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Online Discriminative Tracking With
Active Example Selection

Min Yang, Yuwei Wu, Mingtao Pei, Bo Ma, and Yunde Jia, Member, IEEE

Abstract—Most existing discriminative tracking algorithms
use a sampling-and-labeling strategy to collect examples and
treat the training example collection as a task that is independent
of classifier learning. However, the examples collected directly by
sampling are neither necessarily informative nor intended to be
useful for classifier learning. Updating the classifier with these
examples might introduce ambiguity to the tracker. In this paper,
we present a novel online discriminative tracking framework
that explicitly couples the objectives of example collection and
classifier learning. Our method uses Laplacian regularized least
squares (LapRLS) to learn a robust classifier that can sufficiently
exploit unlabeled data and preserve the local geometrical
structure of the feature space. To ensure the high classification
confidence of the classifier, we propose an active example
selection approach to automatically select the most informative
examples for LapRLS. Part of the selected examples that
satisfy strict constraints are labeled to enhance the adaptivity
of our tracker, which actually provides robust supervisory
information to guide semisupervised learning. With active
example selection, we are able to avoid the ambiguity introduced
by an independent example collection strategy and to alleviate the
drift problem caused by misaligned examples. Comparison with
the state-of-the-art trackers on the comprehensive benchmark
demonstrates that our tracking algorithm is more effective and
accurate.

Index Terms— Active example selection, active learning,
discriminative tracking, semisupervised learning.

I. INTRODUCTION

ISUAL tracking aims to estimate the trajectory of an
object automatically in a video sequence. Although
the task is easily fulfilled by the human vision system,
designing a robust online tracker remains a very challenging
problem due to appearance variations caused by factors such
as illumination changes, occlusion, background clutter, and

object deformation.
Numerous tracking algorithms have been proposed to
address appearance variations, and most of them fall into two
categories: generative and discriminative methods. Generative
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methods represent an object in a particular feature space and
then find the best candidate with maximal matching score.
Some popular generative trackers include incremental visual
tracking [1], visual tracking decomposition (VTD) [2], sparse
representation-based tracking [3]-[7], and least soft-threshold
squares tracking (LSST) [8]. Discriminative methods cast
tracking as a binary classification problem that distinguishes
the object from the background [9]-[15]. Benefiting from the
explicit consideration of background information, discrimi-
native trackers are usually more robust against appearance
variations under complex environments. In this paper, we
focus on learning an online classifier that is able to capture
appearance changes adaptively for visual tracking.

The performance of discriminative trackers largely depends
on the training examples used for classifier learning. Existing
algorithms often collect training examples via a two-stage
strategy [11]: sampling and labeling. The sampling process
generates a set of examples around the current tracking result,
and the labeling process estimates the labels of these examples
using a heuristic approach that depends on the current tracking
result (e.g., examples with small distance to the current track
are labeled as positive, and examples far away from the current
track are negative).

This example collection strategy raises several issues. First,
the objective of the sampling process may not be consistent
with the objective for the classifier, which makes the example
collection strategy independent of classifier learning. The
examples collected directly by sampling are neither necessarily
informative nor intended to be useful for classifier learning,
and might introduce ambiguity to the tracker. Second,
assigning labels estimated by the current tracking result
to unlabeled examples can cause drift [10], [11], [16].
Slight inaccuracy of tracking results can lead to incorrectly
labeled examples and consequently degrades the classifier.
State-of-the-art discriminative trackers mainly focus on
learning a classifier that is robust to poorly labeled examples
(e.g., semisupervised learning [16]-[19], P-N learning [20],
multiple instance learning (MIL) [10], and self-paced
learning [21]). However, the first issue is rarely mentioned
in the literature of visual tracking.

In this paper, we frame the training example collection
problem in discriminative tracking as one of active learning,
and propose an active example selection approach to auto-
matically select the most informative examples for classifier
learning. Based on active example selection, we present a
novel online discriminative tracking framework that explicitly
couples the objectives of example collection and classifier
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learning, avoiding the ambiguity introduced by the two-stage
example collection strategy.

The overview of our approach is shown in Fig. 1.
A manifold regularized semisupervised learning method,
i.e., Laplacian regularized least squares (LapRLS) [22], is
employed to learn a robust classifier that is able to exploit both
labeled and unlabeled data. LapRLS sufficiently utilizes the
discriminative information contained in unlabeled data, and
hence alleviate the drift problem caused by label noise. Using
the formalism of active learning [23], [24], we introduce an
active example selection stage between sampling and labeling
to select the examples that are useful for LapRLS. The
active example selection guarantees the consistency between
example collection and classifier learning in a principled
manner, and significantly improves the tracking performance,
as our experiments demonstrated.

To make the classifier more adaptive to appearance changes,
part of the selected examples that satisfy strict constraints
are labeled, and the rest are considered as unlabeled data.
According to the stability—plasticity dilemma [9], the
additional labels provide reliable supervisory information to
guide semisupervised learning during tracking, and hence
increase the plasticity of the tracker. Our experiments suggest
that this conservative labeling approach is crucial to handle
appearance variations.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III introduces the details
of classifier learning and active example selection. Detailed
description of our tracking algorithm is provided in Section I'V.
We report and discuss the experimental results in Section V,
and conclude this paper in Section VI.

II. RELATED WORK

Much progress has been made in modeling appearance
variations for visual tracking. A thorough review can be
found in [25]. Our tracker incorporates ideas from prior
work on semisupervised tracking, active learning, and
stability—plasticity dilemma. We briefly review relevant
literature on these three topics in the following.

A. Semisupervised Tracking

Semisupervised approaches have been previously used
in tracking. Grabner et al. [16] proposed an online
semisupervised boosting tracker to avoid self-learning as only
the examples in the first frame are considered as labeled.
Saffari et al. [17] proposed a multiview boosting algorithm
that considers the given priors as a regularization component
over the unlabeled data, and validated its robustness for object
tracking. Kalal ef al. [20] presented a P-N learning algorithm
to bootstrap a prior classifier by iteratively labeling unlabeled
examples via structural constraints. Gao et al. [19] employed
the cluster assumption to exploit unlabeled data to encode most
of the discriminant information of their tensor representation,
and showed great improvement on tracking performance.

The semisupervised methods mentioned above actually
determine the pseudolabel of the unlabeled data, and do
not discover the intrinsic geometrical structure of the feature
space. In contrast, the LapRLS algorithm employed in our
method learns a classifier that predicts similar labels for similar
data points by constructing a data adjacency graph. We show
that it is crucial to consider the similarity in terms of label
prediction during tracking. Bai and Tang [18] introduced a
similar algorithm, i.e., Laplacian ranking SVM, for object
tracking. Their method formulates the tracking process as
a ranking problem and also incorporates the information of
unlabeled examples via a manifold regularization. However,
they adopt a handcrafted example collection strategy to obtain
the labeled and unlabeled data, which limits the performance
of their tracking method. Compared with the method in [18],
our tracker is able to automatically select useful examples
for classifier learning, which can efficiently exploit the dis-
criminative information contained in the abundant unlabeled
examples with a relatively small set of training examples. Our
experiments demonstrate the superiority of our tracker over
the traditional handcrafted example collection strategies.

B. Active Learning

Active learning, also referred to as experimental design in
statistics, aims to determine which unlabeled examples would
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be the most informative (i.e., improve the classifier the most
if they were labeled and used as training data) [23], [24], and
has been well applied in text categorization [26] and image
retrieval [27], [28]. In this paper, we propose an active example
selection approach in our example collection strategy using the
framework of active learning, in which the task is to select
the examples that improve the prediction accuracy of LapRLS
the most.

We show that the active example selection approach
introduces several advantages for visual tracking over existing
methods. First, it guarantees the consistency between example
collection and classifier learning in a principled way. That
is, the selected examples are meaningful for LapRLS, which
can improve the classification performance. Second, the
active example selection tends to choose the representative
examples, which reduces the amount of training data without
performance loss. Third, assigning labels to the selected
examples alleviates the drift problem caused by label noise.
According to the theory of active learning, the examples
that minimize the predictive variance when they are used
for training will be selected. Thus, misaligned examples are
intended to be rejected by the active example selection.

C. Stability—Plasticity Dilemma

We revisit the stability—plasticity dilemma to present more
implication of our approach. If the classifier is trained only
with the labeled examples from the first frame, it is the most
stable description of the object appearance and can virtually
not drift, but fails to track an object that undergoes appearance
variations over time. On the other hand, an online classifier
that bootstraps itself using the examples extracted from the
current tracking result is a more plastic description. It is
highly adaptive but easily drifts in the case of updating with
mislabeled examples. Our tracker is designed to achieve a
proper balance between stability and plasticity. To obtain a
stable appearance model, we learn the classifier using LapRLS
that is able to exploit unlabeled data effectively and avoid self-
learning, and update the classifier using informative examples
selected via active example selection to ensure the high classi-
fication confidence. Meanwhile, a relatively small number of
examples are labeled using a conservative labeling approach,
which increases the plasticity of the model as the labeled data
contain additional supervisory information.

Several tracking algorithms are also designed from the
aspect of stability—plasticity dilemma. Stalder er al. [29]
extended the semisupervised boosting tracker [16] by inte-
grating an adaptive prior, i.e., an supervised online classifier,
to increase the plasticity of the model. Santner et al. [9]
combined three components that have different adaptivity
rates: template matching (stable), optical-flow-based mean-
shift tracker (highly adaptive), and online random forest
(moderately adaptive) to increase the stability and plasticity
of the tracker at the same time. Gu et al. [30] proposed an
online nearest neighbor classifier for efficient visual tracking,
which involves a feature updating and pruning scheme to
obtain a suitable tradeoff between plasticity and stability.
Different from the trackers mentioned above, both the labeled
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and unlabeled examples used for online classifier update in
our tracker are selected via active example selection, which
can simultaneously choose the most informative examples
and ensure the accuracy of classification.

III. LEARNING AN ADAPTIVE CLASSIFIER

Online discriminative trackers mainly focus on learning an
adaptive classifier to separate the object from the background.
Two stages, i.e., classifier learning and training example
collection, are alternately performed to obtain the adaptive
classifier during tracking. While most discriminative tracking
algorithms consider them as two independent tasks, our
method explicitly couples the objectives of example collection
and classifier learning by introducing an active example selec-
tion approach. In this section, we describe how the classifier is
learned with LapRLS and how the useful examples are selected
for LapRLS via active example selection. To update the
training example set, we also present a conservative labeling
approach to estimate the labels of the selected examples.

A. Classifier Learning With LapRLS

Denote the feature space by X', and labeled examples can
be encoded as (x, y) pairs, where x € X and y € R, and
unlabeled examples are simply x € X. We focus on the binary
classification problem and assume that positive examples are
labeled with +1 and negative examples are labeled with —1.

At each time step during tracking, we denote the current
labeled example set as (X©,y) = {(x;, y,-)}ﬁz1 and the current
unlabeled example set as XY = {xi}ézl'ﬂr], where y is the
label vector of XL, and [ and u are the numbers of labeled
and unlabeled examples, respectively. The entire example set
is denoted by XF = {x,-}ﬁi’f.

Given the training example set, our goal is to learn a
label prediction function f : X — R that will generalize
well on new examples. In this paper, we adopt the LapRLS
algorithm to seek an optimal real-valued function that not
only achieves low predictive error on labeled training data
but also has high prediction confidence on unlabeled training
data. Formally, the LapRLS algorithm solves the following
optimization problem [22]:

f*=argmin D> (v — f(x)’
fEHK X,'EXL
Q

+ Al flik + 5

D () = f@))P Wy (D)

X,',)C_,‘EXE

where Hg is a reproducing kernel Hilbert space (RKHS)
which is associated with a Mercer kernel K : X x X — R,
|l - ||k is the norm defined in Hg, the function value f(x;) is
the prediction of the label of example x; given by f, and W is
a (I +u) x (I +u) similarity matrix with entries W;; indicating
the adjacency weights between data points x; and x;.

The first term in (1) is a squared loss which makes the
trained function have a high prediction accuracy on the labeled
data. The second term in (1) penalizes the RKHS norm of
the trained function, which imposes smoothness conditions
on possible solutions and actually restricts the scale of the
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optimization problem. The last term in (1) is an approximated
manifold regularizer that preserves the local geometrical
structure represented by a weighted adjacency graph with
similarity matrix W. It actually respects a smoothness
assumption, that is, data points closed to each other in a
high-density region should share similar predictions given by
the trained function. According to the spectral graph theory,
this regularized term can be expressed as a compact form

1
5 2 (fa) = fa)* Wy =£TLE @)
xi,XjEXE

where f = [f(x1), f(x2), ..., f(x114)]", and L is the graph
Laplacian given by L = D — W. Here, D is a diagonal matrix
defined as D;; = ZIJJ;”l Wij. We adopt the local scaling
method [31] to define the similarity matrix

i — z . . / . [
exp(—lxla[ijlflz), 1fleN,f or j € Ny

0, otherwise

Wi = 3)

where N,i indicates the index set of the k nearest neighbors
of x; in XE, o = |x; — xl-(k)llz, and xi(k) is the kth
nearest neighbor of x; in X E Note that the entries Wi
are nonnegative, which guarantees the positive semidefinite
property of the graph Laplacian L and further ensures that
the regularization term f ' Lf is convex.

The key motivation for restricting f in an RKHS is the
representer theorem (see the details in [22]) which shows that
the solution of (1) is an expansion of kernel functions over
both labeled and unlabeled data

[ =D ofKx,x) )
X,‘EXE
where ! € R is the coefficient of x;. We use the following
notations to denote the kernel functions:

(Kv.p)1j = K(x,xj), xjeXE
(KLp)ij = K(xi,xj), xi e X", xj e xF
(Kep)ij = K(xi,xj), xi € XE, xj e X*

(K)ij = K(xi,xj), xie€XE, x;ext. (5)

Thus, (4) can be simplified as
F*() = Ky po* ©)
where 0" = [o],... ,w;ﬂru]T. By substituting (6) into (1),

we obtain a convex differentiable objective function of the
(! + u)-dimensional vector @ = [w1, ..., wlﬂ,]—r
®* = argmin ||y — KLEwH2 + @ Ko+ o KLKo (7)

weRI+u

where we use the fact | f|lx =@ ' Ko, andy = [y1, ..., y/]"

is the label vector of X,
The solution of (7) can be acquired by setting the gradient
with respect to @ to zero

0" = (Kg K1 g+ MK+ KLK) 'Kgry. ®)

Obviously, the optimal prediction function f* can be
efficiently obtained by solving a single system of linear
equations described in (8), and then the predicted label of a
test data x is given by the sign of f*(x) using (6).
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B. Active Example Selection

With the prediction function learned by LapRLS, the tracked
object can be located as described later in Section IV. In this
section, we will show how the useful examples are selected
by an active example selection approach to update the training
example set of LapRLS.

1) Formulation: Given the object location at each frame,
a large set of unlabeled examples is generated by randomly

sampling around the object location, denoted by
XV = {xi}éiﬁjﬂ, where n is the number of examples

generated by sampling. We consider the example selection
problem from the perspective of active learning, where the
task is to automatically choose a set of m examples X?
from XV that together are maximally informative [23]. The
informativeness of the selected examples X7 is indicated by
the performance of the classifier learned using XZ as labeled
data. Therefore, we seek a subset X< XV that maximizes
the prediction confidence of the classifier learned by LapRLS.

Suppose that we can observe the labels of the examples in
X? by a measurement process ¢; = f(x;) + €,x; € X%,
where c¢; is the observed label of example x;, f is the
underlying label prediction function and ¢ ~ N(0,0?) is
the measurement noise. The observed labels ¢; of different
examples have measurement errors that are independent, but
with equal variances o 2. Using X7 as labeled data and the rest
in X" as unlabeled data, the estimate of f, denoted by f , can
be obtained using LapRLS. For clarity, we recall (6) and (8)
with different notations

fx) = Ky v ©)
&= (KyzKzy + 1K + 1oKLK) 'Kyze  (10)

where ¢ = [c1, ..., cm] ", and the kernel matrix Kyv, Kzv,
Kyz and K are defined similar to (5). Since the underlying
function f is unknown, the labels ¢; are actually invisible.
Fortunately, we will show later that our active example
selection approach is not dependent on the labels c;.

Denote H = KyzKzy + 15K + AKLK and
A = 11K + 1, KLK, and the covariance matrix of @ can
be expressed as

Cov(®) = Cov(H 'Ky z¢)
= H 'Ky zCov(c)KzyH™!
=oc’H "(H—- AH™!

=c*H '-H'AH™ (11)

where the third equation uses the assumption Cov(c) = o21.
The covariance matrix Cov(@) characterizes the confidence
of the estimation, or the informativeness of the selected
examples. The smaller the elements of the covariance matrix,
the more stable the estimator @, which indicates that the
selected examples are more informative. According to the
theory of optimum experiment design [24], different criteria
can be applied to the covariance matrix to obtain different
active learning algorithms for LapRLS. He [28] used the
D-optimality criterion that minimizes the determinant of
Cov(®) to design an active learning algorithm for image
retrieval. However, this criterion does not directly consider
the quality of predictions on test data.
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Inspired by [26], we design the objective of active
example selection in a transductive setting. Let
fv = [f (gut1)s - oo f(X14usn)] be the true labels of all
examples in XV given by the underlying label prediction
function f, and fy = [f(xl+u+1),-~-»f(xl—i;u+n)]T be
the predictions on X" given by the estimator f. Then the
covariance matrix of the predictive error fy — fy is given by

Cov(fy — fy) = Cov(fy) = Cov(K®)
= KCov(®)K

=¢’KH '-H'AHHYK. (12)

Compared with Cov(®), Cov(fy — f'v) directly characterizes
the quality of predictions on the entire data X". We aim
to select m examples XZ from XV such that the average
predictive variance 1/nTr(Cov(fy — f'v)) is minimized, i.e.,
a high confidence of predictions on XV is ensured. Since the
regularization parameters (i.e., 41 and Ay) are usually very
small, we have

To(KH '—H'AHYK)~Tr(KH'K). (13)

Therefore, the formulation of our active example selection
approach can be expressed as

min  Tr(K (KvzKzv +h K + JKLK)'K)
X

st. X2 cxY, X% =m. (14)

Note that the example selection itself is independent of
the observed labels ¢, despite the fact that we consider a
semisupervised learning problem.

2) Sequential Optimization: The problem (14) is a combina-
torial optimization problem which is NP-hard. Similar to [26],
we use a sequential greedy optimization approach to efficiently
solve (14). The sequential approach selects just one example
in each iteration until m examples have been selected. Denote
the selected examples in the previous iterations by X Z'and
the task of each iteration is to seek a new example x by solving

min Tr(K(KyvzKzv + 11K + 22KLK)"'K)
X

st. X2=x%ux, xex¥-x%. (15)
We have the following proposition.
Proposition 1: The problem (15) is equivalent to
max || My.«|?/(1+ My )
st. xex” —x% (16)

where M = K(Kyz Kzv + 21K + 2KLK)"'K, My, and
My x are x’s column and diagonal entry in M, respectively.
Proof:  Using the fzict KvzKzv = KyzKzv +

Ky xKx,v, we can define A = Ky, Kz v + A and have
K(KyzKzv + 21K + JoKLK) 'K

= K(KV,xKx,V + K\/Z/KZ/V + A)_lK

= K(Ky K.y +M)7'K

= KA 'K —KA 'Ky, K, vAT'K/(1+ K, vA~'Ky,)

where the third equation uses the Woodbury matrix identity.
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Algorithm 1 Sequential Active Example Selection

: Initialize: XZ/; XZ =y
M=K(KyzyKzy+ 1K+ KLK)'K
: while |XZ| < m do

select x by solving (16);

xZ = xZ Ux), X2 = xZ U fx);

M <—M—My My y/(1+ Mxx);

: end while

: return X%

PR N B

Let M =KA 'K =K(KyzKzy+MK+MKLK) K.
It can be easily validated that K A~ Ky, indicates x’s column
in M, Kx,vﬁ_lK indicates x’s row in M, and Kx,vA_IKv,X
indicates x’s diagonal entry in M. Therefore, we have

M — MV,xMx,V
(14 My ,x)

Since M is independent of x, problem (15) is equivalent to
looking for the x that maximizes Tr(My My v/(14+My x)) =
My |?/(1 + M, ). This completes the proof. O

Equation (16) can be easily solved by selecting
x € XV — X% with the highest ||My_||>/(1 + M,_). Then,
the matrix M is updated by M = M — My My v/(1+ My x),
as the set XZ' is augmented with the new example x.

Starting from a set X Z/, m most informative examples
can be sequentially selected by solving (16) iteratively.
We summarize our active example selection approach in
Algorithm 1. Note that we only need to calculate the
Moore—Penrose inverse of (Ky 7/ Kzy+41K+12K LK) when
M is initialized, and there is no need for matrix inverse at each
iterative step.

3) Discussion: In the simplest situation, the previously
selected example set X 7' is set to an empty set before example
selection. It is clear that the examples are selected from
XV without considering the current training example set in
this case. In fact, we found that the proposed sequential
optimization algorithm allows us to incorporate the current
training examples into the example selection problem in a very
simple way, which further enhances the informativeness of
the selected examples for classifier learning. Formally, we set
X% = XL and augment the candidate set as X" U X* before
we perform Algorithm 1 to select useful examples. Since the
labeled examples contain the most discriminative information,
we only incorporate the current labeled example set X’ into
the algorithm in practice.

K(KyzKzy + 1K + LKLK) 'K =

C. Labeling

Given the example set X% selected via active example
selection, we estimate the labels of X7 using a conservative
labeling approach similar to [11]. Denote the region of the
current tracking result by Rr and the region of selected
example z; by R',, the overlap rate between Ry and Riz can
be computed by

area (RT N R’Z)

Rp,R))=—— 2/
s(Rr, R) area(Rr U RY)

A7)
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Then, we estimate the labels of X# according to the following
constraints: the examples with the overlap rate larger than
a threshold J are labeled as positive, the examples with the
overlap rate less than a threshold e are labeled as negative,
and the rest examples are considered as unlabeled data. The
labels estimated by the conservative labeling approach can
provide reliable supervisory information to guide semisuper-
vised learning and enhance the adaptivity of the tracker.

IV. PROPOSED TRACKING ALGORITHM

In this paper, we cast visual tracking as a randomized search
task. At every time step ¢, the goal of our algorithm is to find
the optimal state s, of an object with a given image frame o;.
Given the previous object state s,_1 at time (¢ — 1), we first
generate a set of Ny samples {sf}f\gl by applying random
sampling according to the motion model p(s;|s;—1). Then,
each sample s§ is evaluated by the observation model p(o; |S§),
and the optimal state s; is acquired using a greedy strategy

s, = argmax p(o;[s!). (18)
st

The adopted randomized search approach is similar to the
popular grid search approach used by many discriminative
trackers [10]-[12], but shows several advantages. First, the
random search approach can easily incorporate sophisticated
motion models. Second, the random search approach provides
an efficient way to approximate the brute force search on the
state space, which makes it more suitable for object tracking.
In addition, we also note that the random search approach is
closely related to the particle filter framework [32] where a
distribution of the object state at every frame is maintained by
a finite set of weighted particles. However, maintaining a set
of particles actually increases the drift potential of the tracker.
Instead, the random search approach is more robust against
distracters.

We describe the motion model, the observation model, and
the model update scheme below, and summarize our tracker
in Algorithm 2.

A. Motion Model

We represent the object state at time ¢ as s; = (ay, by, 07),

where (a;,b;) denotes the image position of the
object and o; denotes the scale of the object. The
motion model is formulated as Brownian motion, i.e.,

p(stlsi—1) = N(s;; si—1, X), where X is a diagonal covariance
matrix which indicates the variances of translation and scale.

B. Observation Model

We use £; and U;, respectively, to denote the labeled and
unlabeled examples collected from the first frame till the
current time f. Specially, £; only contains the labeled
examples from the first frame, which can be considered as
the training examples with the most accurate labels during
tracking. Therefore, we construct the current labeled example
set as (XL, y) = £, U L] to make the learned classifier more
stable.

For the tracking at time ¢, we first crop the image patches

corresponding to the samples {si fil from the observed
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Algorithm 2 The Proposed Tracking Algorithm

Input: image sequence oy, -- -, 07; an initial bounding box at the
first frame to indicate the tracked object; regularization parameters
A1 and Ap; kernel function K

Qutput: tracking results {s;}tT:1

1: Initialize: s is the initial object state; £; and U] is the labeled
and unlabeled examples from the first frame, respectively;

2:fort=2,---,T do_

3:  generate samples s;,

extract features x;,

Cr = {x] f.V;l, the test data set;

4:  labeled training set (XL,y) <= £; ULy,
unlabeled training set X U — U U Cy,
learn function f; with LapRLS using (6) and (8);

5. select tracking result s; using (18);

6: XV <= n unlabeled examples generated by sampling,
xZ = xL,
xV — xVuxt,
select m examples XZ using Algorithm 1;

7. estimate the labels of XZ as describe in Sec. III-C,
L, Uy <= XZ, update the training example set;

8: end for

image o;, and use the HOG feature [33] to describe the
patches. After feature extraction, we obtain a set of test data,
denoted by C; = {x/}I,, where x/ is the feature vector of
the sample s;. The current unlabeled example set is then
constructed as XY = U, UG, Tt actually indicates that the
classifier is trained in a transductive setting, which improves
the prediction accuracy on the test data.

With the current training set X* and XY an adaptive
prediction function f; can be learned with LapRLS, as
described in Section III-A. For a test data x which belongs
to the object class, the prediction value given by f;(x) should
be as close to +1 as possible according to the objective
function (1) of LapRLS. Therefore, we compute the
observation likelihood of the sample si as

ploflsi) ocexp(—II1 — £ (x)II?). (19)

C. Model Update

Note that we retrain the classifier used for tracking at
each time, therefore the training example set, i.e., £; and U,
should be updated to account for appearance variations of
the object. Once the object is located, we sample a large set
of unlabeled examples XV, and employ the active example
selection to select a set of informative examples X Z from XV,
as described in Section III-B. To make the trained classifier
more adaptive to appearance changes, we assign labels to
part of the set X7 that satisfy strict constraints as described
in Section III-C. Then, the examples X7 are used to update
the labeled example set £; and the unlabeled example set
U;, where random replacement happens once the number of
examples in £, or U; reaches the example set capacity |L;|
or |U.

V. EXPERIMENTAL RESULTS

We evaluate our tracker with 11 state-of-the-art methods
on a recent benchmark [34], where each tracker is tested
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on 51 challenging videos (more than 29000 frames). The
state-of-the-art trackers include the Tracking-Learning-
Detection (TLD) tracker [20], tracking with MIL [10],

VTD [2], the Struck method [11], the sparsity-based
collaborative model (SCM) [4], Laplacian ranking
support vector tracking (LRSVT) [18], compressive

tracking (CT) [12], structural part-based tracking (SPT) [13],
LSST [8], randomized ensemble tracking (RET) [15],
and tracking with online nonnegative dictionary
learning (ONNDL) [7]. We use the source codes publicly
available on the benchmark (except that the source codes
of LRSVT, SPT, LSST, RET, and ONNDL are provided by
the authors) with the same initialization and their default
parameters. Since the trackers involve randomness, we run
them five times and report the average result for each
sequence.

A. Implementation Details

We normalize the object region to 32 x 32 pixels, and
extract nine overlapped 18 x 18 local patches within the
region by sliding windows with seven pixels as step length.
Each patch is represented as a 32D HOG feature, and
these features are grouped into a 288D feature vector. For
LapRLS and active example selection, we empirically set
the regularization parameters A; and A, to be 0.001 and 0.1,
respectively. The parameter k in (3) is chosen as 7 according
to [31]. To avoid parameter tuning, we apply the linear kernel
to LapRLS and active example selection in our experiments.
Note that nonlinear kernels (e.g., Gaussian and polynomial
kernels) can be used to handle more complex data. In the
first frame, 20 positive examples, 80 negative examples, and
300 unlabeled examples are used to initialize the classifier.
The example set capacity |£;| = 200 and |U/;| = 600. Given
the object location at the current frame, n = 1200 unlabeled
examples are generated by applying uniform sampling within
a search region around the current object location, and
m = 20 informative examples are selected by active example
selection. The scales of the examples are fixed to the same
as the scale of the object, and the search region is set to
twice the size of the object. We set the labeling constraint
parameters 6 = 0.8 and € = 0.2. For randomized search, the
number of samples Ny = 600, and the state transition matrix
¥ = diag(8,8,0.01). Note that the parameters are fixed
throughout the experiments in this section. Our tracker is
implemented in MATLAB, which runs at 2 frames/s on an
Intel Core 17 3.5-GHz PC with 16-GB memory. The MATLAB
source code of our tracker, together with the experimental
results of the competing trackers on the benchmark, is
available at http://iitlab.bit.edu.cn/mcislab/~wuyuwei.

B. Quantitative Evaluation

1) Evaluation Criteria: The center location error as well as
the overlap rate is used for quantitative evaluations. The center
location error is the per frame distance (in pixels) between
the center of the tracking result and that of ground truth.
The overlap rate is defined as s(R7, Rg) using (17), where
Rt is the region of the tracking result and Rg denotes the
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Fig. 2. Overall performances of the competing trackers on the 51 video
sequences. The precision plot and the success plot are used, and the trackers
are ordered according to their respective performance score in the legend.

ground truth. We employ the precision plot and the success
plot [34] to evaluate the robustness of trackers, rather than
directly using the average center location error and the average
overlap rate over all frames of one video sequence to indicate
the overall performance. The precision plot indicates the
percentage of frames whose center location error is within
the given threshold. The result at error threshold of 20 pixels
is selected as the representative precision score and used for
ranking. The success plot shows the ratios of successful frames
whose overlap rate is larger than the given threshold. The area
under curve (AUC) of each success plot is used to evaluate
and rank the trackers.

2) Overall Performance: The overall performances of the
competing trackers on the 51 sequences are illustrated by
the precision plot and the success plot, as shown in Fig. 2.
The trackers are ordered according to their respective
performance score in the legend. From Fig. 2, we observe
that both our tracker and the SCM, SPT, and Struck methods
achieve good tracking performance. In the precision plot, our
tracker performs 8.3% better than Struck, 10% better than
SPT, and 13.6% better than the SCM. In the success plot,
our tracker performs 5% better than the SCM, 5.8% better
than SPT, and 6.1% better than Struck. We also observe that
the SCM method provides higher precision and success rate
when the error threshold is relatively small (e.g., five pixels
in the precision plot, and 80% in the success rate), because of
the fact that the SCM method exploits both holistic and local
representation approaches based on sparse coding to handle
appearance variations.

Overall, our tracker outperforms the state-of-the-art
algorithms in terms of location accuracy and robustness. The
reasons are explained as follows. First, LapRLS is effective
for learning a robust classifier for visual tracking. It is crucial
to utilize the discriminative information contained in the
abundant unlabeled data, which can be easily collected during
tracking, to refine the classifier. Second, the proposed active
example selection method explicitly couples the objectives of
example collection and classifier learning, and thus ensures
the high classification confidence of the online classifier.
Third, we use a conservative labeling approach to add
reliable supervisory information for semisupervised learning,
leading to a significant enhancement on the adaptivity of our
tracker. Our experimental results validate these notions in the
following sections.
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Fig. 3.
high-resolution display.

3) Attribute-Based Performance Analysis: The video
sequences used in the benchmark are annotated with
11 attributes which can be considered as different factors that
may affect the tracking performance. One sequence can be
annotated with several attributes. By putting the sequences
that share a common attribute into a subset, we can analyze
the performance of trackers to handle a specific challenging
condition. In our experiments, we utilize the attribute-based
performance analysis approach to demonstrate the robustness
of our tracker. Figs. 3 and 4 show the success plots and the
precision plots of the competing trackers for the 11 attributes
(arranged in descending order of the number of video
sequences in each subset), respectively. As shown in Fig. 3,
our method shows the best tracking performance on 7 of the
11 video subsets in terms of success rate and also performs
well in the other four subsets. For tracking precision, our
method achieves the best performance on 9 of the 11 video
subsets, as shown in Fig. 4. These results demonstrate that the
proposed algorithm is robust to appearance variations caused
by a set of factors. Due to space limitations, we mainly discuss
the success plots for the top five attributes that occur more
frequently than others.

On the occlusion subset, the SCM, SPT, and our method
perform better than other trackers, which indicates that
local representation methods are effective in dealing with
occlusions. On the out-of-plane rotation and the in-plane
rotation subsets, the SCM, SPT, VTD, Struck, ONNDL, and
our method outperform others. On the scale variations subset,

2
g g
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Attribute-based performance analysis using success plot. The number of video sequences in each subset is shown in the title. Best viewed on

trackers with affine motion models (e.g., our method, SCM,
and ONNDL) cope with scale variations better than others
with translational motion (e.g., Struck, RET, and TLD). On the
illumination variations subset, our method provides outstand-
ing tracking results than others. It may benefit from the HOG
feature used in our method that has been proved to be very
robust against illumination changes. We also note that the
performance of the SCM, ONNDL, and our method degrades
on the fast motion and the motion blurring subsets, while grid
search-based trackers (e.g., Struck, SPT, and RET) perform
much better than others. The reason is that search regions of
grid search-based trackers are large and the motion models of
randomized search-based trackers should be carefully designed
to handle fast motion.

4) Diagnostic Analysis: As previously mentioned, our
tracking method chooses the most informative examples for
classifier learning via active example selection, leading to
significant improvement on tracking performance. In addition,
we assign labels to part of the selected examples that satisfy
strict constraints, which can increase the adaptivity of the
classifier. To demonstrate the effectiveness of the active
example selection approach and the conservative labeling
strategy, we build three baseline algorithms to do validation
and analyze various aspects of our method.

We begin with a naive tracker based on a classifier learned
with LapRLS, denoted by BaseLinel. BaseLinel only exploits
the labeled examples from the first frame, and collects unla-
beled examples using randomly sampling. We add the active
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example selection stage after the sampling process to select
informative examples for LapRLS, leading to another baseline,
denoted by BaseLine2. Both BaseLinel and the BaseLine2 are
stable versions, since no additional supervisory information is
added during tracking, i.e., the training examples are collected
without the labeling stage and the labeled examples come only
from the first frame. We get BaseLine3 by allowing BaseLinel
to assign labels to part of the unlabeled examples using the
conservative approach described in Section III-C. Note that
adding supervisory information to BaseLine2 is the proposed
tracking method.

The overall tracking performance of these baseline
algorithms and our method is shown in Fig. 5. Surprisingly,
even without additional example selection and labeling
process, BaseLinel produces good performance in terms

of precision and robustness, outperforming the CT, MIL,
LSST, and TLD trackers and being comparable with VTD.
It demonstrates the effectiveness of LapRLS which can suffi-
ciently exploit unlabeled data and preserve the local geomet-
rical structure of the feature space. The performances of our
method and Baseline3 are better than those of BaseLinel and
BaseLine2, which demonstrates that the additional supervisory
information is significant for semisupervised learning. The
conservative labeling strategy used in our tracking method
achieves a suitable tradeoff between stability and plasticity in
terms of capturing appearance variations. The performance of
our method is significantly better than that of BaseLine3, and
BaseLine2 outperforms BaseLinel. It validates the effective-
ness of selecting informative examples for classifier learning.
The active example selection guarantees the consistency
between example collection and classifier learning, and thus
improves the tracking performance. Furthermore, assigning
labels to examples selected by active example selection
alleviates the drift problem caused by label noise, since mis-
aligned examples will be rejected to ensure the high prediction
confidence of the classifier.

To further demonstrate the superiority of active example
selection, we show an intuitive example in Fig. 6 to show
the difference between our example collection strategy and
the traditional sampling-and-labeling strategy that is used in
most discriminative trackers (see [10], [13], [20]). We choose
a specific frame (i.e., #661) in the Sylvester sequence
where the current tracking result is slightly inaccurate,
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(c) Examples selected by random selection.
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display). Objects are heavily occluded.

as shown in Fig. 6(b). Then 120 examples are generated by
randomly sampling around the tracking result, from which we
intend to select 10 training examples for classifier update.
Our method employs active example selection to select the
most informative examples and then estimates the labels of
the selected examples, as shown in Fig. 6(b). In contrast, the
traditional sampling-and-labeling strategy directly labels the
120 examples and randomly selects a fixed number of positive,
negative and unlabeled examples to construct the training set.
The numbers of positive, negative, and unlabeled examples
are empirically preset parameters. We show in Fig. 6(c) that
one positive, three negative, and six unlabeled examples are
randomly selected. Note that positive, negative, and unlabeled
examples have red, blue, and green borders, respectively.
We can observe that the examples selected by the heuristic
strategy are redundant (e.g., most unlabeled examples have
similar appearances), and label noise will be introduced
to the classifier (e.g., the positive example is misaligned).
By contrast, the examples selected by active example selection
are representative, and misaligned examples are intended to be
rejected.

From top to bottom, representative results of the competing trackers on sequences David3, Jogging2, and Woman (best viewed on high-resolution

C. Qualitative Evaluation

We present a qualitative evaluation of the tracking
results in this section. Twelve representative sequences
are chosen from the subsets of four dominant attributes,
i.e., occlusion, illumination variations, background clutter,
and deformation. Several screenshots of the tracking results
on these 12 sequences are shown in Figs. 7-10. Note that
other challenges, e.g., out-of-plane rotation, in-plane rotation,
and scale variations, are also included in the 12 sequences.
We mainly discuss the four dominant challenges below.

1) Occlusion: Occlusion is one of the most general yet
crucial problems in visual tracking. Fig. 7 shows tracking
results on three challenging sequences (i.e., David3, Jogging2
and Woman) with severe or long-term partial occlusions. In the
David3 sequence, the person suffers from partial occlusion as
well as drastic pose variations. The TLD, VTD, Struck, SCM,
and SPT methods fail to track the object after the person walks
behind a tree (e.g., #85). The MIL, CT, LRSVT, LSST, and
ONNDL methods lose the object after the person changes his
direction (e.g., #185). Only RET and our method succeed in
this sequence. In the Jogging2 sequence, there is a short-term
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display). Objects undergo significant illumination variations.

From top to bottom, representative results of the competing trackers on sequences Davidl, Singer2, and Trellis (best viewed on high-resolution
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Fig. 9. From top to bottom, representative results of the competing trackers on sequences Football, Lemming, and Subway (best viewed on high-resolution

display). Objects appear in background clutters.

complete occlusion for the tracked object (e.g., #57) as well as
scale variations (e.g., #274). Most of the trackers lock on the
obstacle after occlusion, while the TLD, SCM, and our method
are able to reacquire the object and obtain satisfactory trajecto-
ries (e.g., #104). In the Woman sequence, the object undergoes
long-term partial occlusions by cars with similar appearances,
which confuse the online update in the TLD, MIL, VTD, and
CT methods and cause the drift problem (e.g., #109). The
SCM, LRSVT, LSST, and ONNDL methods fail gradually
when long-term partial occlusion happens (e.g., #297). Only
Struck, SPT, RET, and our method are able to keep the track
on the object (e.g., #550). Our method selects informative
examples for classifier learning via active example selection,
and thus alleviates the drift problem caused by misaligned
examples in handling occlusions.

2) Illumination Variations: As shown in Fig. 8, the tracked
objects in the Davidl, Singer2, and Trellis sequences undergo
significant illumination changes. In the Davidl sequence, there
are drastic pose variations (e.g., #152) of the object in addition
to illumination changes (e.g., #403). The VTD, Struck, CT,
SPT, and LSST methods lose the object after the person
changes his pose (e.g., #210). The MIL, SCM, LRSVT, RET,
and ONNDL methods gradually drift away due to continuously
illumination changes (e.g., #461). The TLD and our method

obtain satisfying tracking results. In the Singer2 sequence,
the contrast between the foreground and the background is
very low. The TLD, Struck, SPT, LRSVT, RET, and ONNDL
methods fail to track the object at the beginning of the
sequence (e.g., #34). The MIL, SCM, and CT methods drift
away when there exist drastic illumination changes (e.g., #59),
while the VID and LSST methods perform slightly better.
Only our method provides a stable and accurate trajectory in
this sequence. In the Trellis sequence, the walking man suffers
from large-scale illumination changes and the interference
from shadows. The TLD, MIL, VTD, CT, SPT, LRSVT, and
LSST methods drift away gradually (e.g., #305). In contrast,
Struck, SCM, RET, ONNDL, and our method perform better.
The robustness of our tracker against illumination variations
comes from the fact that the adopted HOG feature is invariant
to illumination changes.

3) Background Clutter: Fig. 9 shows tracking results on
three challenging sequences (i.e., Football, Lemming, and
Subway), where the objects appear in background clutters.
In the Football sequence, the object undergoes pose variations
as well as partial occlusions by the other players which
have similar appearances. The LSST and RET methods
lock on wrong targets due to the interference of similar
appearances (e.g., #133). The TLD, Struck, SCM, LRSVT, CT,
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Fig. 10. From top to bottom, representative results of the competing trackers on sequences Basketball, Bolt, and Skatingl (best viewed on high-resolution
display). Object appearances change drastically due to object deformation, such as viewpoint changes and pose variations.

and SPT methods drift away when the object is occluded by
another player (e.g., #324), while MIL, VTD, ONNDL, and
our method perform well in this sequence. In the Lemming
sequence, the SCM method locks on a similar target in
the cluttered background at the beginning of the sequence
(e.g., #333). The TLD, MIL, CT, LRSVT, RET, LSST, and
ONNDL methods gradually drift away when the object
changes its pose in the complex environment (e.g., #1145).
In contrast, the Struck and SPT methods perform better,
and our method shows the most accurate and robust track.
In the Subway sequence, the TLD, VTD, LRSVT, LSST, and
ONNDL methods are influenced by another walking person
and fail to track the right object (e.g., #54). The CT, SPT,
and RET methods succeed in this sequence but provide a
relatively low overlap rate, while MIL, Struck, SCM, and our
method achieve more accurate tracking results.

The reasons that our tracker performs well on these three
sequences can be explained as follows. Our method learns an
online classifier that considers the background information,
and thus can achieve robust performance under complex
environments. More importantly, an active example selection
approach is adopted to select useful examples for classifier
learning, which ensures the prediction accuracy of the online
classifier during tracking.

4) Object Deformation: Fig. 10 shows tracking results
on three challenging sequences (i.e., Basketball, Bolt, and
Skatingl) to evaluate whether our tracker is able to handle
drastic appearance changes caused by nonrigid object
deformation, such as viewpoint changes and pose variations.
In the Basketball sequence, the person changes his pose
frequently and often partially occluded by other players. The
MIL, Struck, CT, LRSVT, LSST, RET, and ONNDL methods
change their track to another player which has a very similar
appearance (e.g., #482). In contrast, VID and our method
succeed in tracking the object in the entire sequence. In the
Bolt sequence, there exist significant pose variations of the
person, together with the viewpoint change. The trackers
except VID and our method fail when the viewpoint starts to
change (e.g., #17). Our method achieves the best performance
in terms of both overlap rate and tracking precision. In the
Skatingl sequence, the dancer continuously changes her
pose on a stage with complex background as well as drastic
illumination variations. The TLD, VTD, Struck, and LSST
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Fig. 11. AUC scores of the success plots of our tracker with different numbers
of selected examples and different numbers of labeled and unlabeled examples.

methods gradually drift away when there are severe occlusion
and large-scale change of the object (e.g., #184). The MIL,
SCM, LRSVT, SPT, and RET methods lose the object as the
dancer changes her orientation and appears in a dark back-
ground with very low contrast (e.g., #353). The CT method
performs slightly better, and ONNDL and our method achieve
more stable performance in the entire sequence. We show
that our method adaptively copes with appearance variations
through online update with the selected informative examples
and thus achieves more accurate and consistent tracking
results.

D. Parameters Analysis

Our algorithm has three important parameters: the labeled
example set capacity |L;|, the unlabeled example set
capacity ||, and the number of selected examples m. In this
section, we further study the effect of these three parameters
on the tracking performance. Fifty experiments are performed
with m = (5, 10, 15, 20, 25, 30, 35, 40, 45, 50) and
{I1C:], U]} = ({100, 300}, {100, 600}, {200, 600},
{200, 900}, {300, 900}). Each experiment corresponds to
a thorough evaluation of the 51 video sequences of the
benchmark, and the AUC scores of the success plots with
different m, |L;|, and |U;| are shown in Fig. 11. As we
can observe in Fig. 11, a larger set of informative examples
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improves the tracking performance, and our tracker gets
satisfying results when the number of selected examples m
is set to 20. If the number of selected examples is too large,
the performance degrades due to frequent updates of the
classifier. In addition, the enlargement of the labeled example
set apparently benefits the tracking process (e.g., the curve
{I1£;] = 100, |U;| = 600} versus the curve {|L;| = 200,
|U;| = 600}), while the improvement brought by a larger
unlabeled example set is relatively small (e.g., the curve
{1£;] = 200, |U;] = 600} versus the curve {|L;] = 200,
U] = 900}). Since the computation time of our tracker
largely depends on the number of training examples, we
set |£;] = 200 and |U;| = 600 to achieve a proper tradeoff
between effectiveness and efficiency.

VI. CONCLUSION

In this paper, we have presented a novel online
discriminative tracking framework that explicitly couples
the objectives of training example collection and classifier
learning in a principled manner. We have shown that selecting
informative examples for classifier learning results in more
robust tracking, and have proposed an active example
selection approach using the formalism of active learning. We
have also shown that assigning labels to part of the selected
examples achieves a suitable tradeoff between stability and
plasticity in terms of capturing appearance variations. The
online classifier leaned by LapRLS using the automatically
selected examples can not only utilize the discriminative
information contained in the abundant unlabeled data, but
also alleviate the drift problem caused by label noise. Both
quantitative and qualitative evaluations compared with eleven
state-of-the-art trackers on a comprehensive benchmark
demonstrate the effectiveness and robustness of our tracker.
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