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a b s t r a c t 

Aggregating infinite-dimensional features has demonstrated superiority compared with their finite- 

dimensional counterparts. However, most existing methods approximate infinite-dimensional features 

with finite-dimensional representations, which inevitably results in approximation error and inferior per- 

formance. In this paper, we propose a non-approximate aggregation method that directly aggregates 

infinite-dimensional features rather than relying on approximation strategies. Specifically, since infinite- 

dimensional features are infeasible to store, represent and compute explicitly, we introduce a factorized 

bilinear model to capture pairwise second-order statistics of infinite-dimensional features as a global 

descriptor. It enables the resulting aggregation formulation to only involve the inner product in an 

infinite-dimensional space. The factorized bilinear model is calculated by a Sigmoid kernel to generate 

informative features containing infinite order statistics. Experiments on four visual tasks including the 

fine-grained, indoor scene, texture, and material classification, demonstrate that our method consistently 

achieves the state-of-the-art performance. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Feature aggregation, aiming to aggregate features into a global 

escriptor, is one of the important topics in the machine learn- 

ng and computer vision communities [1–4] . Many effort s have 

een made to develop powerful feature aggregation methods and 

chieve certain success, such as capturing second-order statistics 

5–7] , and modeling non-linear relationships [8,9] . These meth- 

ds mainly focus on aggregating finite-dimensional features that are 

asy to calculate but have limited expressive power. 

Recent works [6,8,10] have demonstrated that infinite- 

imensional features can carry richer information than finite- 

imensional features, and descriptors from infinite-dimensional 

eature aggregation are more discriminative than their finite- 

imensional counterparts. From the perspective of kernel learning, 

t comes from the fact that if the inputs are mapped into a high

possibly infinite) dimensional space, non-linear structure under- 

ying the inputs can be captured by operating on the mapped 

epresentations. It is proved that non-linear information is es- 

ential for a generic descriptor [9,11,12] . From the perspective of 

nformation theory, the dimensionality of infinite-dimensional 

epresentations is much higher than that of finite-dimensional 
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epresentations, that is beneficial to encode more information 

6,13] . Based on above observations, many attempts have been 

ade to enhance the discriminative power of aggregated descrip- 

ors by mapping features to an infinite-dimensional reproducing 

ernel Hilbert space (RKHS). 

Infinite-dimensional features are usually obtained by kernel 

apping. A typical kernel learning setting depends on comput- 

ng Gram matrix that has a quadratic complexity of the sample 

umber, making it intractable for large-scale data [13,14] . To tackle 

his problem, several works [6,10,15] exploit approximation strate- 

ies on infinite-dimensional features. Instead of using the infinite- 

imensional mapping, they construct a finite-dimensional map- 

ing and adopt the resulting finite-dimensional representations 

o approximate infinite-dimensional features. In this way, the ap- 

roximated representations can share the advantages of infinite- 

imensional features without calculating the Gram matrix. 

However, approximation-based methods inevitably suffer from 

pproximation error caused by the difference between the ex- 

ct infinite-dimensional features and the approximated finite- 

imensional representations. This deteriorates the performance of 

ggregated descriptors [16,17] . In addition, approximation-based 

ethods are often at the cost of high-dimensional descriptors. For 

xample, in the case of image classification, Wang et al. [6] approx- 

mated infinite-dimensional features with three times the dimen- 

ionality of the input features ( e.g ., 512). It leads to a (512 × 3) 2 ≈
 . 4 × 10 6 dimensional approximated infinite-dimensional global 

https://doi.org/10.1016/j.patcog.2021.108397
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108397&domain=pdf
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Fig. 1. Illustration of our non-approximate infinite-dimensional feature aggregation method. The original features { x i ∈ R c } i ∈ � are first mapped into an H via the mapping 

function φsig (·) induced by the Sigmoid kernel to construct infinite-dimensional features { φsig (x i ) ∈ H) } i ∈ �. We introduce a factorized bilinear model to capture the second- 

order statistics of infinite-dimensional features. The learnable parameters U and V are also mapped by φsig (·) into the same H so that we can aggregate infinite-dimensional 

without approximation error via a kernel function and tackle the issue that the infinite-dimensional mapping φsig (·) cannot be calculated explicitly. 
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Table 1 

Comparisons with infinite-dimensional descriptors. 

Methods Kernels Gram matrix 

Kernel 

approximation 

Log-HS [14] RBF Yes No 

Harandi et al. [13] RBF Yes No 

KP [8] RBF No Yes 

RAID-G [6] Hellinger’s & χ2 No Yes 

Ours Sigmoid No No 
escriptor, which is a heavy burden for subsequent processing. 

herefore, infinite-dimensional feature aggregation without ap- 

roximation error while generating a compact descriptor remains 

 challenging problem. 

In this paper, we propose a non-approximate infinite- 

imensional feature aggregation method that directly aggregates 

nfinite-dimensional features to generate a discriminative and 

ompact global descriptor. Specifically, we introduce a bilinear 

odel to capture pairwise second-order statistics of infinite- 

imensional features as the global descriptor. It is non-trivial to 

irectly obtain the global descriptor since infinite-dimensional 

eatures are infeasible to store, represent and compute explicitly. 

o this end, we factorize the parameter of the bilinear model so 

hat the proposed aggregation scheme only involves the inner 

roduct between pairs of infinite-dimensional representations, 

here the inner product is readily calculated by the Sigmoid 

ernel function. The mapped infinite-dimensional features induced 

y the Sigmoid kernel are informative due to the infinite order 

nformation of inputs. The illustration of our method is presented 

n Fig. 1 . Different from methods in the typical kernel learning 

etting [13,14] , our method can be trained in an end-to-end 

ashion without calculating the Gram matrix of the whole data. 

ompared with approximation-based methods, our method di- 

ectly aggregates infinite-dimensional features instead of resorting 

o finite-dimensional approximations thus avoids approximation 

rror. In addition, the factorized aggregation strategy enables our 

ethod to generate a compact descriptor with a large reduction of 

arameters. 

The contributions of this work are two-fold. 

• We propose a non-approximate aggregation method that di- 

rectly aggregates infinite-dimensional features. Our method can 

capture the second-order statistics of infinite-dimensional fea- 

tures to generate a both discriminative and compact descriptor. 
• The mapping function induced by the Sigmoid kernel can gen- 

erate informative features as it contains the infinite order 

statistics of inputs. 

. Related work 

.1. Infinite-dimensional feature aggregation 

Infinite-dimensional features have demonstrated superior per- 

ormance compared with finite-dimensional features [13,14,18,19] , 

hich is inspired by kernel-based learning algorithms ( e.g ., ker- 

el SVM) possessing the capability to efficiently capture non-linear 

tructure of data. A natural idea for feature aggregation methods is 

o map finite-dimensional features to an infinite-dimensional RKHS 

nd aggregate infinite-dimensional features into a global descrip- 
2 
or followed by a classifier. In practice, since the exact mapping 

o RKHS is unknown and global descriptors cannot be computed 

xplicitly, several researchers convert this framework into a for- 

ulation that relies on the metric between infinite-dimensional 

lobal descriptors. Harandi et al. [13] derived several Bregman di- 

ergences to compare the infinite-dimensional descriptors in RKHS, 

nd Quang et al. [14] introduced a Log-Hilbert-Schmidt metric on a 

ilbert space, which is a generalization of the Log-Euclidean met- 

ic. However, the two methods in [13] and [14] depend on Gram 

atrices having a quadratic complexity of the sample number, in 

hich the computational cost and memory requirements may be- 

ome intractable and infeasible with larger and larger datasets. Be- 

ides, they can only utilize low-dimensional hand-crafted features 

s it is computationally prohibitive for them to combine the infor- 

ative convolutional neural network features. 

To solve the problem, several works construct approximated 

nite-dimensional mapping to approximate infinite-dimensional 

apping via kernel approximation techniques such as random 

ourier transformation and Nyström method. Recently, Wang et al. 

6] exploited two approximated additive kernel functions, explicit 

appings of the Helinger’s kernel and the χ2 kernel, to approxi- 

ate infinite-dimensional Gaussian descriptors. Cui et al. [8] intro- 

uced a Taylor series kernel to approximate infinite-dimensional 

apping corresponding to the Gaussian kernel, and Cavazza et al. 

10] approximated the radial basis function (RBF) kernel with 

he Kronecker products. The methods mentioned above avoid ex- 

licit representations of infinite-dimensional features via finite- 

imensional feature approximations and share the advantages of 

nfinite-dimensional features. However, these methods inevitably 

esult in approximation error that deteriorates the performance of 

he aggregated descriptors [16,17] . Besides, the aggregated descrip- 

ors are often high-dimensional with expensive storage and com- 

utational cost. Compared with the approximation-based methods, 

ur method directly aggregates infinite-dimensional features in the 

KHS, thus avoiding the approximation error. In addition, our fac- 

orization scheme is able to generate a compact global descriptor 

ith a small number of parameters. The comparisons of infinite- 

imensional feature aggregation methods are presented in Table 1 . 
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.2. Second-order statistic model 

Statistics-based methods, such as bag-of-words, vector of lo- 

ally aggregated descriptors and its variants [2,20] , once played 

n important role in pattern recognition community. Second-order 

tatistics models that have powerful representation ability recently 

idely used in numerous vision tasks such as image classifica- 

ion [5] , visual questioning answering [21,22] , video action recogni- 

ion [23] , etc .. Covariance-based models [24,25] and bilinear mod- 

ls [5,21] are two successful examples that capture interactions 

f all pairs of inputs. Covariance-based models represent a set of 

eatures ( e.g ., local features extracted from an image) as a covari- 

nce descriptor. Recently, Wang et al. [26] studied the reason on 

ffectiveness of covariance descriptors from the perspective of op- 

imization and concluded that it makes the optimization landscape 

ore smooth and the gradients more predictive. Covariance de- 

criptors properly regularized are symmetric positive definite (SPD) 

atrices that form a Riemannian manifold. Gao et al. [27] aggre- 

ated local features into an SPD matrix to obtain a powerful de- 

criptor. In this case, the Euclidean metric is not applicable and 

 Riemannian metric respecting manifold structure is needed. The 

og-Euclidean metric is used in DeepO 2 P [28] that applies a tan- 

ent space mapping on covariance matrix via the matrix logarithm 

perator. 

The bilinear model is a function of two variables, which is in- 

ependent linear for both variables. Lin et al. [5] first introduced a 

ilinear pooling into deep networks, and the output of the model 

s a weighted outer product of convolutional features. Existing bi- 

inear models mainly focus on three directions: redundancy reduc- 

ion [21,29,30] , normalization techniques [31] , and richer statistics 

odeling [8,12] . Separately speaking, Li et al. [30] utilized matrix 

ecomposition such that high-dimensional parameter matrices in 

ilinear models are factorized into low-rank matrices. Liu et al. 

32] utilized an factorized bilinear model to aggregate audio and 

ace features for speaker naming. Gao et al. [29] proposed com- 

act bilinear pooling (CBP) to reduce the feature dimension two 

rders of magnitude compared to the original bilinear descriptor 

ithout accuracy decrease. Li et al. [33] used CBP to model the in- 

eraction between skeleton and RGB information for action recog- 

ition. To capture more informative features, Cai et al. [12] pre- 

ented a framework that integrates higher-order statistics of hi- 

rarchical convolutional layers. Generally, combining higher-order 

tatistics is accompanied by high-dimensional representations and 

 heavy computational burden. Different from the methods that 

xplicitly integrate higher-order statistics of inputs [8,12] , we study 

he problem of how to rich the information underlying the original 

eatures in an infinite-dimensional RKHS. We construct informative 

nfinite-dimensional features that containing infinite order statis- 

ics of inputs and aggregate them via a factorized bilinear model. 

eanwhile, the factorized scheme enables our method to involve 

ess computational and storage costs. 

. Infinite-dimensional feature aggregation 

Feature aggregation refers to aggregate a set of features into a 

lobal descriptor. High-quality descriptors should be both discrim- 

native ( i.e ., large inter-class similarities) and compact ( i.e ., small 

ntra-class similarities). In this section, we focus on how to aggre- 

ate infinite-dimensional features that contain richer information 

han finite-dimensional features. 

.1. Formulation 

In order to aggregate input features into a discriminative and 

ompact global descriptor, we define the infinite-dimensional fea- 
3 
ure aggregation as 

 = D W 

({ φ(x 

i ) } i ∈ �) , (1) 

here y is the resulting global descriptor. { x i ∈ R 

c } i ∈ � are a set of

nite-dimensional features where � denotes the feature set, and 

 denotes the index in �. φ(·) is an infinite-dimensional mapping 

unction that maps x i into an infinite-dimensional RKHS. D W 

(·) is 

n aggregation function that is used to capture the discriminative 

nformation of infinite-dimensional features where W denotes a 

earnable parameter. 

The behavior of infinite-dimensional mapping in Eq. (1) is 

otivated by recent advances in infinite-dimensional features 

6,8,13,14] . It claims that infinite-dimensional features contain 

icher information than original finite-dimensional features, mak- 

ng the aggregated descriptor more discriminative. 

.2. Non-approximate infinite-dimensional feature aggregation 

We propose to directly aggregate infinite-dimensional features 

ithout relying on approximation strategy. To explore discrimina- 

ive information, we first introduce a bilinear model to capture 

he pairwise relationships of the infinite-dimensional features. For- 

ally, a global descriptor is computed by 

y s = 

∑ 

i ∈ �
D W 

(φ(x 

i )) = φ(x 

i ) � W s φ(x 

i ) , 

y = [ y 1 , y 2 , · · · , y n ] , 

(2) 

here y ∈ R 

n , and W s is the s th slice of the parameter W ∈
 

n ×∞×∞ . Note that since φ(x i ) is an infinite-dimensional feature in 

he RKHS, W is an infinite-dimensional three-order tensor. Never- 

heless, a natural issue is that we neither store nor represent such 

n infinite-dimensional tensor, and thus it is unfeasible to calculate 

q. (2) explicitly. To tackle this issue, we factorize W s as 

 s = 

̂ U s ̂
 V � s , (3) 

here ̂ U s ∈ R 

∞×R and 

̂ V s ∈ R 

∞×R are two rank- R matrices, but they 

re still infinite-dimensional. Recall the infinite-dimensional map- 

ing function φ(·) in Eq. (1) , the ̂ U s and 

̂ V s can be obtained by 

rojecting two finite-dimensional matrices via the feature mapping 

(·) , ̂ U s = φ(U s ) ̂ V s = φ(V s ) 
, (4) 

here U s ∈ R 

c×R , V s ∈ R 

c×R . All {U s } n s =1 
and {V s } n s =1 

com-

ose two total parameters U = [ U 1 , U 2 , · · · , U n ] ∈ R 

n ×c×R and

 = [ V 1 , V 2 , · · · , V n ] ∈ R 

n ×c×R , respectively. The learnable parame-

ers U , V are finite-dimensional three-order tensors and thus can 

e stored and represented explicitly. By plugging Eqs. (3) and 

4) into Eq. (2) , we have 

 s = 

∑ 

i ∈ �
φ(x 

i ) � W s φ(x 

i ) 

= 

∑ 

i ∈ �
φ(x 

i ) � ̂ U s ̂
 V � s φ(x 

i ) 

= 

∑ 

i ∈ �
φ(x 

i ) � φ( U s ) φ( V s ) � φ(x 

i ) . 

(5) 

Equation (5) cannot be calculated directly due to the existence 

f infinite-dimensional mapping function φ(·) . One possible solu- 

ion is to approximate the infinite-dimensional mapping φ(·) with 

 finite-dimensional mapping φapp (·) [6,8] . However, it will intro- 

uce the approximation error that could harm the performance of 

he global descriptor y . 

Kernel trick provides us a better solution to calculate the inner 

roduct between a pair of infinite-dimensional vectors. It claims 
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hat the inner product between infinite-dimensional φ(p ) and 

(q ) in H can be calculated by a kernel function 

 (p , q ) = 〈 φ(p ) , φ(q ) 〉 H 

. (6)

To calculate Eq. (5) directly, we reformulate it as 

y s = 

∑ 

i ∈ �
1 

� 
((

φ( U s ) 
� φ(x 

i ) 
)

◦
(
φ( V s ) � φ(x 

i ) 
))

= 

∑ 

i ∈ �

R ∑ 

r

(〈
φ( U s,r ) , φ(x 

i ) 
〉〈
φ( V s,r ) , φ(x 

i ) 
〉)

,

(7) 

here 1 denotes a column vector of ones, U s,r ∈ R 

c and V s,r ∈ R 

c 

re the rth column of U s and V s , respectively. 〈·, ·〉 denotes the in- 

er product, and “◦” denotes the Hadamard product. It indicates 

hat the condition for using kernel trick, the existence of the in- 

er product, has been met. Reformulating Eq. (7) , we obtain the 

torable, representable, and computable global descriptor 

 s = 

∑ 

i ∈ �

R ∑ 

r

(
k (U s,r , x 

i ) k (V s,r , x 

i ) 
)
. (8)

Our factorized aggregation scheme solves the issue where 

earnable parameters W s cannot be stored or represented, and Eq. 

2) cannot be calculated explicitly. More importantly, it enables the 

nfinite-dimensional features to be directly aggregated instead of 

elying on kernel approximations, thereby avoiding the approxima- 

ion error. 

.3. Sigmoid kernel 

The kernel function k (·, ·) in Eq. (8) heavily influences the per- 

ormance of the final descriptor. It should not only be able to map 

he original finite-dimensional features to an infinite-dimensional 

implicitly but also have the capability to rich the information 

f the original features. In our method, we consider the Sigmoid 

ernel 

 (p , q ) = tanh (αp 

� q + β) (9) 

here p , q are two finite-dimensional vectors ( e.g ., original fea- 

ures x i and x j ). α is a scaling parameter and β is a shifting pa-

ameter. 

heorem 1. The Sigmoid kernel is a valid conditionally positive defi- 

ite kernel when α > 0 and β is small enough. 

For detailed proof, please refer to [34] . From this theorem, as 

ong as we select appropriate hyper-parameters α and β , the RKHS 

nduced by the Sigmoid kernel can be guaranteed to be an infinite- 

imensional space. 

The final aggregation formulation is Eq. (8) equipped with the 

igmoid kernel Eq. (9) . Fig. 1 shows our non-approximate infinite- 

imensional feature aggregation method. To further analyze why 

ur method can generate an informative and discriminative de- 

criptor, we have the following proposition. 

roposition 1. Given features { x i } i ∈ �, the aggregated descriptor y us- 

ng Eq. (8) equipped with Eq. (9) contains infinite-order statistics of 

 x i } i ∈ �.

roof. Let first derive the infinite-dimensional mapping φsig (·) in- 

uced by the Sigmoid kernel. As the Sigmoid kernel is a valid con- 

itionally positive definite kernel when β is small enough, we set 

= 0 here. Given two vector p and q , the output of the Sigmoid
4

ernel is 

 (p , q ) = tanh (αp 

� q ) 

Taylor = 

+ ∞ ∑ 

m =1

2 

2 m (2 

2 m − 1) B 2 m 

(αp 

� q ) 2 m −1 

(2 m )! 

= 

+ ∞ ∑ 

m =1 

2 

2 m (2 

2 m − 1) B 2 m 

(α) 2 m −1 

(2 m )! 
(p 

� ) 2 m −1 (q ) 2 m −1 

= 

+ ∞ ∑ 

m =1 

√
2 

2 m (2 

2 m − 1) B 2 m 

(α) 2 m −1 

(2 m )! 
(p 

2 m −1 ) � 

×
√

2 

2 m (2 

2 m − 1) B 2 m 

(α) 2 m −1 

(2 m )! 
q 

2 m −1 

= φsig (p ) � φsig (q ) ,

Thus, we have 

φsig (p ) = [ η1 p , η2 p 

3 , · · · , ηm 

p 

2 m −1 , · · · ] ,

ηm 

= 

√
2 

2 m (2 

2 m − 1) B 2 m 

(α) 2 m −1 

(2 m )! 
,

(11) 

here B m 

is m th Bernoulli number and α is a constant parameter. 

e can find that φsig (p ) contains infinite-order statistics p 

2 m −1 of

 with the increase of m . As Eq. (8) is derived from Eq. (5) , by

lugging Eq. (11) into Eq. (5) , we have 

 s = 

∑ 

i ∈ �
φsig (x 

i ) � φsig ( U s ) φsig ( V s ) � φsig (x 

i ) , (12) 

here φsig (·) is in the form of Eq. (11) . y contains infinite-order 

tatistics of { x i } i ∈ � because it is aggregated from { φsig (x i ) } i ∈ � that

ontains infinite-order statistics (x i ) 2 m −1 of x i . �

.4. Network architecture for image classification 

We instantiate a network architecture for image classifica- 

ion, as shown in Fig. 2 . The proposed non-approximate infinite- 

imensional feature aggregation can be inserted into a deep net- 

ork for end-to-end training. We use the convolutional features as 

riginal features and send them to the proposed method to obtain 

he global descriptor y . A batch normalization (BN) layer is used to 

ccelerate convergence. A fully-connected (FC) layer followed by a 

oftmax is used for classification. 

End-to-end training Since our feature aggregation module is dif- 

erentiable and the network architecture is a directed acyclic graph, 

ll parameters including U and V in Eq. (8) can be learned by the 

ack-propagation algorithm. Let � be cross entropy loss and d �/d y 

e the gradient of the loss function � w.r.t. global descriptor y , we 

ave 

d� 

d U s,r 
= 

d�

dy s 

dy s 

d U s,r 
= 

d� 

dy s 

∑ 

i ∈ �
α tanh ( V � s,r x 

i ) 
(
1 − tanh 

2 
(αU 

� 
s,r x 

i ) 
)
x 

i , 

d� 

d V s,r 
= 

d�

dy s 

dy s 

d V s,r 
= 

d� 

dy s 

∑ 

i ∈ �
α tanh ( U 

� 
s,r x 

i ) 
(
1 − tanh 

2 
(αV � s,r x 

i ) 
)
x 

i . 

(13) 

he gradient of other layers, such as BN and convolutional lay- 

rs, can be computed by chain rule straightforwardly. We use the 

tochastic gradient descent optimizer to update the parameters. 

.5. Error comparisons 

We compare our method with two infinite-dimensional fea- 

ure aggregation methods KP [8] and RAID-G [6] , and then pro- 

ide theoretical error analyses of the infinite-dimensional features. 

oth KP and RAID-G adopted the approximation strategy to re- 

lace infinite-dimensional features φ(x ) with finite-dimensional 

（10）

djd
高亮
It should have been Eq (10), but "(10)" is lost.
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Fig. 2. Network architecture for image classification. It consists of three modules: feature extraction, infinite-dimensional feature aggregation, and classification. U and V are 

learnable parameters. 

Table 2 

A unified mapping perspective of the previous methods and our method. Given an input x ∈ R c , the difference is how to construct 

mapping function. KP [8] defines a Tayler kernel to approximate the RBF kernel. RAID-G [6] defines two mapping functions to approxi- 

mate the Hellinger’s and the χ2 kernels ( L is a constant). The mapping function in our method is induced by the Sigmoid kernel, and 

η is defined in Eq. (11) . 

Methods Mapped dim. Mapping functions 

KP 1 + c + 

∑ p 
i =2 

d i φapp : x 
→ 

[ 
λ0 , λ1 (x ) � , λ2 

(
T S(x (2) ) 

)� , · · · , λp 

(
T S(x (p) ) 

)� 
] 

� 

RAID-G-Hel c φapp : x 
→ 

√ 

x 

RAID-G-Chi 3 c φapp : x i 
→ 

√ 

x i 

[ √ 

L , 
√ 

2 Lsech (Lπ) cos (Llog 
(
x i ) 

)
, 
√ 

2 Lsech (Lπ) sin 
(
Llog(x i ) 

)] � 
Ours in f inite φsig : x 
→ [ η1 x , η2 x 

3 , · · · , ηm x 
2 m −1 , · · · ] 
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epresentation φapp (x ) , such that for two vectors x , x ′ , there is
ˆ 
 (x , x ′ ) = 〈 φapp (x ) , φapp (x ′ ) 〉 ≈ 〈 φ(x ) , φ(x ′ ) 〉 = k (x , x ′ ) . 

KP approximates the RBF kernel up to a given order by using 

ompact feature maps, namely Taylor series kernel. Given input 

eatures x and x ′ , it is represented as k (x , x ′ ) = 

∑ p 
r=0 

λ2 
r ( x 

� x ′ ) r ,
here p is given order for approximation. The induced mapping 

unction is shown in Table 2 , where T S(x (i ) ) is the approxima-

ion of �i x using Tensor Sketching [16] to a d i -dimensional vector. 

ntegrating very high order statistics will bring a heavy computa- 

ional burden. The relative approximation error of KP, according to 

hebyshev’s inequality, is bounded as 

 

[∣∣ˆ k (x , x 

′ ) − k (x , x 

′ ) 
∣∣] ≥ εk (x , x 

′ ) ≤ 1 

d min ε2 
�(p) , (14)

here d min = min (d 2 , · · · , d p ) and 

�p = 

{ 

2(p − 1) if S = ±1 

2 S 2 (S 2 p −1) 
S 2 −1 

otherwise . 
, (15) 

 = 

1 
cos θ

equals to the reciprocal of the cosine similarity between 

eatures x and x ′ . The approximation error is not only related to 

he dimensionality d min and order p, but heavily depends on the 

ngle between two features. In other words, if x is orthogonal to x ′ ,
will approach infinity, leading to an infinite upper error bound. 

RAID-G introduces approximated mapping functions corre- 

ponding to two additive and homogeneous kernels, the Hellinger’s 

ernel and χ2 kernel. The Hellinger’s kernel is of the form 

 (x , x ′ ) = 

∑ 

b=1 

√ 

x b x 
′ 
b 
, where x b is the bth element of x . The χ2 

ernel is of the form k (x , x ′ ) = 

∑ 

b=1 2(x b x 
′ 
b 
) / (x b + x ′ 

b 
) . Although its

otivation is to take advantage of infinite-dimensional features to 

btain infinite-dimensional descriptors, it adopts an approximation 

trategy to approximate infinite-dimensional features with infinite- 

imensional representations. The normalized approximation error 

f RAID-G is 

(x b , x 
′ 
b ) = 

ˆ k (x b , x 
′ 
b 
) √ 

x b x 
′ 
b 

− k (x b , x 
′ 
b 
) √ 

x b x 
′ 
b 

= N 

(
log 

x ′ 
b 

x b 

)
, (16) 
5 
here N is a constant and b is the index. Notice that the normal- 

zed approximation error only depends on the ratio x ′ 
b 
/x b . It may 

e large when either x ′ 
b 

is much larger than x b , or vice-versa. 

Different from the above approximation-based methods, there 

s no approximation in our method because we directly aggregate 

nfinite-dimensional features ( φsig (x ) in our method), rather than 

pproximated finite-dimensional representations φapp (x ) . This is 

chieved via a factorized bilinear model as derived from Eqs. (2) to 

8) . In particular, we used “ = ” instead of “≈” from Eqs. (7) to 

8) because 
〈
φ( U s,r ) , φ(x i ) 

〉
is strictly equal to k (U s,r , x i ) . It indi-

ates no approximation error in the aggregation process. 

.6. Computational complexity 

The final infinite-dimensional aggregation is realized via Eq. 

8) equipped with the Sigmoid kernel Eq. (9) , which involves two 

atrix multiplications, one matrix element-wise multiplication, 

anh(·) , and sum-pooling. Given features { x i ∈ R 

c } i ∈ � where | �| =
, and aggregation parameters U = [ U 1 , U 2 , · · · , U n ] ∈ R 

n ×c×R , and

 = [ V 1 , V 2 , · · · , V n ] ∈ R 

n ×c×R , the computational complexity of our

ggregation formula is O(2 nlcR + 2 nlR + 2 nlR ) = O(2 nlcR + 4 nlR ) .

s will be analyzed in Section 4.4 that we adopt R = 1 in our im-

lementation, and thus the complexity is reduced to O (2 nl c + 4 nl ) .

. Experiments 

To evaluate the performance of the proposed method, we con- 

uct experiments on four image classification tasks: the fine- 

rained, indoor scene, texture, and material classifications. 

.1. Implementation 

Following the state-of-the-art methods [8,35] , we utilize the 

GG-16 model pretrained on the ImageNet dataset as the back- 

one if not special specified. Layers after the con v 5 − 3 are re- 

oved, and our method is applied to aggregate features from the 

on v 5 − 3 layer (see Fig. 2 ). In detail, we train our networks on all
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Table 3 

Comparisons with state-of-the-art methods in terms of average accuracy (%). 

Methods Final dim. Aircraft Cars MIT-Indoor DTD MINC 

VGG-16 [36] 4,096 74.1 79.8 64.5 60.1 73.0 

B-CNN [5] 2 . 6 × 10 5 84.1 91.3 77.6 67.5 74.5 

CBP [29] 8,192 84.1 91.2 76.8 67.7 73.3 

LRBP [37] 100 87.3 90.9 73.6 65.8 69.0 

HiO [12] 8,704 88.3 91.3 - - - 

DeepKSPD [9] 1 . 3 × 10 5 91.5 93.2 81.0 - - 

MPN-COV [25] 32,896 - - 76.5 68.0 76.2 

iSQRT-COV [25] 2,080 - - 78.9 70.6 78.6 

iSQRT-COV [25] 8,256 - - 79.2 71.0 78.8 

iSQRT-COV [25] 32,896 - - 79.6 71.2 78.9 

SMSO [35] 2,048 - - 79.5 69.3 78.0 

FBC [21] 8,192 - - 79.9 71.5 80.2 

Ours 1,024 91 . 6 93 . 5 81 . 6 72 . 6 80 . 9 
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Table 4 

Comparisons with infinite-dimensional descriptors. On KTH-T2b, we use 4 data 

splits suggested by Wang et al. [6] and report mean accuracy and the standard de- 

viation values. On Aircraft and Cars, we use the public data split and report the best 

performance. 

Methods Final dim. KTH-T2b Aircraft Cars 

Harandi et al. [13] – 80 . 1 ± 4 . 6 – –

Log-HS [14] – 81 . 9 ± 3 . 3 – –

RAID-G-Hel [6] 1 . 3 × 10 5 89 . 0 ± 5 . 4 81.0 82.1 

RAID-G-Chi [6] 1 . 2 × 10 6 89 . 3 ± 4 . 5 81.7 85.7 

KP [8] 12,801 85 . 4 ± 3 . 1 86.9 92.4 

Ours 1,024 90 . 1 ± 2 . 0 91 . 6 93 . 5 

i
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t  
atasets using stochastic gradient descent with the batch size of 

6, momentum of 0.9, and weight decay of 5 × 10 −4 . The learning 

ate is initialized as 0.001 for layers of the VGG-16 backbone and 

.01 for new layers. We then divide the learning rate by 10 every 

0 epochs for the MINC dataset and 40 epochs for the others. 

.2. Comparisons with state-of-the-art methods 

We compare our method with state-of-the-art feature aggrega- 

ion methods on the Aircraft [38] , Cars [39] , MIT-Indoor [40] , DTD

41] and MINC [42] datasets, and compare our method with several 

tate-of-the-art feature aggregation methods. Performance compar- 

sons are shown in Table 3 , where “Final dim.” denotes the dimen- 

ionality of the aggregated global descriptor. 

On fine-grained classification datasets, the Aircraft and the 

ars, methods based on second-order statistic model, including B- 

NN [5] , CBP [29] and LRBP [37] obtain significant improvements 

ompared to VGG-16, demonstrating the second-order information 

oes help to improve the discriminative power of the global de- 

criptors. Compared with these methods, HiO [12] maps the orig- 

nal features into a higher feature space and has a better perfor- 

ance. DeepKSPD [9] is a competitive method as it captures non- 

inear relationships of features and utilizes matrix square-rooting 

ormalization. However, the methods mentioned above are limited 

o feature aggregation in a finite-dimensional space. In contrast, 

ur method aggregates features in an infinite-dimensional RKHS, 

aking it possible to capture more information. We consistently 

chieve the best results, 91 . 6% on the Aircraft dataset and 93 . 5%

n the Cars dataset and do not need the time-consuming ma- 

rix square-rooting normalization. It is mainly because our method 

ims at the infinite-dimensional feature aggregation, and infinite- 

imensional features carry richer and more discriminative informa- 

ion than finite-dimensional features. Besides, our method achieves 

he best performance using a relatively low-dimensional descriptor, 

educing a large number of required parameters in the classifier. 

hese results demonstrate that our method can extract discrimina- 

ive information into a compact descriptor. 

We also conduct experiments on the indoor scene, texture, and 

aterial classification tasks, evaluated on the MIT-Indoor, DTD, and 

INC datasets. From Table 3 , our method consistently achieves 

etter results than other methods. MPN-COV [25] applies an global 

atrix power normalization to improve the representation and 

eneralization abilities of deep CNNs, and its variant, iSQRT-COV 

25] , uses Newton-Schulz iteration to avoid EIG or SVD in MPN- 

OV for a fast training. SMSO [35] is an advanced method that 

s motivated by a statistical analysis of the distribution of the 

etwork’s intermediate responses. The recently proposed method, 

BC, achieves the state-of-the-art performance, which revisited bi- 

inear models from a coding perspective and proposed a factor- 
6 
zed bilinear coding via sparse coding. Our method surpasses it, 

 . 7% on the MIT-Indoor dataset, 1 . 1% on the DTD dataset, and 0 . 7%

n the MINC. All those methods consider the second-order statis- 

ics of finite-dimensional features. In contrast, our method pays 

ttention to infinite-dimensional features. The second-order statis- 

ics of infinite-dimensional features demonstrate more discrimina- 

ive power than the finite-dimensional counterparts, consistently 

chieving the highest average precision on the three image classi- 

cation tasks. 

.3. Comparisons with infinite-dimensional descriptors 

We compare our descriptor with several infinite-dimensional 

escriptors: Harandi et al. [13] , Log-HS [14] , RAID-G [6] , and KP

8] on the KTH-T2b, Aircraft and Cars datasets as shown in Table 4 .

n the KTH-T2b dataset, following the setting in [6] , we randomly 

hoose three training samples for per subset in each class and the 

est are used for testing. We report the mean and the standard de- 

iation value for all the 4 splits of the KTH-T2b dataset. On the 

ircraft and the Cars datasets, we use the public data split and re- 

ort the best performance. For RAID-G, we use single-scale input 

ize and the same backbone, VGG-16, for fair comparison. Consid- 

ring that the feature of RAID-G-Chi is up to 1 . 2 × 10 6 dimensions

nd both Aircraft and Cars have 10,0 0 0 or more images, it is hard

o use SVM adopted in RAID-G for classification in our experimen- 

al environment (64G RAM). Thus, we reduced the dimension of 

AID-G-Chi to 1 . 3 × 10 5 , which is about the same as that of RAID-

-hell. 

Harandi et al. and Log-HS design a metric between infinite- 

imensional representations to avoid calculating the infinite- 

imensional mapping explicitly. The side effects are that they need 

o compute the Gram matrix based on all data samples in the 

ataset, and thus it is hard for them to scale to large datasets. 

esides, it will be computationally prohibitive to utilize CNN fea- 

ures [6] . Our method does not rely on the Gram matrix so that it
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Fig. 3. Effects of rank R and final dimension n on the MIT-Indoor dataset (best 

viewed in color). When n < 10 0 0 , yellow dots are always at the top and red dots 

are always at the bottom, which means a larger R performs better. When n > 10 0 0 , 

the opposite is true. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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Table 5 

Effect of α in the Sigmoid kernel. 

α 0.01 0.1 0.5 1.0 

MINC 80 . 9 80 . 9 80.3 80.4 

MIT-Indoor 81.0 81 . 6 81.0 81.0 

Table 6 

Effect of β in the Sigmoid kernel. 

β 0.0 0.001 0.01 0.1 1.0 

MINC 80 . 9 80 . 2 79.5 79.3 79.1 

MIT-Indoor 81 . 6 80.0 79.9 79.9 78.8 
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Table 7 

Comparisons with different kernels on the MINC and MIT-Indoor datasets. 

Kernels Formula MINC MIT-Indoor 

polynomial k (p , q ) = (αp � q + β) d 79.4 79.3 

RBF k (p , q ) = exp (−γ || p − q || 2 ) 79.7 80.5 

Sigmoid (Ours) k (p , q ) = tanh (αp � q + β) 80 . 9 81 . 6 
an scale well to large datasets. RAID-G and our method surpass 

he above two methods by a large margin. RAID-G-Hel and RAID- 

-Chi approximate the Hellinger’s and χ2 kernels via explicit fea- 

ure maps, respectively. As RAID-G is not an end-to-end method 

nd the local features can not be learned, there is still much room 

or RAID-G to improve its performance on the Aircraft and Cars 

atasets. Compared with RAID-G, our method is trained in an end- 

o-end fashion and achieves better performance in term of average 

ccuracy and standard deviation. We speculate that it is not only 

ue to end-to-end training with a better data fitting ability but 

ainly benefits from no approximation error to aggregate infinite- 

imensional features. KP defines a Taylor series kernel to approxi- 

ate infinite-dimensional mapping induced by the RBF kernel. Due 

o the approximation error of KP, its experimental results on these 

wo datasets are worse than ours on these datasets. More accurate 

pproximation comes at the cost of expensive storage and com- 

utation, which is usually unaffordable. In contrast, as analyzed in 

ection 3.3 and Eq. (12) , our global descriptor y does contain infi- 

ite order information of the input features and thus is more in- 

ormative. Our method gains obvious improvements, 4 . 7% on the 

ircraft dataset and 0 . 9% on the Cars dataset. Experiment results 

rove the superiority of our method that can avoid the approxima- 

ion error caused by the approximation strategy and achieve better 

erformance. 

.4. Analyses of hyper-parameters 

We here evaluate several important hyper-parameters, includ- 

ng the rank R in Eq. (8) , the dimension n in Eq. (2) and the α in

he Sigmoid kernel. 

Effects of R and n The rank R of U s ∈ R 

c×R and V s ∈ R 

c×R , and

he dimension n of the final descriptor y ∈ R 

n play important roles 

n our method. We evaluated the effects of n from 128 to 4096 

nd R from 1 to 10 on the MIT-Indoor dataset. Experimental re- 

ults are shown in Fig. 3 . When the rank R is fixed, as the dimen-

ion n increases, the accuracy increases first and then decreases. 

e found that when n is small, a larger R performs better. In 

ig. 3 , yellow dots ( i.e ., R = 10 ) are always at the top, and red dots

 i.e ., R = 1 ) are always at the bottom when n < 10 0 0 . The reason

ay be that a small n causes underfitting, and a large R enhances 

he fitting ability. When n is a large value, a smaller R performs 
7 
etter. This is reflected in Fig. 3 as red dots ( i.e ., R = 1 ) are al-

ays at the top, and yellow dots ( i.e ., R = 10 ) are always at the

ottom when n > 10 0 0 . The highest accuracy, 81 . 6% , is achieved

hen R = 1 , n = 1024 . We speculate that a high-dimensional de-

criptor, e.g ., n = 4096 , adversely leads to overfitting, and a small R

an alleviate this problem. The experimental results indicate that 

ur method can achieve a good performance with fewer parame- 

ers and generate a compact descriptor. We suggest to adopt R as 

 and n as 1024 in all experiments. 

Effect of α We evaluate the effect of α in the Sigmoid kernel. 

o this end, we vary α in the range from 0.01 to 1.0. The results 

n the MINC and MIT-Indoor datasets are presented in Table 5 . 

hen α = 0 . 1 , the highest accuracy on the MINC and MIT-Indoor 

atasets are obtained, 80 . 9% and 81 . 6% respectively. Experimental 

esults demonstrate that our method is not sensitive to α in the 

igmoid kernel. 

Effect of β We evaluate the effect of β in the Sigmoid ker- 

el. We fix α to 0.1 and set β to the range from 0.0 to 1.0. 

he results on the MINC and MIT-Indoor datasets are presented 

n Table 6 . With the increase of β , the accuracy decreases on the 

oth datasets. The results are consistent with Theorem 1 : the Sig- 

oid kernel is a valid conditionally positive definite kernel on the 

remise that β is small enough. We set β = 0 in all experiments. 

.5. Comparisons with different kernels 

The kernel function in Eq. (8) plays an important role in our 

ethod. It determines the induced infinite-dimensional feature 

pace and the quality of the infinite-dimensional features. We eval- 

ate several commonly used kernels, shown in Table 7 , on the 

INC and MIT-Indoor dataset. 

The polynomial kernel is well studied for problems where train- 

ng data is normalized. It induces a finite-dimensional mapping 

hen the polynomial degree d is small. The RBF kernel is one of 

he most commonly used kernels, and γ is a constant parame- 

er. The Sigmoid kernel has been studied in Section 3.3 . Among 

hese kernels, the RBF kernel and the Sigmoid kernel could induce 

n infinite-dimensional feature mapping. As indicated in Table 7 , 

he two kernels consistently outperform the polynomial kernel, 

hich further confirms the advantages of infinite-dimensional fea- 

ures over finite-dimensional features. Our method with the Sig- 

oid kernel achieves the best performance among these kernels. 
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Fig. 4. Distributions of B-CNN descriptors and our descriptors on the MINC dataset using the t-SNE. Different colors represent different classes (best viewed in color). 

Table 8 

Influence of the infinite-dimensional mapping induced by the Sigmoid kernel in 

terms of Average Accuracy (%). “w/o Sigmoid” denotes the kernel function in Eq. (8) 

is replaced with the inner product. 

Methods Aircraft Cars MIT-Indoor 

w/o Sigmoid 89.8 92.3 80.6 

Ours (Sigmoid) 91 . 6 93 . 5 81 . 6 
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t outperforms the RBF kernel by 1 . 2% and 1 . 1% on the MINC and

IT-Indoor datasets respectively, which indicates the effectiveness 

f our method with the Sigmoid kernel. 

.6. Ablation study 

We further conduct ablation experiments to evaluate the effec- 

iveness of infinite-dimensional mapping induced by the Sigmoid 

ernel on the Aircraft, Cars, and MIT-Indoor datasets. The results 

re presented in Table 8 . “w/o Sigmoid” means feature aggrega- 

ion is carried out in a finite-dimensional space without the Sig- 

oid kernel. After applying the infinite-dimensional feature map- 

ing induced by the Sigmoid kernel, the accuracies on these three 

atasets all achieve considerable improvements. There are 1 . 8% , 

 . 2% and 1 . 0% improvements on the Aircraft, Cars, and MIT-Indoor

atasets, respectively. This demonstrates that aggregating infinite- 

imensional features induced by the Sigmoid kernel can effectively 

mprove the discriminative power of the aggregated global descrip- 

or. 

.7. Comparisons of training speed 

We compare the training speed of B-CNN, iSQRT-COV, CBP, 

nd infinite-dimensional feature aggregation methods, KP, and our 

ethod. We tested how many images can be processed per second 

n the MINC and MIT - Indoor datasets in the same experimental 

nvironment, and the results are presented in Table 9 . The speed 

f our method is similar to that of B-CNN, and is obviously better 
Table 9 

Comparisons of training speed (images per second). 

Methods MINC MIT-Indoor 

B-CNN [5] 104.5 31.9 

CBP [29] 57.7 24.5 

iSQRT-COV [25] 94.1 31.0 

KP [8] 65.3 26.5 

Ours 103.2 31.8 
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t
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8 
han that of other methods, which demonstrates that our method 

as advantages in computational complexity. 

.8. Visualization 

To further demonstrate the superiority of our method over 

nite-dimensional feature aggregation methods, we visualize dis- 

ributions of B-CNN [5] descriptors and our descriptors on the 

INC dataset using t-SNE in Fig. 4 . We observe that the distribu- 

ion of B-CNN descriptors in Fig. 4 (a) is in the shape of an elon-

ated strip and samples of different classes tend to be close to 

ach other, which is not conducive to the determination of the 

lassification hyperplanes. For example, the gray class (“stone”) and 

he gold class (“mirror”) have overlapping distributions, while the 

wo classes have obvious differences in appearance. The pale green 

lass (“water”) is clustered into two clusters, which is difficult for 

he classifier. On the contrary, our descriptors in Fig. 4 (b) have 

lear boundaries between different classes, and each class is clus- 

ered tightly. There are large inter-class similarities and small intra- 

lass similarities. It clearly illustrates that our method generates 

iscriminative descriptors. 

. Conclusion 

In this paper, we have presented a non-approximate infinite- 

imensional feature aggregation method to generate a discrim- 

native and compact descriptor. Our method directly aggregates 

nfinite-dimensional features, avoiding approximation error com- 

ared to existing infinite-dimensional methods. By utilizing the 

actorized bilinear model, our method can not only capture 

econd-order statistics of infinite-dimensional features but also 

ackle the issue that infinite-dimensional features are infeasible to 

tore, represent and compute explicitly. Experiments demonstrate 

hat our method achieves state-of-the-art performance on four im- 

ge classification tasks. However, there still exists weakness: the 

igmoid kernel used in our method is a conditionally positive def- 

nite kernel, which causes limitations on the selection of hyper- 

arameters. In the future, we will establish a unified infinite- 

imensional feature aggregation framework and investigate other 

ernel functions so as to provide flexible choices of kernel func- 

ions and infinite-dimensional features for different visual tasks. 
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