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Abstract—Discriminative dictionary learning (DDL) provides
an appealing paradigm for appearance modeling in visual track-
ing. However, most existing DDL-based trackers cannot handle
drastic appearance changes, especially for scenarios with back-
ground cluster and/or similar object interference. One reason is
that they often suffer from the loss of subtle visual information,
which is critical to distinguish an object from distracters. In this
paper, we explore the use of activations from the convolutional
layer of a convolutional neural network to improve the object
representation and then propose a robust distracter-resistive
tracker via learning a multi-component discriminative dictionary.
The proposed method exploits both the intra-class and inter-
class visual information to learn shared atoms and the class-
specif c atoms. By imposing several constraints into the objective
function, the learned dictionary is reconstructive, compressive,
and discriminative, and thus can better distinguish an object
from the background. In addition, our convolutional features
have structural information for object localization and balance
the discriminative power and semantic information of the object.
Tracking is carried out within a Bayesian inference framework
where a joint decision measure is used to construct the observa-
tion model. To alleviate the drift problem, the reliable tracking
results obtained online are accumulated to update the dictionary.
Both the qualitative and quantitative results on the CVPR2013
benchmark, the VOT2015 data set, and the SPOT data set
demonstrate that our tracker achieves substantially better overall
performance against the state-of-the-art approaches.

Index Terms—Visual tracking, multi-component discrimina-
tive dictionary, appearance changes, multi-object tracking.
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I. INTRODUCTION

AGOOD appearance model is one of the most critical
prerequisites for successful visual tracking. Designing

an effective appearance model is still a challenging task due
to appearance variations. Efforts dedicated to this issue have
leaded to numerous tracking algorithms [1], [2], which can
be roughly categorized as either generative [3], [4] or dis-
criminative [5]–[7] approaches. Generative methods build an
object representation, and then search for a region most similar
to the object. Discriminative methods online train a binary
classif er to adaptively separate an object from the background,
thereby being more robust against appearance variations of an
object.
Recently, the discriminative dictionary learning (DDL) pro-

vides an appealing paradigm for appearance modeling due to
its superior discrimination power. Considering visual track-
ing as a binary classificatio problem, however, most DDL
based trackers [8]–[10] have diff culties in discriminating the
similar visual patterns, especially for objects sharing similar
shape and/or visual appearances with distracters. Distracters
induced by background clutters, illumination changes, partial
occlusions, or surrounding crowds, are generally diff cult to
handle. In this paper, we focus on handling such scenarios with
distracters using a novel discriminative dictionary learning
method.
A single object tracking example is shown in the f rst row

of Fig.1, where the differences between the object and the
background are very subtle. Numerous DDL based trackers
often fail to distinguish the differences successfully, and thus
the most likely object location is incorrectly determined. The
reason can be explained as follows. Since the object and the
background are visually similar, the learnt dictionary is likely
to be governed by common patterns. Candidates from different
classes (i.e., the object and the background) may be encoded
by same atoms, as illustrated in the purple rectangle of Fig.1.
As a result, representations of candidates could share many
similar codes and the proportion of discriminative codes may
be very small. Such a property causes the potential loss of
subtle image information that is critical to differentiate an
object from the similar background. Therefore, for a robust
DDL based tracker, what is desired is a new dictionary
learning method which can encode subtle visual differences
between an object and distracters, especially for cluttered
environments or similar object interference scenarios.
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Fig. 1. Comparisons between our tracker and traditional sparse trackers.
Row 1: Most DDL based trackers are likely to encode subtly discriminative
objects into the same atoms, resulting in the object drift. Row 2: Our
method can jointly learn shared atoms and the class-specif c atoms. The
learnt dictionary is compact and discriminative, which better distinguish target
objects from the background. Red solid rectangles denote the true object and
blue dashed rectangles are candidates.

The representation ability of the original hand-crafted fea-
tures, e.g., HOG [11] and Color Names [12], is another impor-
tant factor resulting in the struggle performance especially
when the target-background similarity is high. Driven by the
emergence of large-scale data sets and fast development of
computation power, features based on convolutional neural
networks (CNNs) have proven to perform remarkably well on
a wide range of visual recognition tasks [13]–[15]. Different
from hand-crafted features, pre-trained on a large dataset with
massive classes, the CNNs contains a great deal of prior
knowledge including rich high-level semantic information and
powerful inter-class discriminative information, effectively dis-
tinguishing the object of interest from the background. Recent
study [16], [17] has also shown that local image regions
correspond to receptive f elds of the particular features, i.e.,
convolutional features have structural information for object
localization and balance the discriminative power and semantic
information of the object [14], [18].
Above observations inspire us to design a new distracter-

resistive tracker by learning a multi-component discriminative
dictionary appropriately using the convolutional features. The
multi-component dictionary consists of class-specifi atoms
and shared atoms by concurrently exploiting the intra-class
visual information and inter-class visual correlations. In our
work, the class-specifi atoms are able to capture the most
discriminative feature between an object and distracters. How-
ever, the class-specifi atoms usually share some common
patterns because of inter-class visual correlations, which may
make the learnt dictionary redundant. We should effectively
discover the common patterns from class-specifi ones. The
shared atoms are mainly used to reconstruct common patterns
among all samples, which contribute to the representation of
the data rather than discrimination. To enhance the discrimina-
tion power of the dictionary, the classificati n error and several
discriminative constraints are incorporated into the objective
function. In this way, the learnt dictionary is more compact
and discriminative, thus can better discriminate an object from
distracters. On the other hand, the powerful capabilities of

Fig. 2. The learnt dictionary B and its corresponding sparse codes. Taking
the single object tracking as an example, B f , Bb, and B0 denote the class-
specifi atoms for the object, the class-specifi atoms for the background, and
the shared atoms, respectively. x and x� represent feature vectors of the object
and the background, respectively. For instance, an object candidate should be
well represented by its corresponding class-specifi atoms and the shared ones
as much as possible. Darker color elements have larger values in sparse codes.

learning representation of the convolutional features is utilized
to improve the expressive and discriminative ability of learnt
dictionary. This work is, to the best of our knowledge, the f rst
to explore the convolutional features to model DDL for visual
tracking. The reason may be that, for an input image, usually
the limited number of CNNs features extracted from the
labeled samples are available, the dimensions of which are
inherently much higher, making robust dictionary learning
diff cult. We introduce reasonable usage of the convolutional
features for our dictionary learning process.
As discussed in [19], a sample should be well represented

by its corresponding class-specif c atoms and the shared ones.
Considering again the example illustrated in Fig. 1, given an
object candidate, ideally, only the coefficient associated with
B f and B0 will be non-zero, as shown in Fig. 2. Tracking is
then carried out within a Bayesian inference framework where
a joint decision measure is used to construct the observation
model. The quality of each candidate is measured by the
global coding classif er and the learnt linear classif er instead
of relying on only one of them. The candidate with the
highest measure score is considered as the f nal tracking result.
To alleviate the drift problem, both the precise information of
the f rst frame and reliable tracking results obtained online are
accumulated to update the dictionary. Compared with existing
DDL based visual tracking methods, the proposed multi-
component discriminative dictionary method is able to encode
subtle visual differences between an object and distracters.
The learnt dictionary, therefore, can represent an object well
and discriminate an object from distracters simultaneously.
Employing a new joint decision measure to construct the
observation model, can effectively evaluate how a candidate
is resembling the object to improve the tracking performance.
Both the qualitative and quantitative results on the CVPR2013
tracking benchmark [20], the VOT2015 dataset [21] and the
SPOT dataset [22] demonstrate the superior performance of
the proposed approach compared with several state-of-the-art
trackers.

II. RELATED WORK

A. Discriminative Dictionary Learning
Dictionary learning (DL) has received considerable attention

in signal processing and computer vision community with
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a wide range of applications [23]–[25]. Early works learn
dictionary in a unsupervised way, which attempt to f nd a
dictionary which linearly reconstruct input signals with a small
reconstruction error. However, the unsupervised DL methods
often lack of discriminative ability as they are only optimal
for reconstruction but not classif cation. In this paper, we pay
more attention to discriminative dictionary learning.
Discriminative DL can be roughly categorized into three

categories for visual analysis. In the f rst category, a shared
dictionary is learnt for all classes [26], [27]. These methods
attempt to enhance the discrimination power of the dictio-
nary by either forcing the sparse coeff cients to be more
discriminative or promoting the incoherence of dictionary
atoms. Nevertheless, the shared dictionary does not take the
correspondence between the dictionary atoms and the class
labels into account. Many works [24], [28] have advocated
learning class-specifi dictionaries whose atoms correspond
to the class labels. Since the representation coeff cients are
not enforced to be discriminative, however, the classificatio
decision solely depend on the reconstruction errors in the
class-specif c dictionary learning methods. Hybrid dictionary
has also been proposed to learn a shared dictionary and a
set of class-specif c dictionaries [19], [29]. In these meth-
ods, however, the class-specifi dictionaries between different
classes usually share some coherent or even the same atoms
(i.e., common patterns). These common patterns shared by
the visually correlated classes, however, do not contribute to
the discrimination of the object, but may even degrade the
classificati n accuracy. Therefore, how to explicitly discover
the shared visual atoms from the class-specif c dictionaries in
the hybrid dictionary is still a challenging task.
Zhou and Fan [19] and Yang et al. [28] exploited both the

reconstruction errors and classificati n errors to learn the dis-
criminative dictionary. However, since they took no considera-
tion of the inter-class nor intra-class orthogonality constraints,
the redundancy of the dictionary could degrade the perfor-
mance of the classif cation. Furthermore, Zhou and Fan [19]
ignored the representation ability of the global dictionary, and
Yang et al. [28] did not explicitly learn a shared dictionary.
Though Gao et al. [29] and Zheng and Jiang [30] learned the
class-specif c and shared dictionaries simultaneously, they
did not force the sparse coefficient to be discriminative.
Gao et al. [29] neglected the discriminative f delity constraint
which can ensure that samples of each class can be favorably
reconstructed by their corresponding class-specif c dictionary.
And the intra-class orthogonality constraint is not imposed
on each class-specifi dictionary in [30], which may result
in many atoms being zeros in the class-specifi dictionary,
but our model can avoid this. Overall, our learnt dictionary
is reconstructive, compressive and discriminative, and even
better distinguishes the subtle and minute differences among
different classes.

B. Tracking With DDL
Sparse representation has been shown to give promising

results against object appearance variations for visual tracking.
The pioneer work introduced by Mei and Ling [31] models the

object appearance as a sparse linear combination of both object
templates and trivial templates via �1 minimization. However,
the computational cost of [31] grows linearly with the number
of candidates, resulting in high computation burden. To obtain
more efficien solutions, many accelerated algorithms have
been employed under the framework of �1 tracker, including
multi-task sparse learning [32], Circulant Sparse Tracker [33],
bounded particle resampling [34], random projection based
dimensionality reduction [10], and accelerated proximal gra-
dient [35].
Although these methods [32], [34], [35] are effective in

modeling the object appearance, the observation likelihood
measured by the reconstruction error under the generative
framework is neither efficie t nor robust.
To tackle this issue, several sparse trackers not only propose

new sparse models but also introduce construction schemes
of the observation likelihood. For example, Wang et al. [36]
replaced the target templates with online updated PCA basis
vectors, and exploited advantages of both the subspace and
sparse representation to deal with the partial occlusion when
determining the best candidate. Jia et al. [3] introduced an
alignment-pooling method across local patches to improve the
accuracy of location estimation. The coeff cients after pooling
are summed to sort the candidates. Mei et al. [37] used mul-
tiple types of visual features and presented an approximate
least absolute deviation (LAD)-based multitask multiview
sparse learning method for visual tracking. Zhong et al. [38]
presented a collaborative appearance model in which candi-
dates are evaluated based on the collaboration of generative
and discriminative modules. However, these two modules are
independent and combined in a heuristic way. In comparison,
we propose a joint decision measure to determine the most
likely object location. The quality of each candidate is mea-
sured by both the global coding classif er and the learnt linear
classifie . More details are discussed in Section IV.
The aforementioned methods achieve promising tracking

results. However, since most formulations do not take the
background information into account, they are less effec-
tive for tracking in cluttered environments due to the lack
of discrimination power. Liu et al. [39] adopted histograms
of sparse coeff cients and the mean-shift algorithm to con-
struct a local sparse appearance model for object tracking.
Wang et al. [9] exploited joint optimization of representation
and classificati n by minimizing the least-squares recon-
struction error and discriminative penalties with regularized
constraints. Hong et al. [40] proposed a distracter-resistant
tracking approach by integrating the dualforce metric learning
and the �1 minimization framework in the original image
space. In [33], a circulant sparse tracker CST) was proposed
by Zhang et al. to exploited circulant target templates. This
method reduced particles using circular shifts and is solved
eff ciently in the Fourier domain. Although the work in [9],
[39], and [40] considered the background information during
dictionary construction, the f xed dictionary makes them lack
the ability to adapt to appearance changes.
Most methods updated the dictionary by simply using either

newly obtained tracking results [3], [38], [41] or candidates [5]
as dictionary atoms, without consideration of the dictionary
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learning. Wang et al. [42] introduced an online tracking algo-
rithm based on local sparse representation and classifie learn-
ing. Wang et al. [43] formulated object templates updating as
a robust non-negative dictionary learning problem and pro-
posed a novel visual tracking method. Though [42] and [43]
used dictionary learning methods for online visual tracking,
the dictionary and the classifie are learned separately rather
than jointly. Different from methods in [9] and [42], our tracker
incorporates the classif cation error into the objective function,
thus allowing a linear classif er and a good dictionary being
considered simultaneously.

C. Tracking With Deep Features

The strong expressive ability of DNN feature is under
explored in visual tracking. Wang and Yeung [44] trained a
stacked denoising autoencoder (SDAE) for online tracking
process. Wang et al. [14] analyzed the properties of different
convolutional layers, and proposed a feature map selecting
method for visual tracking. Ma et al. [18] learned a set of
linear correlation f lters on different feature maps come from
different convolutional layers. The target location was inferred
using correlation response maps. Nam and Han [13] inserted
the tracking framework into Multi-Domain Network (MDNet)
trained on a large set of videos with tracking groundtruths.
Qi et al. [45] designed a set of CNN trackers based on dif-
ferent CNN layers. Then all these trackers was hedged into
a stronger one by an adaptive Hedge method. In this paper,
a new deep feature generation method is proposed to extract
the CNN features which are more suitable for our dictionary
learning process.
Our tracker also differs from the closely related works [8].

Yang et al. [8] presented an online discriminative dictionary
learning algorithm for visual tracking, which learns a sparse
dictionary and a linear classif er simultaneously. Compared
with [8], our dictionary learning method can jointly learn
the shared atoms and the class-specifi atoms by imposing
the inter-incoherence constraint and the intra-incoherence con-
straint on the objective function. Such a dictionary can charac-
terize the discriminative information between an object and the
background, especially when the object appearance bears some
similarity with the background objects. More importantly, our
tracker can be naturally extended to track multiple objects by
treating each object as an individual class, and achieves the
good performance for multi-object tracking [46]–[49]. Thus it
can be expected that our algorithm can be extended to other
visual applications, such as Person Re-Identif cation [50]–[52].

III. MULTI-COMPONENT DISCRIMINATIVE
DICTIONARY LEARNING

Note that we use x and X to denote a vector and a matrix,
respectively. Let X = {x1, x2, · · · , xN } ∈ R

d×N be a set
of the N samples, B = [b1, b2, · · · , bK ] ∈ R

d×K be the
dictionary where each column represents an atom, and A =
[a1, a2, · · · , aN ] ∈ R

K×N be a coding matrix of X over B.
The goal of dictionary learning is to f nd a dictionary, such
that each sample can be linearly reconstructed by a relatively

small subset of atoms, while keeping the reconstruction error
as small as possible, given by

argmin
B,A

N∑

i=1
�xi − Bai�22 + �ai�1

s.t . �bk�2 ≤ 1, f or ∀k = 1, 2, · · · , K . (1)

However, object representation obtained by Eq. (1) often
lacks of discriminative ability as it is only optimal for recon-
struction but not classif cation [5], [34], [35], [38]. In this
paper, we propose a novel multi-component discriminative
dictionary learning method to make the learnt dictionary not
only reconstructive and compressive, but also discriminative.
In addition, in our model the representation coeff cient A is
more discriminative by coupling classif er parameters.

A. Deep Feature Extractor
Before def ning our dictionary learning problem, we f rstly

introduce our deep feature generation method. As analyzed
in [14], different convolutional layers encode different property
of samples. Higher layers capture semantic class information
while lower layers encode more discriminative details to
distinguish the intra class variations. When it comes to tracking
problem, the target and background samples always share a
lot of semantic information, e.g., both the whole face (target)
and half of it (background) will be classif ed into face class
using VGG net trained for classif cation. If we use the feature
of higher layer to describe the samples, the high semantic
similarity will reduce the distance between positive and neg-
ative samples, which result in the learnt dictionaries lacking
discriminative ability. On the other hand, the feature extracted
by lower layer lacks the robust ability to the appearance
variations (e.g., illumination variation, deformation), which
increases the intra-class differences. As a tradeoff between this
two consideration, we use the conv4-3 layers of VGG-16 to
achieve a satisfactory balance.
The dimension of feature vector is too high if we

use the outputs of Conv4-3 layers of VGG-16 directly
(512 feature maps whose size are 28*28). The critical issue is
to reduce the dimension to improve computational eff ciency
without losing too much discrimination. A straightforward
method is performing pooling operation on each feature map
(max or average) to generate a 512 dimensional feature
vector. However, it cannot model the difference between
target and background well because this method loses too
much partial location information (As illustration in Fig. 3).
Another method is subsampling each feature map to a smaller
size using a uniform distribution and concatenating them to
a new feature vector. The features generated with bigger
subsampling size contain more location information. Fig. 3
shows that the features containing more location information
are more discriminative. As a tradeoff between computational
efficien y and feature expressiveness, we subsampled each
feature map to 5×5 using uniform distribution and concatenate
all of them as our new feature vector. To make our feature
more robust to target variation(e.g., illumination variation),
we normalize the feature vector using two-norm normalization.
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Fig. 3. The f rst f gure shows how we get positive (red rect) and negative
(blue rect) samples from image. From top to bottom, left to right, we display
the effect of different operations applied on feature maps(VGG16 conv4-3)
successively including subsample to 2× 2, 3× 3, 5× 5, average pooling and
max pooling. The coordinate axis are the fir t two principal components of
features. We can see that subsample the feature map to 5× 5 achieves better
discriminative ability.

Finally, the feature dimension is reduced again using PCA
method to farther accelerate the dictionary learning process.

B. Problem Description
Given C classes of individual samples, we rewrite the

training set as X = [X1, · · · ,Xc, · · · ,XC ] ∈ R
d×N , where

Xc ∈ R
d×Nc includes samples of each class and Nc is the

number of samples from the c-th class. The class-specifi
atoms are denoted by Bc ∈ R

d×Kc with c = 1, 2, · · · ,C ,
and the shared atoms are denoted by B0 ∈ R

d×K0 , respec-
tively. K0 and Kc are the number of atoms from the shared
atoms and c-th class-specifi dictionary, respectively. Bc is
responsible for describing class-specif c visual properties of
each class. B0 is used to describe commonly shared visual
patterns for all classes. Thus the complete dictionary is B =
[B0,B1, · · · ,Bc, · · · ,BC ] ∈ R

d×K , where K is the number
of atoms with K = ∑C

c=0 Kc. A denotes a sparse coeff cient
matrix of X over B, i.e., X ≈ BA. Here, A can be expressed
as A = [A1, · · · ,Ac, · · · ,AC ] ∈ R

K×N , where Ac ∈ R
K×Nc

is a coeff cient matrix of Xc over B.
In this paper, our goal is to learn a novel multi-component

discriminative dictionary which can encode subtle visual dif-
ferences between an object and distracters. We emphasize that
the learnt dictionary should be reconstructive, compressive,
and discriminative. Meanwhile, the proposed method allows
a linear classif er and a good dictionary being considered
simultaneously. Our discriminative dictionary model with �1

regularization is formulated as

�A∗,B∗,W∗
 = arg min
B,A,W

{
C(X,A,B)

+L(A;W)+ η||A||1
}

s.t. Q(A,B). (2)

Here, η is a scalar parameter which involves the sparsity of
the coeff cients. C(·) is the data f delity term which aims to
get a reconstructive, compressive and discriminative dictio-
nary B. In this paper, our goal is to learn a novel multi-
component discriminative dictionary which can encode subtle
visual differences between an object and background. As we
all known, visual tracking can be treated as a problem of
binary classif cation, and thus C is set to 2, i.e., B =
[B0,B1, · · · ,B2], where B1, B2 and B0 denote the class-
specif c dictionary for the object, the class-specif c dictionary
for the background and the shared dictionary, respectively.
L(A;W) is the discrimination coeff cient term which can
jointly obtain the discriminative coefficie ts and classificati n
parameter W. This term can make the coding coefficien
more discriminative and propagate indirectly the discrimina-
tion power of the coeff cients to the dictionary. Q(A,B) is the
constraint term imposed on the coeff cient matrix A and the
dictionary B, which makes B have not only powerful capability
to represent X (i.e., X ≈ BA ), but also discriminative power
to distinguish the sample from X. In what follows, we will
elaborate each term in Eq.(2).

C. Discrimination Dictionary Term C(X,A,B)
The f rst consideration is that the learned dictionary B

should well represent Xc, i.e., Xc ≈ BAc. For each class
samples, the representation Ac can be rewritten as Ac =[
A0
c ;A1

c; · · · ;Acc; · · · ;ACc
] ∈ R

K×Nc , where A0
c ∈ R

K0×Nc
is the coding coeff cients of Xc over the shared dictionary B0,
and Acc ∈ R

Kc×Nc is the coding coeff cient of Xc over the
sub-dictionary Bc. So there exists Xc ≈ BAc = ∑C

i=0 BiAic.
In addition, ideally each class sample Xc should be well repre-
sented by B0 and Bc. That is, only the coefficient associated
with B0 and Bc can be non-zero, such that Xc ≈ B0A0

c+BcAcc.
Mathematically, the data fi elity term is formulated as

C(X,A,B)

=
C∑

c=1
C(Xc,Ac,B,B0,Bc)

=
C∑

c=1

(∥∥Xc − BAc
∥∥2
F + ∥∥Xc − [B0,Bc][A0

c;Acc]
∥∥2
F

)
. (3)

The f rst term is able to guarantee the good representation
power of the overall dictionary, and the second term ensures
that samples of each class can be favorably reconstructed by
B0 and Bc. Obviously, only using the f rst term is imprac-
tical to learn the discriminative class-specifi bases. While
only adopting the second term is impossible to obtain an
optimal shared dictionary B0, as there exist some commonly
shared visual bases between B0 and Bc. In what follows,
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we will introduce three constraints imposed on the dictionary
to enhance its discrimination power.
(1) To make the dictionary more discriminative, it is desired

that each class-specif c dictionary has poor representation
ability for other classes, i.e., A j

c should have nearly zero coef-
f cients such that

∑C
j �=c, j=1

∥∥B jA j
c
∥∥2
F is as small as possible.

In this case, we consider a strong constraint

min
C∑

j �=c, j=1
�A j

c�2F . (4)

That is, for samples of the c-th class, it amounts to forcing the
coeff cients to be zero except the ones corresponding to both
the c-th class-specif c bases and the shared ones.
(2) However, Eq. (4) does not mean that the learnt indi-

vidual dictionary bases only contain the visual properties of
its corresponding class. The commonly shared visual bases
may appear in the different individual dictionaries, which
makes the individual dictionary bases redundant and thereby
resulting in poor performance [53]. Based on the theoretical
analysis in [54], the mutual coherence among all class-specif c
bases and the shared bases should be as small as possible.
Inspired by the incoherence penalty term in [55], the inter-
nonredundancy constraint is expressed as

min
C∑

j �=c, j=0

∥∥B�
c B j

∥∥2
F . (5)

Note that j starts with j = 0, which means we also consider
the nonredundancy of shared bases with all class-specif c ones.
Clearly, the sub-dictionary among the class-specif c bases and
the shared ones are nonredundant, and in this case we regard
the learnt dictionary B as most incoherent.
(3) Assume that the dictionary bases are normalized,

the mutual coherence is def ned as the largest absolute and
normalized inner product between different columns in B, i.e.,

μ(B) = max
i �= j

∣∣b�
i b j

∣∣
�bi�2 · �b j�2 . (6)

Furthermore, we can understand the mutual coherence by the
Gram matrix G = B�B. The matrix �2-norm ρ(G) = �G�2 =
max{|δ| : δ ∈ δ(G)}, where δ(G) is the set of eigenvalues
of G. Therefore, ρ(G) = |δmax |, where |δmax | denote the
eigenvalue with largest absolute value. By the Gershgorin
Circle Theorem [56], we have

δ(G) ⊆
K⋃

k=1
Gk,

s.t. Gk = {
z : |z − gkk | ≤

∑

r �=k
|gkr |

}
(7)

where gkr is an entry of G. The off-diagonal entries in G
are the inner products in Eq. (6). Since the dictionary bases
are normalized, gkk = 1 and

∑
r �=k |gkr | ≤ μ(B). Substi-

tuting these into the Gershgorin Circle Theorem, we have
ρ(G) = |δmax | ≤ 1+ μ(B). To guarantee the performance of
sparse coding, therefore, minimizing the mutual incoherence
is equivalent to simultaneously reducing δ(G) and μ(B by

imposing small off-diagonal entities in G, which yields an
intra-nonredundancy constraint given by

min
∥∥B�

c Bc − IKc
∥∥2
F . (8)

This constraint is to encourage low mutual coherence and
Gram matrix norm of the learned dictionary. Moreover, It
makes the learnt class-specifi dictionary more stable, which
benef ts to improve reconstruction accuracy. Without this con-
straint, many bases in the class-specif c dictionary will be
zeros.
We add the terms introduced in Eq. (4), Eq. (5), and

Eq. (8) into Eq. (3), leading to a complete data fi elity term
C(X,A,B) given by

C∑

c=1
C(Xc,Ac,B,B0,Bc)

=
C∑

c=1

(∥∥Xc − BAc
∥∥2
F

+ ∥∥Xc − [B0,Bc][A0
c;Acc]

∥∥2
F + ∥∥A/0,cc

∥∥2
F

+ λ1
∥∥B�

c B/c
∥∥2
F + λ2

∥∥B�
c Bc − IKc

∥∥2
F

)
. (9)

Here λ1 and λ2 are the trade-off parameters between con-
straints. A/0,cc indicates the submatrix by removing A0

c and
Acc from Ac, i.e., A

/0,c
c = [

A1
c; · · · ;Ac−1c ;Ac+1c · · · ;ACc

] ∈
R
(K−K0−Kc)×Nc . B/c is the submatrix by removing Bc from B,

i.e., B/c = [B0,B1, · · · ,Bc−1,Bc+1, · · · ,BC ] ∈ R
d×(K−Kc).

Eq.(9) seems to be incremental, but it is not a trivial combi-
nation. The f rst two terms guarantee the good representation
power of the learnt dictionary, and they can discover the hidden
patterns shared by the visually correlated classes. The third
term makes the sparse coefficient more discriminative, i.e.,
each class-specifi dictionary has poor representation ability
for other classes. More importantly, the inter-nonredundancy
and the intra-nonredundancy constraints are considered in the
last two terms. These two constraints are meaningful, and
make the learnt dictionary non-redundant and more stable.

D. Discrimination Coeff cient Term L(A;W)
Following [19] and [57], to further enhance the discrim-

ination power of the dictionary B, we can force the sparse
coefficient A to be discriminative and indirectly propagate the
discrimination power to B. L(A;W) aims to incorporate the
classif cation error into the objective function to make coef-
ficie ts A more discriminative and reliable for classif cation.
Here, we use a simple linear regression model f (A;W) = WA
to obtain more discriminative coeff cients. L(A;W) is given
by

L(A;W) = ∥∥H −WA
∥∥2
F + β

∥∥W
∥∥2
F , (10)

where β is a trade-off parameter controlling the relative con-
tribution of the corresponding terms.

∥∥H − WA
∥∥2
F represents

the classificati n error. W ∈ R
C×K denotes the classif er

parameters. H = {h1, h2, · · · , hN } ∈ R
C×N is the class labels

of X, where class label vector hi = [0, 0, · · · , 1, · · · , 0, 0]� ∈
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R
C . For each sample xi ∈ R

d , if xi belongs to the c-th class
(1 ≤ c ≤ C), the c-th entry in hi is 1 and all the other entries
are 0’s. L(A;W) not only couples the process of learning
classifie , but also generates discriminative sparse coefficient .
The discriminative property of A is very important for the
performance of the linear classifie [57].

E. The Complete Model
Empirically, if the dictionary B and the classifie are learnt

separately, it might make B suboptimal for classif cation.
An intuitive way is to jointly learn the dictionary B, sparse
coefficient A, and classifie parameters W. Plugging Eq.(9)
and Eq.(10) into Eq.(2) and choosing �1-norm as the sparsity
constraint, the fi al objective function for the multi-class
discriminative dictionary learning model with nonredundancy
constraints becomes

�A∗
c ,B

∗
0,B

∗
c ,W

∗


= arg min
Ac,B0,Bc,W

{ C∑

c=1
C(Xc,Ac,B,B0,Bc)

+L(A;W)+ η

C∑

c=1
||Ac||1

}
. (11)

From Eq. (11), we can see that the dictionary B learnt by the
proposed model is reconstructive, compressive and discrimi-
native. Therefore, the samples from c-class will have small
reconstruction errors combined with the shared dictionary B0
and class-specifi dictionary Bc but have large reconstruction
errors with other class-specif c bases. And the representation
coefficien A is more discriminative by coupling the classif er
parameters.

F. Optimization
The objective function in Eq. (2) is not jointly convex

concerning all variables Ac,B0,Bc,W, however, it is convex
with respect to each variable when others are f xed. Therefore,
the optimization procedure of our DDL model can be divided
into four sub-procedures by solving Ac,B0,Bc, and W alter-
natively. The alternative procedure is iteratively implemented
to fin the local optimum of each variable.
1) Update of Ac: Suppose that all other variables f xed

except Ac in our objective function, then Eq. (2) is reduced to
a sparse coding problem. We compute sparse coeff cients class
by class. Mathematically, Ac is updated by f xing A j , j �= c,
and the objective function is given by

A∗
c = argmin

Ac

{∥∥Xc − [B0,Bc][A0
c;Acc]

∥∥2
F

+ ∥∥Xc − BAc
∥∥2
F + ∥∥A/0,cc

∥∥2
F

+ ∥∥hc − wcA
∥∥2
F + η||Ac||1

}
, (12)

where hc ∈ R
1×Nc and wc ∈ R

1×K correspond to each row of
H and W, respectively. Many efficien algorithms have been
developed to solve Eq. (12). In this work, we adopt the feature-
sign search algorithm [58] due to its global convergence.

2) Update of Bc: Considering A is f xed, we f rst update
the class-specif c atoms class by class and then update the
shared atoms. In this section, we take the c-th dictionary as
an example to describe the optimization of Bc. We arrive at
the objective function of Bc by fixin the shared atoms B0 and
all other class-specifi atoms B j , j �= c, given by

B∗
c = argmin

Bc

{∥∥∥∥Xc −
C∑

j=0, j �=c
B jA

j
c − BcAcc

∥∥∥∥
2

F

+ ∥∥Xc − B0A0
c − BcAcc

∥∥2
F + λ1

∥∥B�
c B/c

∥∥2
F

+ λ2
∥∥B�

c Bc − IKc
∥∥2
F

}
, (13)

Following [55], we use a stochastic gradient descent algorithm
to optimize Eq. (13).
3) Update of B0: Different from the class-specifi dictio-

nary Bc, the shared atoms B0 concentrates on the represen-
tation of all samples from all classes. After the class-specifi
atoms {Bc}Cc=1 are updated, we further update atoms of the
shared atoms B0 by solving the following objective function:

B∗
0 = argmin

Bc

C∑

c=1

{∥∥∥∥Xc −
C∑

j=1
B jA

j
c − B0A0

c

∥∥∥∥
2

F

+ ∥∥Xc−BcAcc−B0A0
c
∥∥2
F

}
+λ1

∥∥B�
0 B/0

∥∥2
F

+ λ2
∥∥B�

0 B0 − IK0

∥∥2
F , (14)

where B/0 is a submatrix by removing B0 from B, i.e., B/0 =
[B1,B2, · · · ,BC ] ∈ R

d×(K−K0). Following [55], we also use
a stochastic gradient descent algorithm to optimize the shared
atoms B0.
4) Update of W: Given updated A and B, the objective

function of W is given by

W∗ = argmin
W

∥∥H −WA
∥∥2
F + β

∥∥W
∥∥2
F . (15)

This ridge regression model can be directly solved by setting
the partial derivatives w.r.t. W to zero. It yields the global
optimal solution W∗ = HA�(

AA� + βI
)−1.

The overall optimization procedure of our model is summa-
rized in Algorithm 1.

IV. OUR TRACKER

In this section, with the joint discriminative dictionary
learning method introduced in Section III, we propose a robust
distracter-resistive tracker based on Bayesian inference where
a joint decision measure is used to construct the observation
model. In our tracker, the candidate with the highest measure
score is considered as the tracking result. Both the ground truth
information of the fi st frame and the reliable tracking results
obtained online are accumulated to update the dictionary,
which is effective to alleviate the drift problem. The tracking
framework is shown in Fig. 4. The detailed description of the
proposed tracking method is summarized in Algorithm 2.
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Algorithm 1 Multi-Component Discriminative Dictio-
naries Learning
Input: Trainning dataset

[X1, · · · ,Xc, · · · ,XC ] ∈ R
d×N ;

the size of each class-specifi dictionary Kc;
the size of the shared atoms K0;
the trade-off parameters λ1, λ2, β, and η.

Output: The class-specifi atoms {Bc}Cc=1, and the
shared atoms B0.

1 Initialization: Compute each B(0)c with Xc using
K-SVD, and initialize the shared atoms B(0)0 with
[X1, · · · ,Xc, · · · ,XC ] using K-SVD, such that
B(0) = [

B(0)0 ,B(0)1 , · · · ,B(0)C
]
. Initialize the classifie

parameters W(0).
2 while stopping criteria is not reached do
3 for i = 1 → C do
4 Update the coeff cient matrix Ac by solving the

sparse coding problem Eq.(12);
5 end
6 for i = 1 → C do
7 Update each class-specifi dictionary Bc by

solving Eq.(13);
8 end
9 Update the shared atoms B0 by solving Eq.(14);
10 Update the classifie parameters W.
11 end

A. Bayesian State Inference
Object tracking can be considered as a Bayesian inference

task in a Markov model with hidden state variables. Given
the observation set of the object O1:t = {o1, o2, · · · , ot },
the optimal state st of the tracked object is obtained by
the maximum a posteriori estimation p

(
sit

∣∣O1:t
)
, where sit

indicates the state of the i -th sample. The posterior probability
p
(
st

∣∣O1:t
)
is formulated by Bayes theorem as

p
(
st

∣∣O1:t
) ∝ p(ot |st )

∫
p
(
st |st−1

)
p
(
st−1

∣∣O1:t−1
)
dst−1.

(16)

This inference is governed by the dynamic model p
(
st |st−1

)

which models the temporal correlation of the tracking results
in consecutive frames, and by the observation model p(ot |st )
which estimates the likelihood of observing ot at state st .
With particle filte ing, the posterior p

(
st

∣∣O1:t
)
is approx-

imated by a f nite set of Ns samples or particles
{
sit

}Ns
i=1

with importance weights
{
ωit

}Ns
i=1. The particle sample sit

is drawn from an importance distribution q
(
st |s1:t−1,O1:t

)
,

which for simplicity is set to the dynamic model p
(
st |st−1

)
.

The importance weight ωit of particle i is equal to the obser-
vation likelihood p(ot |sit ). We apply an aff ne image warp to
model the object motion between two consecutive frames. Let
st = {xt , yt , θt , st , ηt , ψt }, where xt , yt , θt , st , ηt , ψt denote x ,
y translations, rotation angle, scale, aspect ratio and skew at
time t , respectively. The dynamic model p

(
st |st−1

)
is modeled

by Gaussian distribution, i.e., p
(
st |st−1

) = N (st ; st−1,∑),

Algorithm 2 The Proposed Tracking Algorithm
Input: Image frames F1, F2, · · · , Fn ; Object state s1.
Output: Tracking results ŝt at time t .

1 for t = 1 → n do
2 if t == 1 then
3 Obtain labeled samples set X1 = XNp

⋃
XNn ;

4 Initialize the sample pool XP = X1;
5 Initialize the sample buffer pool X� = ∅;
6 Initialize B(0) and W(0) with XP .
7 end
8 1� Sample the object candidates X̂ according to the

motion model p
(
st |st−1

)
;

9 2� Compute the classificatio score of each
candidate using Eq. (18) and get the best candidate
based on Eq. (17);

10 3� Collect training samples set X̃ in the current
frame and let X� = [X�; X̃];

11 if mod(t, T ) == 0 then
12 Update XP with X�;
13 if length(XP) > �(XP) then
14 randomly remove some samples from XP .
15 end
16 Update dictionaries B;
17 X� = ∅.
18 end
19 4� X̂ = ∅.
20 end

where
∑

is a diagonal covariance matrix whose diagonal
elements are the corresponding variances of respective para-
meters. The observation model p(ot |st ) is define as

p(ot |st ) ∝ SCt , (17)

where SCt = κ
(
x(t)

)
is the classificati n decision score at

time t which will be explained in the next section.

B. Classifica ion Decision
Given a candidate x ∈ R

d×1, we encode it over the
learnt dictionary B = [B0,B1, · · · ,Bc, · · · ,BC ], and obtain
the sparse code ν = argminν �x − Bν�22 + η�ν�1, where
ν ∈ R

K×1. The candidate can be better represented by its
corresponding dictionary Bc and the shared atoms B0, then its
reconstruction error is ε f = �x −B0ν0 −Bcνc�22, where ν0 =[
ν10 , ν

2
0 , · · · , νK0

0
]� ∈ R

K0×1 and νc = [
ν1c , ν

2
c , · · · , νKcc

]� ∈
R
Kc×1 are the sparse coefficient over B0 and Bc, respectively.

Meanwhile, the candidate should be poor represented by other
class-specif c dictionaries and the corresponding reconstruc-
tion error is εb = �x−∑

j=1, j �=c B jν j�22. For instance, in the
case of the single object tracking, the candidate with a smaller
foreground error and larger background error is more likely to
be the target object, and vice versa. Thus, the global coding
classifie is formulated as fg = exp

(− (ε f −εb)/σ
)
, where σ

is a constant. To enhance the classificatio accuracy, the linear
predictive classifie fc = Wcν is jointly used to evaluate how
a candidate is resembling the target object. The joint decision
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Fig. 4. Tracking framework. We take the single object tracking as an example.
For each new frame, the candidate with the highest classif cation score is
considered as the tracking result. Every T frames, the sample pool is updated
by the sample buffer pool. After updating, we will empty the sample buffer
pool and then reconfigur it. Then the updated sample pool is used to update
the dictionaries.

measure is define as

κ(x) = Wcν + exp
( − (ε f − εb)/σ

)
. (18)

For each class candidates, the index corresponding to the
largest element of κ(x) is considered as the tracking result.
Using the measure Eq.(18), we have a more reliable decision
score for the candidate x.

C. Initialization
In the f rst frame, we draw positive and negative samples

around the object location to initialize the dictionaries. Sup-
pose the object is labeled manually, perturbation (e.g., shifting
1 or 2 pixels) around the object is performed for collecting
Np positive samples XNp . Similarly, Nn negative samples
XNn are collected far away from the located object (e.g.,
within an annular region a few pixels away from the object).
X1 = XNp

⋃
XNn is the initialized labeled sample set. Using

labeled samples, we can obtain the initialized dictionary via
the proposed DDL method.

D. Updating the Dictionary
For each new frame, candidates predicted by the particle

f lter are denoted by X̂. According to Eq. (18), we can get
the classificatio score of each candidate. A candidate with
higher classificati n score indicates that it is more likely to
be generated from the target class. The most likely candidate
is considered as the tracking result for this frame. Then,
perturbation (i.e., the same scheme in the f rst frame) around
the tracking result is performed for collecting the sample set X̃.
To make our tracker more adaptive to appearance changes,

we construct a sample pool XP and a sample buffer pool
X� to update samples and dictionaries, as shown in Fig. 4.
We keep a set of T previous XC to constitute the sample buffer
pool X �, i.e., X � = [XC−T+1; XC−T+2; · · · ; XC ], where XC
denotes the sample set collected from the current frame. Every
T frames, X� is utilized to update XP . After updating the
sample pool, we will empty X� and then reconf gure it. In
our experiment, we set the sample pool capacity �(XP ).1

1The cardinality �(XP ) denotes the number of samples in the sample pool.

If the total number of samples in the sample pool is larger than
�(XP), some samples in XP will be randomly replaced with
samples in X�. To reduce the risk of visual drift, we always
retain the samples X1 obtained from the f rst frame in the
sample pool. That is, XP = [X1;X�], which is able to better
characterize the samples distribution. Then the updated sample
pool �(XP) is utilized to update the dictionaries with our
DDL method described in Section III. Meanwhile, we retain
the dictionary obtained in the f rst frame for constructing the
joint dictionaries to compute the classificati n decision.

V. EXPERIMENTS

In this section, we concentrate on single object tracking on
the benchmark dataset [20] including 51 challenging image
sequences. We also show that our tracker can be easily gener-
alized to track multiple objects by treating each object as an
individual class. Six challenging sequences2 are used to illus-
trate the good performance of the proposed tracker for tracking
multiple objects. For the single object tracking, we evaluate the
proposed tracker against 9 state-of-the-art tracking algorithms
including HDT [45], HCFT [18], FCNT [14], CNN-SVM [59],
EBT [60], MEEM [61], DLSSVM [62], KCF [11], AEST [63].
We also test our hand-crafted feature based tracker to evaluate
the effectiveness of our dictionary learning model. We evaluate
this tracker against 16 state-of-the-art hand-craft based track-
ing algorithms including ONNDL [43], RET [64], CT [65],
MLSAM [6], ODDL [8], CN [12], VTD [66], MIL [67],
SCM [38], Struck [68], TLD [69], ASLA [3], LSST [4],
MTT [32], LSK [39], and LSPT [7]. In terms of multi-object
tracking, we compare the performance of our tracker with
OAB [70], TLD [69], and SPOT [22] trackers.
Our approach is implemented in native Matlab. The

experiments are performed on an Intel Core2 2.5 GHz
processor with 16GB RAM. The computation of forward
propagation on VGG-16 is run by MatConvNet toolbox [71]
and transferred to a GeForce GTX TITAN Black. The
Matlab source code and experimental results are available
at http://iitlab.bit.edu.cn/mcislab/~wuyuwei/publication.html
(The password of unzipping is Trans_for_reviewers).

A. Experimental Setup
The number of particles is 200 and the state transition matrix

is [10, 10, 0.015, 0, 0.005, 0] in the particle filte . For each
sample we extract deep feature using the same parameters
setting as section III-A. In the fir t frame, Np = 50 positive
samples and Nn = 200 negative samples are used to initialize
the dictionary. Once the tracked object is located, 10 positive
samples and 80 negative samples are utilized for the dictionary
updating. The sample pool capacity �(XP) is set to 1200,
in which the numbers of positive and negative samples are
200 and 1000, respectively. The sizes of each class-specif c
dictionary and the shared atoms are 10 and 5, respectively. The
constraints parameters are set to λ1 = 0.1 and λ2 = 0.01. The
parameter of the linear regression model is set as β = 1e−10.
The dictionary B is updated every T = 10 frames. Moreover,
η = 0.15, σ = 0.02.
2http://visionlab.tudelft.nl/spot
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Fig. 5. Overall performance comparisons of OPE in precision plots and
success plots. The performance score for each tracker is shown in the legend.

B. Evaluation Criteria
To measure the accuracy of the tracking results, we use the

center location error (CLE), the overlapping rate (OR), and
the success rate (SR) for quantitative evaluations. The CLE is
based on the relative position errors (in pixels) between the
central locations of the tracked object and those of the ground
truth. Ideally, an optimal tracker is expected to have a small
error. The OR is def ned by score = area(ROIT

⋂
ROIG )

area(ROIT
⋃
ROIG )

, where
ROIT is the tracking bounding box and ROIG is the ground
truth. If score is larger than 0.5 in one frame, the tracking
result is considered as a success. This can be used to evaluate
the SR of any tracking approach.
In this paper, the precision plot (PP) and the success

plot (SP) are also adopted to measure the overall track-
ing performance. PP shows the percentage of frames whose
estimated location is within the given threshold distance
(e.g., 20 pixels) of the ground truth. More accurate trackers
have higher precision at lower thresholds. If a tracker loses
the object, it is difficul to reach a higher precision. In the SP,
we count the number of successful frames as the thresholds
vary from 0 to 1 and plot the SP curve for our tracker and
the compared trackers. The area under curve (AUC) of each
success rate plot is employed to rank the tracking algorithms.
More robust trackers have higher success rates at higher
thresholds.

C. Experiment 1: Evaluation on the OTB50 Dataset
1) Overall Performance: Followed by [20], one pass eval-

uation (OPE) is also employed to evaluate the overall per-
formance for 10 trackers on 51 sequence. The OPE curve of
both precision plots and success plots are shown in Fig. 5.
For precision plots, we use the results at error threshold of 20
pixels for ranking these 10 trackers. The AUC score for each
tracker is shown in the legend. Our tracker is 0.6% above the
HCFT in the success rate, and outperforms the HCFT by 0.6%
in the precision plot. Overall, our tracker outperforms other 9
trackers both in precision plots and success rates.
2) Attribute-Based Performance: Apart from summarizing

the performance on the whole sequences, we also construct 11
subsets corresponding to distinctive attributes to test the track-
ing performance under specifi challenging conditions. Due to
the restriction of paper length, We only show the attribute-
based performance analysis in precision plots in Fig. 6.
Our approach performs favorably on 4 out of 11 attributes:
illumination variation (IV), deformation (DEF), in-plane

rotation (IPR) and out-of-plane rotation (OPR). In what fol-
lows, we analyze four attributes which occur more frequently
in the benchmark based on the precision plots.
On the BC subset, our method gets the second best results

than others. The results suggest that the learnt dictionaries
can characterize the discriminative information between the
object and distracters. On the SV subset, our tracker get a
satisfactory result as a result of the using of aff ne motion
models. Our tracker get a better results than other on the OPR
and IPR subsets. The performance can be attributed to the
efficien sparse representations of local image patches.
In addition, we see that our tracker obtains worse results in

some attributes. For instance, when the object undergoes fast
motion and/or motion blur, our method performs worse than
HCFT, HDT and FCNT trackers due to the poor dynamic mod-
els in the particle filte . Our tracker can be further improved
with more effective state transition matrix of the particle filte .
In the LR subset, Our tracker does not perform well, because
low-resolution objects (resized to 16 × 16) may not capture
suff cient visual information to represent objects for tracking.
3) Qualitative Comparisons: As shown in Fig. 7, we also

present a qualitative evaluation of tracking results to illustrate
the effectiveness of our tracker. In total 8 representative
sequences are chosen from the subsets of four dominant
attributes, i.e., occlusion, illumination variations, background
clutter and deformation. Other challenges, e.g., out-of-plane
rotation, in-plane rotation and scale variations, are also
included in the 8 sequences. Due to space limitations, we only
analyze 4 sequences in detail.
In the Matrix sequence, the target undergoes illumination

variations and fast motion in a complex scenarios. EBT
and FCNT lose the target at the begin of the sequence
(e.g., �6). When the target moves fast, most of the tracker drift
except MEEM and our method (e.g., �40). At the end of this
sequence, only our tracker still lock on the target with a low
overlap score (e.g., �94). In the Shaking sequence, the object
undergoes the illumination change besides pose variations.
AEST, HDT, FCNT and KCF deviate from target at the begin
of the sequence (e.g., �26). EBT, KCF and AEST trackers drift
from the object when the spotlight blinks suddenly (e.g., �62).
All the other trackers are able to successfully track the object
throughout the sequence with relatively accurate sizes of the
bounding box. In the Soccer sequence, the object undergoes
pose variations as well as partial occlusions by red ribbons.
The FCNT, AEST and KCF methods lose the target after a
drastic pose change (e.g., �78). The DLSSVM method drift
away when the object is occluded (e.g., �128). In comparison,
our tracker perform better than the other methods during the
whole sequence (e.g., �358). In the Tiger2 sequence, there
exists lots of object deformation, occlusion, fast motion and
illumination variations. In the �1204 frame, FCNT and HDT
lose the target while part of tiger goes out of view. After
the inf uence of illumination variations and scale change, our
tracker get a better success rates compare with other trackers.

D. Experiment 2: Evaluation on the VOT2015 Dataset
In this section, we also present the evaluation results on

the VOT2015 [21] dataset. We use accuracy and robustness as
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Fig. 6. Attribute-based performance analysis in precision plots. The performance score of each tracker is shown in the legend.

Fig. 7. Qualitative tracking results of 10 trackers over 8 representative sequences (i.e., “MotorRolling”, “Soccer”, “Matrix”, “Shaking”, “Sylvester”, “Tiger2”,
“Trellis” and “Freeman4”) that are respectively aligned from top to bottom, left to right.

our evaluation criteria. The accuracy measures the bounding
box overlap ratio and the robustness counts the number of
failures. We compare our tracker with top 9 tracker on this
dataset including MDnet [13], DeepSRDCF [72], EBT [60],
SRDCF [72], LDP, sPST [73], nsamf and MEEM [61].
Table I shows the expected overlap, AR ranking accuracy
and robustness. Fig. 8 shows the baseline results of accuracy
and robustness. Our tracker achieve the third best results in
overall expected overlap, and the gap between DeepSRDCF
and our tracker is only 0.0037. Our tracker cannot achieve
the comparable accuracy with MDnet mainly because the
VGG-16 utilized in our tracker was trained on ImageNet for
the classificati n task while MDnet was trained on tracking
benchmark(VOT and OTB) for the tracking task, which leads
to the poorer expressive ability of our deep feature compared

with MDnet. Overall, the satisfactory performance achieved
both in accuracy and robustness show the validity of our
tracker.

E. Experiment 3: Evaluation on Hand-Crafted Feature
In this section, we evaluate the overall performance for

16 trackers on 51 sequences. 64 dimensional gray scale feature
using subsampling with a step size of 4 and 288 dimensional
HOG feature are extracted from each candidate, and they are
concatenated into a single feature vector of 352 dimensions
as our hand-crafted feature. The OPE curve of both precision
plots and success plots are shown in Fig. 9. Only the top 10
trackers are displayed for clarity. The AUC score for each
tracker is shown in the legend. Our tracker is 4.1% above
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Fig. 8. The robustness-accuracy ranking plots of tested algorithms in
VOT2015 dataset. The better trackers are located at the upper-right corner.

Fig. 9. Overall performance of hand-crafted feature based tracker compar-
isons of OPE in precision plots and success plots. The performance score for
each tracker is shown in the legend.

TABLE I
THE EXPECT OVERLAP AND RANKS OF ACCURACY AND ROBUSTNESS ON
THE TWO EXPERIMENTS IN VOT2015. THE FIRST, SECOND AND THIRD
BEST SCORES ARE HIGHLIGHTED IN RED, BLUE AND GREEN

COLORS, RESPECTIVELY

the SCM in the success rate, and outperforms the Struck by
10.6% in the precision plot. The high accurate achieved both
in overlap and location score show the validity of our original
dictionary learning model.
Table II shows a comparison of the key dictionary-based

methods on the OTB50 benchmark dataset using the average
CLE, OR and SR. The key dictionary-based methods include
SCM, ODDL, ONNDL, ASLA and ours. We rewritten the
original code to make sure that all methods use same features,
i.e., HOG and gray value. Our tracker is 4.9% and 7.4% above
the SCM in terms of average OR and average SR, respectively.
To better analysis the speed of our original dictionary learn-

ing process, we show the speed of our tracker and compare it
with other sparse trackers in Table III. Although the run speed
of our tracker is not real-time, it is comparable to other sparse
trackers. Our tracker cannot achieve a real-time speed due to

TABLE II
QUANTITATIVE COMPARISON OF OUR TRACKERS WITH

6 DICTIONARY-BASED METHODS ON THE CVPR2013 BENCHMARK.
THE RESULTS ARE REPORTED IN THE AVERAGE CLE (IN PIXELS),
THE AVERAGE OR (%), THE AVERAGE SR (%). RED BOLD
FONTS INDICATE THE BEST PERFORMANCE AND THE BLUE

Italic FONTS INDICATE THE SECOND BEST ONES.
THE BEST TWO RESULTS ARE SHOWN

IN RED BOLD FONTS

TABLE III
QUANTITATIVE COMPARISON OF OUR TRACKERS WITH 8 STATE-OF-THE-
ART METHODS ON THE CVPR2013 BENCHMARK [20]. THE RESULTS

ARE REPORTED IN THE AVERAGE FPS. RED BOLD FONTS
INDICATE THE BEST PERFORMANCE AND THE BLUE
Italic FONTS INDICATE THE SECOND BEST ONES

the high computational burden existing in dictionary learning
process. We will elaborate the complexity of our model in
V-G.3.

F. Experiment 4: Evaluation on Multi-Object Tracking
With some minor modif cations, our tracker can be used

to the multi-object tracking by treating each object as an
individual class. In this work, tracking multiple objects is
fi st to learn multiple class-specifi dictionaries and the shared
dictionary. Then each object is determined by Eq. (18). For
each multi-object tracking sequence, we pre-defi ed which
object should we track and initial their locations. The number
of dictionary class also is pre-define according to the number
of objects. Fig. 10 shows multi-object tracking results of 6
challenging sequences. In these sequences, the main challenge
of the trackers is to distinguish the true object from distracters
(i.e. objects with a similar appearance). For example, the “Air
Show” sequence contains a formation of four similar planes
that fl very close to each other, and objects suffer from camera
jitter. The “Red Flowers” shows several similar f owers which
are moving and changing appearance due to the wind. In the
“Skating” sequence, several skaters perform on stage with
drastic lighting change as a result of neon and spot lights.
Tracking such objects is challenge because objects are almost
indistinguishable in the dark environment, even for human
eyes. Overall, our tracker achieves good performance.
Following the work of [22], we compare the performance of

our tracker with OAB [70], TLD [69], and SPOT [22] trackers.
The quantitative results of these four trackers are presented
in Table V. In the SPOT tracker, the structural constraints
lead to substantial performance improvements when tracking
multiple objects. Our tracker achieves comparable results with
SPOT without considering the spatial constraints between
objects.
To demonstrate the performance of our method, we for-

mulate multiple objects tracking as multiple single-object



2024 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 29, NO. 7, JULY 2019

Fig. 10. Qualitative multi-object tracking results over 6 representative sequences (i.e., “Air Show”, “Parade”, “Shaking”, “Sky Diving”, “Skating”, and “Red
Flowers”) that are respectively aligned from top to bottom. The colors of the rectangles indicate the different objects that are tracked.

TABLE IV
COMPARISONS WITH NAIVE MULTI-OBJECT TRACKING METHOD

IN TERMS OF CLE (THE LOWER THE BETTER) AND
SR(THE HIGHER THE BETTER)

TABLE V
PERFORMANCE OF FOUR TRACKERS ON MULTI-OBJECT TRACKING

IN TERMS OF CLE (THE LOWER THE BETTER) AND
SR(THE HIGHER THE BETTER)

trackers. That is, tracking each object is considered as a binary
classif cation problem. The corresponding tracking method
is referred to as the Ours_Naive. The quantitative results
are shown in Table IV. We see that our method is slightly
better than Ours_Naive. This is because the proposed method
can learn the shared atoms and the class-specifi atoms,
and discover the shared visual atoms from the class-specifi
ones. The learnt discriminative class-specifi atoms are able
to encode subtle visual differences between objects and dis-
tracters, which prevent the tracker from switching between
objects with similar appearance.

G. Diagnostic Analysis
1) Parameter Analysis: There are four parameters in our

model, which need to be turned: η, λ1, λ2 and β. According to
the analysis in Section III, C(X,A,B) is the critical component
distinguishing our method from other DDL trackers (e.g., [8],
[43]), so we pay more attention on λ1 and λ2. To better analyze
the inf uence of these two parameters, we set η = 0.15, β =
e−10 and test our tracker on tracking sequences CarScale and
Couple with different combinations of the values of λ1 and λ2.
The value range of λ1 and λ2 is [0.01, 0.1, 0.3, 0.5, 2, 10]
and [0.05, 0.1, 0.3, 0.5, 1, 2, 5, 10] respectively. Fig. 11 shows

Fig. 11. The overlap rate of different combinations of λ1 and λ2. Horizontal
axis presents the values of λ1, vertical axis presents average overlap rate
performed on sequence CarScale and Couple. Lines with different color
presents different values of λ2, the labels are shown in the legend.

the average overlap rate as a function of λ1 and λ2 on
sequences CarScale and Couple. We f nd that there is no
f xed relationship behind the changes of the overlap rate with
different combinations of λ1 and λ2. One of the reasons
should be that the constraint conditions are variant for different
sequences, we thus just choose the best parameters setting for
our tracker. As illustrated in Fig. 11, we set λ1 = 0.1 and
λ2 = 0.01 which can achieve the best tracking performance
among all combinations.
In addition, η and β are other two scalar parameters in our

model which involve the sparsity and discrimination of the
dictionary respectively. The analysis of these two items can
be found in other DDL methods (e.g., [8], [43]), therefore,
we just set them empirically according to the setting of [8]
and [43].
2) Effectiveness of Each Component: The main contribu-

tion distinguishing our tracker from others is the discrim-
ination dictionary term C(X,A,B), in particular, the inter-
nonredundancy constraint min

∑C
j �=c, j=0

∥∥B�
c B j

∥∥2
F and the

intra-nonredundancy constraint min
∥∥B�

c Bc − IKc
∥∥2
F . If we

remove these two item, our tracker almost degrades to the
same model as ODDL introduced in [8]. The signif cant
improvement compared with ODDL tracker shown in Fig. 9
have proved that these two items make a great infl ence to
our model. To better analyze the contribution of the inter-
nonredundancy constraint and the intra-nonredundancy con-
straint, we remove one component at a time and report the
performance of our tracker. Table VI presents the tracking
results of our model with and without different component
on OTB50 benchmark. “Ours with λ1 = 0” means that our
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TABLE VI
QUANTITATIVE COMPARISON OF OUR TRACKERS WITH AND WITHOUT
DIFFERENT COMPONENTS ON THE BENCHMARK. THE RESULTS ARE
REPORTED IN THE AVERAGE CENTER LOCATION ERROR (CLE ↓,
IN PIXELS), THE AVERAGE OVERLAP RATE (OR ↑, %), AND THE
AVERAGE SUCCESS RATE (SR ↑, %). HERE ↑ MEANS THAT
HIGHER SCORES INDICATE BETTER RESULTS, AND ↓

REPRESENTS THAT LOWER IS BETTER

model is trained without the inter-nonredundancy constraint
and “Ours with λ2 = 0” means it is trained without the
intra-nonredundancy constraint. The comparisons shown in
this table illustrate the effectiveness of each component in the
model.

||Ac||1 is the sparse item which involves the sparsity
while L(A;W) is the discrimination item which involves
the discrimination into dictionaries. Both of them are basic
components for DDL-based trackers and have been proved
effective for visual tracking [8], [43].
Another important distinction is that besides the class-

specifi atoms Bc, we also learned the shared atoms B0. The
shared dictionary B0 is designed in our dictionary learning
method to discover the hidden visual patterns shared by the
visually correlated categories. Since the common patterns
may make the learnt class-specif c dictionaries redundant,
they do not benefi classificatio performance, but may even
degrade the classificatio accuracy. Separating them from the
class-specifi dictionaries enables our model to learn more
discriminative and more compact dictionaries. To evaluate the
effectiveness of the shared dictionary B0, we have trained
class-specif c dictionaries without considering the shared dic-
tionary explicitly in the Benchmark2013 dataset. To measure
the accuracy of the tracking results, we use the center loca-
tion error (CLE), the overlapping rate (OR) and the success
rate (SR) for quantitative evaluations. The comparisons are
reported in Table VI. It shows that separating the hidden visual
patterns from the class-specifi ones is effective to ameliorate
the discrimination of the dictionaries.
3) Complexity Analysis: As discussed in [74], the time

complexity of the sparse coding problem is approximately
O(d2 K ε), where d is the feature dimensionality, K is the
number of dictionary bases, and ε ≤ 1.2 is a constant. In our
model, since the coding coeff cients are updated class by
class, the time complexity of updating coding coeff cients is∑C

c=1 NcO
(
d2K εc

)
, where Nc is the number of training sam-

ples in the c-th class and Kc is the number of class-specif c dic-
tionary bases. The time complexity of updating class-specif c
bases is

∑C
c=1 KcO

(
dNc

)
. Since the shared bases contribute to

the representation of all samples, the time complexity of updat-
ing the shared dictionary is K0O

(
dN

)
. Therefore, the overall

time complexity of our model is n
(∑C

c=1 NcO
(
d2K εc

) +
∑C

c=1 KcO
(
dNc

) + K0O
(
dN

))
, where n is the total number

of iterations. To better elucidate the speed of our original

Fig. 12. Examples of the convergence of our model on the “Bolt” sequence
and the “Football” sequence.

dictionary learning process excluding the inf uence of CNNs
feature extractor, we have shown the speed of our tracker
based on hand-crafted features and compared it with other
hand-crafted based trackers in table III. In particular, we can
increase the dictionary updating periods or reduce the number
of iteration to accelerate our tracker directly.
As discussed in Section III, the objective function of

our method is not convex. We alternatively update sparse
coeffi ients, class-specifi bases, shared bases, and classifi r
parameters. We use a stochastic gradient descent algorithm to
obtain the local optimum. The change of the objective value
with respect to the number of iteration on the “Bolt” sequence
and the “Football” sequence is plotted in Fig. 12. It shows that
the objective value converges within about 6 iterations.

VI. CONCLUSION

In this paper, we have presented a joint discriminative
dictionary learning method for the robust distracter-resistive
tracker. Our method can learn the shared atoms and the
class-specifi atoms, and effectively separate commonly shared
visual patterns from class-specif c ones. The learnt dictionary
is more compact and more discriminative, which makes our
tracker have better discriminating power to handle appearance
changes. During tracking, the quality of each candidate is
measured by the global coding classif er and the learnt linear
classif er instead of relying on only one of them. We also suc-
cessfully apply CNN feature to our dictionary leaning method
to improve our tracking results. Comparisons with 9 state-
of-the-art tracking methods on the benchmark dataset have
demonstrated that our tracker effectively resists distracters and
outperforms existing methods. In addition, we show several
multi-object tracking results to demonstrate the good perfor-
mance of the proposed tracker for tracking multiple objects.
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