environments. Furthermore, 731

the present study has adopted a distinct spatial domain mod- 732

eling strategy to address the issue of detail loss. Yet, the 733

utilization of high-frequency components in the frequency 734

domain for such fine-grained information presents itself as 735

an inherently viable alternative. Moving forward, we intend 736

to experiment with frequency domain analysis techniques, 737

including wavelet transformations, to facilitate the restoration 738

of fine-grained regional information. 739

VI. CONCLUSION 740

We have presented an inter-scale similarity guided cost 741

aggregation method designed to adaptively recover details 742

in fine-grained areas. By leveraging both low-resolution 743

and high-resolution information, our approach effectively 744

exploits detail while generating inter-scale similarity measure- 745

ments. Additionally, our stereo-content-aware cost aggregation 746

method employs a decomposition strategy that divides the 3D 747

disparity-spatial space into 1D disparity space and 2D spatial 748

space, significantly reducing computational costs associated 749

with 3D cost volumes. Experimental results across three 750

benchmarks demonstrate the effectiveness of our method with 751

various models. 752
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