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a b s t r a c t 

Recent studies have demonstrated advantages of the representations learned by Convolutional Neural 

Networks (CNNs) in providing an appealing paradigm for visual classification tasks. Most existing meth- 

ods adopt activations from the last fully connected layer as the image representation. This paper ad- 

vocates exploiting appropriately convolutional layer activations to constitute a powerful descriptor for 

texture classification under an end-to-end learning framework. The main component of our method is 

a new locality-aware coding layer conducted with the locality constraint, where the dictionary and the 

encoding representation are learned simultaneously. The layer is readily amenable to training via the 

backpropagation as the locality-aware coding process has an analytical solution. It is capable of captur- 

ing class-specific information which makes the learned convolutional features more robust. The resulting 

representation is particularly useful for texture classification. Comprehensive experiments on the DTD, 

FMD and KTH-T2b datasets show that our approach notably outperforms the state-of-the-art methods. 

© 2019 Published by Elsevier Ltd. 
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1. Introduction 

Texture, as a visual cue describing the characteristic of many

types of images, plays a significant role in analysis of the visual

content from images. Texture classification is one of the funda-

mental problems in the computer vision community and has been

a long-standing research topic with a wide variety of applications

including face recognition [1] , image retrieval [2] , medicine anal-

ysis [3] , and material classification [4] . Although texture classifica-

tion is similar to other classification tasks, it presents distinct chal-

lenges. For instance, texture representation often suffers from the

variations in scale, illumination, rotation, and the subtle difference

in different texture patterns [5–7] . In case of the bubbly texture,

since the scale of bubbles forms the different geometry structure,

the bubbles show a challenge for consistency global information

at different scales. Therefore, the fundamental problem of texture

classification is to build a robust local representations and pool

them in an orderless manner for the regular repetition texture [8] .

To design a robust image representation which encodes the un-

derlying characteristic texture structure, researchers have devel-

oped a number of discriminative and robust texture features, such

as filter bank texton [9,10] , image patch [4,11,12] , and Local Bi-

nary Pattern (LBP) [13–17] . The recent years have witnessed sig-
∗ Corresponding author. 
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ificant advances of convolutional neural networks (CNNs). Driven

y the emergence of large-scale data sets and fast development

f computation power, CNNs have proven to perform remarkably

ell on a wide range of visual recognition tasks including tex-

ure classification [18–25] . Typical CNNs are often concatenations

f multiple convolution layers followed by a couple of fully con-

ected layers and a SoftMax classifier. It has been demonstrated

hat the last fully connected (FC) layer features can be employed

s an universal image descriptor and suitable for linear classifiers

uch as SVM [26] . Different from hand-crafted features, the FC

eatures learned by CNNs often possess rich high-level semantic

nformation that can effectively distinguish the object of interest

rom the background. However, local characteristics of images may

ot well preserve at the FC layer, because spatial information is

gnored when the fully connected layer transforms the convolu-

ional layer activations into a feature vector representing the whole

mage. Moreover, the size of the input image should be fixed to

e compatible with the FC layer, which makes the deep learning

ramework potentially less flexible. Additionally, texture is gener-

lly defined as a set of regularly repeating pattern elements along

 plane [7] . It means that the FC feature, as a global descriptor,

ay not be suitable for modeling an orderless representation of

he texture image [27,28] . 

Recently, the research trend has moved towards the features

xtracted from deep convolutional layers of CNNs which can

e interpreted as local features describing particular image re-

ions [28–32] . Two contemporaneous works introduced by Liu

https://doi.org/10.1016/j.patcog.2019.02.003
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Fig. 1. The histograms of activation values in VGG-16 conv4_3 layer (a) and conv5_3 (b) (best viewed on high-resolution display). 
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[  
t al. [33] and Babenko and Lempitsky [29] have demonstrated

hat the activations from the convolutional layers could be seen as

 set of local features which can capture the visual representation

elated to objects. In addition, Long et al. [34] demonstrated that

he output of earlier layer is actually preferable to obtain expres-

ive region descriptors and inclined to encoding more informative

etails compared with the later layers. Therefore, the use of in-

ermediate layer activations, i.e., deep convolutional features have

ecently achieved promising performance and attracted a lot of in-

erests for visual classification. In this work, we focus on building

 powerful image representation based on activations from con-

olutional layers with both the locality and sparsity constraints by

sing an end-to-end learning framework for texture classification. 

Our motivation comes from the following observations.

he sparsity has a great influence on good performance of

NNs [35,36] due to the rectifier linear unit (ReLU) activation func-

ions and the Dropout operation [37] . As shown in Fig. 1 , ReLU only

eeps positive activations and switches off all the negative activa-

ions, resulting in most activations are small or zero [18] . Dropout

andomly switches off activations in neural networks to shape a

parse network [37] . Co-adaptation disentangling, linear separabil-

ty, and model combination are offered to explain the advantages

f sparsity in CNNs [38–41] . Locality is another key property of the

eep convolutional feature. The FC features from the same cate-

ory are close to each other and far from the others, which shows

he locality of convolutional features [42] . As illustrated in Fig. 2 ,

e visualize the convolutional feature and the SIFT feature ex-

racted from the FMD dataset by running the t-SNE algorithm [43] .

he convolutional features presents semantic clustering, i.e., local-

ty while the SIFT almost mixed up between different categories. 

In particular, we introduce a locality-aware coding layer

n CNNs with locality constraints, leveraged by the “Locality-

onstrained Linear Coding” [44,45] image representation. Our

ocality-aware coding acts as a pooling layer integrated on top

f the convolutional layers and a class-specific dictionary, then

enerates a sparse locality-aware representation with respect to

 distance constraint to improve the discriminative power of the

onvolutional feature. The distance constraint ensures that the en-

oded feature item has more weight when the corresponding dic-

ionary atom is more similar to the original convolutional feature.

oreover, the coding layer learns an inherent dictionary and the

a  
ncoding representation which enforces a class-specific tightness

econstruction based on the semantic clustering. As a consequence,

he activation distribution for each encoded feature is highly

eaked in each category. More importantly, the proposed locality-

ware coding layer is differentiable and therefore can be solved by

 closed-form solution. The gradient propagation is unblocked for

he coding layer and the convolutional layer under an end-to-end

ramework. Overall, the layer is readily pluggable into any CNN ar-

hitecture and amenable to training via standard backpropagation. 

The rest of the paper is organized as follows: Section 2 intro-

uces the related works about the CNN image representation and

exture classification. Section 3 presents our network architecture

ncluding the locality-aware coding layer and the global represen-

ation layer in detail. Section 4 shows the experiment results on

tandard datasets and extensive diagnostic analysis. We conclude

his work in Section 5 . 

. Related work 

In this work, we concentrate on building an orderless image

epresentation using activations from convolutional layers for tex-

ure classification. We provide a literature review from two as-

ects, i.e., CNNs based image representations and texture classifi-

ation. 

.1. Image representation using CNNs 

Traditional methods typically obtain the image representation

y aggregating the hand-crafted local features (e.g., SIFT) into a

lobal image descriptor. Popular aggregation schemes include Bag

f Words (BoW) [46] , Vector of Locally Aggregated Descriptor

VLAD) [47] and Fisher Vector (FV) [48] . 

Recent works have witnessed significant advances of CNNs for

 variety of classification tasks [21,23,30,49,50] . In the paradigm

f CNNs, the most common way takes activations from the fully

onnected (FC) layer as an image representation, and applies this

escriptor to visual classification. In order to obtain better perfor-

ance, researchers focus on building deeper network [21–23] , or

hanging the loss function and training strategy [51] . Babenko et al.

19] suggested that the feature emerging in the FC layer can serve

s a global descriptor for image retrieval. Nevertheless, they only



36 X. Bu, Y. Wu and Z. Gao et al. / Pattern Recognition 91 (2019) 34–46 

Fig. 2. Visualization of the convolutional feature and SIFT feature using the t-SNE algorithm. (a) shows the SIFT extracted from the FMD dataset. (b) depicts convolutional 

features. The SIFT almost mixed up in different category while the convolutional feature presents locality (best viewed on high-resolution display). 
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s  
treated the CNN as a black-box feature extractor rather than study-

ing the properties of CNN features from different layers. Gong et al.

[52] introduced a multi-scale orderless pooling scheme to aggre-

gate FC activations of local patches into a global feature using the

VLAD. Similarly, Liu et al. [53] aggregated FC activations of local

patches using Fisher Vector and sparse coding. One common factor

in the above methods is that they all use the last FC layer fea-

tures with the dimensionality of 4096 as global image descriptors

and demonstrate their advantages over the traditional image de-

scriptors. Although FC features trained towards assigning category

labels to images is invariant to illumination and rotation to some

extent, they suffer from the lack of details of local patterns. 

Alternatively, CNNs can be used to extract local features which

distribute in convolutional layers along the direction of channels.

Zeiler et al. [54] showed that feature maps following the later con-

volutional layers encode both spatial and semantic information of

the dominant attributes and semantic concepts. Joe et al. [31] used

VLAD over the convolutional layer to obtain instance-level descrip-

tors for fine-grained image retrieval. Ng et al. [55] aggregated con-

volutional layer activations using VLAD and achieved competitive

performance. Tolias et al. [56] max pooled the activations of the

last convolutional layer to represent each patch and achieved com-

pelling performance for object retrieval. Those methods use off-

the-shelf convolutional features but lose the important end-to-end

training ability of CNNs, because their encoding components are

not differentiable. In contrast, our method can jointly fine-tune all

parameters in an end-to-end manner due to the differentiable en-

coding process, as validated in Section 3 . 

Liu et al. [32] built a powerful image representation using the

activations from two consecutive convolutional layers. He et al.

[57] introduced the Spatial Pyramid Pooling Network (SPP-Net)

which solves the variable scales by spatial pyramid aggregation.

Arandjelovi ́c et al. [50] developed a new generalized VLAD layer

based on a weakly supervised ranking loss to learn parameters of

the architecture in an end-to-end manner. These works [50,57] an-

alyze the scheme of encoding features but lack of discussion about

the convolutional feature itself. In this work, we not only encode

the convolutional feature but also exploit the locality constraints

within the convolutional feature via a locality-aware coding layer

to build a discriminative image representation. 

2.2. Texture classification 

Texture classification is the basic problem in material recogni-

tion, biomedical image analysis, and content based image retrieval.

It primarily consists of two critical subproblems: feature extraction
nd classifier designation [17] . An effective image representation

s an essential element for texture classification, which encodes

he underlying characteristic texture structure under variations in

cale, viewpoint, and rotation. In the last decade, a number of dis-

riminative and robust texture features have been proposed for

exture classification. Traditional methods usually represent texture

y pooling robust local features like filter bank texton [9,10] , im-

ge patch [4,11,12] , and Local Binary Pattern (LBP) [13–17] . In addi-

ion, the specialized texture descriptors [5,6,58] are also designed

or texture classification under specific circumstances such as dy-

amic texture [59] and fine-grained material [5] . 

Driven by the emergence of large-scale data sets and fast de-

elopment of computation power, features based on CNNs have

een proven to outperform hand-crafted texture features. Gatys

t al. [60] showed that the Gram matrix representation extracted

rom various layers of the VGG can be inverted for texture syn-

hesis. Cimpoi et al. [8,28] proposed a so-called FV-CNN texture

escriptor obtained by Fisher Vector pooling of a CNN filter bank

esponse. They stated their FV-CNN is orderless because if we rep-

esent a pooling scheme as φp , and the set of local features as

 = [ f 1 , f 2 , . . . , f N ] , f i ∈ R 

K , their final global feature g = φp ( F )
ill remain unchanged even the order of F changes. They also

nnounced the importance of orderless pooling for texture classi-

cation, that given a particular texture, appearance variations are

tatistically independent in the long range and therefore the ideal

exture representations is the orderless pooled local descriptors.

owever, their FV-CNN only encodes off-the-shelf feature from the

re-trained CNN, i.e., it is not able to be trained in an end-to-end

anner. Lin et al. [61] proposed a general orderless pooling ar-

hitecture called the bilinear CNN that outperforms Fisher Vector

ince the gradients of the model can be easily computed allowing

ne-tuning. They also conducted a systematic evaluation of recent

NN-based texture descriptors and explained the orderless feature

aptured by these descriptors [27] . Zhang et al. [62] presented a

eep-TEN network incorporating the dictionary learning and resid-

al encoding into a single layer of CNNs, which learns the encoding

arameters along with an inherent dictionary in a fully supervised

anner. Different from the FV-CNN and Deep-TEN, our locality-

ware coding layer is designed with locality constraints, where the

ictionary and the encoding representation are all learned simul-

aneously. 

. Deep networks with sparsity and locality constraints 

As mentioned in Section 1 , the CNNs feature tends to perform

parsity and locality. These two characters are critical to good
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Fig. 3. The flowchart of our locality-aware coding in company with CNNs architecture. A standard CNN is firstly employed to extract the convolutional features, then these 

convolutional features are encoded respectively. The number of convolutional features is 7 × 7 using the last maxpooling layer of the VGG-16 network. The 7 × 7 features are 

encoded respectively with regard to a dictionary under the locality constraint that only the nearest atoms will be activated. At last, global maxpooling aggregates all encoded 

feature to produce a fixed-length feature followed by FC layer and loss function like SoftMax for texture classification. 
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erformance of deep neural networks because the sparsity leads

o co-adaptation disentangling, linear separability, and model

ombination, and the locality captures the essence of the category

emantic distribution. However, deep neural networks learn these

wo characters by itself which is unreliable and unreasonable. In

his work, we attempt to introduce a novel locality-aware coding

ayer to exploit the sparsity and locality, as illustrated in Fig. 3 . 

A locality-aware coding layer can be plugged into a standard

NN on top of the convolutional layers. In our approach, the dic-

ionary learning and feature encoding are learned simultaneously

n an end-to-end manner. During feature encoding, a locality con-

traint ensures that only the nearest atoms are activated, resulting

n the encoded feature presents semantic clustering in a class-

pecific dictionary. Then a global maxpooling layer aggregates

ll encoded features for the followed FC layer and the classifier.

ince the locality constraint is a � 2 -norm, the encoding process is

ifferentiable. The locality-aware coding layer takes the gradients

rom the FC layer as input and then computes the gradients for

he dictionary and the shallow convolutional layers. The gradients

nformation is unblocked in the whole network architecture and

hus the architecture is amenable to training via backpropagation. 

.1. The locality-aware coding layer 

Let X = { x i } N i =1 
denote N convolutional features, where M is

he dimensionality of a data point x i ∈ R 

M×1 . D = [ d 1 , d 2 , . . . , d K ] ∈
 

M×K is a dictionary where each column represents an atom. C =
 

c 1 , c 2 , . . . , c N ] ∈ R 

K×N is a coding matrix. The goal of sparse repre-

entation is to learn a dictionary and corresponding sparse codes

uch that each input local feature x i can be well approximated by

he dictionary D . The general formulation of the sparse represen-

ation is expressed as 

in 

c i 

N ∑ 

i =1 

‖ x i − Dc i ‖ 2 + λ‖ c i ‖ 1 , (1)

here ‖ c i ‖ 1 is a � 1 constraint term which enforces c i to have a

mall number of nonzero elements. 
∑ N 

i =1 ‖ x i − Dc i ‖ 2 measures the

econstruction error. λ is a weight parameter for making a trade-

ff between the sparsity and reconstruction error. 

While a general sparse coding can be used to exploit the

parsity for CNNs, the locality of CNNs feature is not preserved
uring sparse coding operation. As discussed in [44,45] , the lo-

ality implies the class-specific information when the dictionary

s initialized under the category-wise K -means algorithm. Atoms

n the dictionary near the input are more likely to be the same

ategory than those far from the input. It is easy to prove that

reserving the locality information during encoding will obtain a

ore discriminative feature. The locality constraint can be used to

eplace the sparsity constraint in Eq. (1) , the locality-aware coding

s formulated as 

min 

c i 

N ∑ 

i =1 

‖ x i − Dc i ‖ 2 + λ‖ p i � c i ‖ 2 

s.t. 1 

� c i = 1 , ∀ i, (2) 

here 1 is a column vector of “1”s. The p i = [ p i 1 , p i 2 , . . . , p iK ] ∈ R 

K 

s the locality adaptor which adapts the encoded feature to the

istance between input x i and dictionary atoms [ d 1 , d 2 , . . . , d K ] .

he locality adaptor p ik is usually expected to be large when the

nput x i is far from the dictionary atom d k and be small when they

re close to each other. So that the code c i is affected by p i through

he element-wise multiplication �, then the locality constraint

ill force the code element c ik to be zero if x i is far from d k . The

hift-invariant constraint 1 � c i = 1 enforces the coding results to

emain the same even if the origin of the data coordinate system

s shifted, as proved in [44] . Locality-aware coding Eq. (2) would

roduce a sparse code c i , since only a few dictionary atoms are

ear to the input x i and have large weight, the rest of atoms

re penalized and have small weights. We use � 2 -norm locality

daptor for a convenient purpose. It measures Euclidean distance

etween the input feature x i and the k th dictionary atom d k : 

p ik = ‖ x i − d k ‖ 2 

= ( x i − d k ) 
� 
( x i − d k ) . (3) 

ence, the diagonal matrix P i whose principal diagonal elements

re the entries of p i can be expressed as 

 i = diag 
(

˜ D 

� ˜ D 

)
, (4) 

here ˜ D = 

(
x i 1 

� − D 

)
. 

Since the � 0 or � 1 norm in standard sparse coding are replaced

y the locality constraint ‖ p �c ‖ , there is a closed-form solution
i i 2 
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for Eq. (2) , so that the network’s forward transformation is ⎧ ⎨ 

⎩ 

˜ c i = 

(
˜ D 

� ˜ D + λP 2 
i 

)−1 
1 

c i = 

˜ c i 
1 

� ˜ c i 

. (5)

In order to carry out an end-to-end learning, we propose a

locality-aware coding backpropagation algorithm. Suppose the loss

function is L , and given the gradient input ∂L 
∂ c i 

, we firstly compute

the partial derivatives of L with respect to ˜ c i : 

∂L 

∂ ̃  c i 
= A 

� ∂L 

∂ c i 
, (6)

where A is the derivative of c i with respect to ˜ c i , given by 

A = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

d c 1 
d ̃  c 1 

d c 1 
d ̃  c 2 

· · · d c 1 
d ̃  c K 

. . . 
. . . 

. . . 
. . . 

d c K 
d ̃  c 1 

d c K 
d ̃  c 2 

· · · d c K 
d ̃  c K 

⎤ 

⎥ ⎥ ⎥ ⎦ 

. 

Each element in A is 

d c i 
d ̃  c j 

= 

δi j 

(
1 

T ˜ c 
)

− ˜ c i (
1 

T ˜ c 
)2 

, 

where δij is the indicator function: 

δi j = 

{
1 , i f i = j 
0 , i f i � = j 

. 

Then the gradients of L with respect to x i and D are given by 

∂L 

∂ x i 
= −2 ̃

 D ( G + λdiag ( P G + GP ) ) 1 , (7)

∂L 

∂D 

= 2 ̃

 D ( G + λdiag ( P G + GP ) ) , (8)

where G is 

G = 

(
˜ D 

� ˜ D + λP 2 i 

)−1 
1 

(
∂L 

∂ ̃  c i 

)� (
˜ D 

� ˜ D + λP 2 i 

)−1 
. 

Once all ∂L 
∂ x i 

and 

∂L 
∂D 

are obtained, the standard backpropagation

can be easily employed to update the CNNs and the dictionary pa-

rameters. 

3.2. Fast version of locality-aware coding 

In the neural network, what the forward and backward oper-

ations need are the feature outputs and the gradient outputs for

inputs and parameters. In our network, they are obtained by solv-

ing a linear system, as demonstrated as Eqs. (5), (7), (8) , whose

complexity depends on the number of the atoms K , namely O ( K 

3 ).

When K goes larger, the forward and backward operations will be

time-consuming. Actually, the encoded feature of Eq. (5) is sup-

posed to have limited significant values since only a few dictionary

atoms are near to the input x i and have large weights. We may

only keep these significant values and set the other trivial values

to zeros, hence get a much smaller linear system to reduce our

computational complexity. 

In practice, we can apply the k -NN method to choose the near-

est atoms in the dictionary D for an input x i , then the chosen

atoms are retreated as a new dictionary, thus Eq. (2) can be re-

formulated as 

min 

c i 

N ∑ 

i =1 

‖ x i − D i c i ‖ 2 
s  
s.t. 1 

� c i = 1 , ∀ i, (9)

here D i ∈ R 

M×L is the new dictionary containing L atoms chosen

y the k -NN method. This local linear system can be solved by 
 

˜ c i = 

(
˜ D i 

� ˜ D i 

)−1 

1 

c i = 

˜ c i 
1 � ˜ c i 

, (10)

here ˜ D i = 

(
x i 1 

� − D i 

)
. 

The subsampling from D (in Eq. (2) ) to D i (in Eq. (9) ) might

ause discontinuous derivative. To address this issue, we borrow

he idea of maxpooling, in which the discontinuous derivative ex-

sts. We only keep the L max atoms. The maxpooling computes

utput y i = x pos , in which i is the output position, R ( i ) is the po-

ition set of inputs in the sub-window over y i , and 

pos = argmax pos ′ ∈ R ( i ) x pos ′ . 

he derivative of maxpooling with respect to the j th position x j is 

∂ y i 
∂ x j 

= 

{
1 , i f j = pos 
0 , otherwise 

. 

imilar to maxpooling, our approximate algorithm subsampling D

o D i can be expressed as 

 i = { atom | atom = argmax atom 

′ ∈ D L ˜ c i,atom 

′ } , 
here argmaxL means that it takes top L rather than top 1, ˜ c i,atom 

′ 
s the element in ˜ c i corresponding to atom 

′ . The derivative ∂L 
∂ x i 

and

∂L 
∂ D i 

in Eq. (11) can be obtained using D i 

 

 

 

 

 

∂L 

∂ x i 
= −2 ̃

 D i H1 

∂L 

∂ D i 

= 2 ̃

 D i H 

, (11)

here H is 

 = 

(
˜ D i 

� ˜ D i 

)−1 

1 

(
∂L 

∂ ̃  c i 

)� (
˜ D i 

� ˜ D i 

)−1 

. 

oreover, we can obtain the derivative of ∂L 
∂D 

for standard back-

ropagation in an atom-by-atom way as 

∂L 

∂ D atom 

= 

{
∂L 

∂ D i,atom 
, i f atom ∈ D i 

0 , otherwise 
, (12)

here atom is an atom in the dictionary. 

With Eqs. (11) and (12) , our approximate algorithm can be op-

imized using standard backpropagation. An remarkable advantage

f our approximate algorithm is that it reduces the computational

omplexity from O ( K 

3 ) to O (K × M + L 3 ) . Since L 	 K , our network

as the ability to be implemented in a fast way. If we measure

he computational complexity via FLOPs, there is little increase

rom VGG 1 . 55 E + 10 FLOPs to our 1 . 56 E + 10 FLOPs, as shown in

able 1 . 

.3. Global representation 

Once all convolutional features encoded, default CNNs usu-

lly vectorize all convolutional features by concatenating them to

ridge the different shape of the convolutional layer and the gener-

lized linear classifier (FC layer), which has several disadvantages.

irst, the spatial structures in the convolutional layer are destroyed.

he activations distributing in a three dimensional space are vec-

orized into a one dimensional vector regardless the activations po-

ition in the feature map and channel [63] . Second, the direct vec-

orization produces a large number of FC units, which makes CNNs

ubstantial overfitting [18] . Third, the vectorization forces the input
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Table 1 

The FLOPs of our architecture. The “I”, “O” and “K” represent “Input”, “Output” and 

“Kernel” respectively. The subscript “W”, “H” and “C” represent “Width”, “Height” and 

“Channel”, respectively. The main difference between our model and VGG-16 exists 

after the fifth maxpooling layer. 

Layer I W I H I C O C K W K H FLOPs 

conv1_1 224 224 3 64 3 3 8.67E + 07 

conv1_2 224 224 64 64 3 3 1.85E + 09 

maxpooling 224 224 64 64 2 2 3.21E + 06 

conv2_1 112 112 64 128 3 3 9.25E + 08 

conv2_2 112 112 128 128 3 3 1.85E + 09 

maxpooling 112 112 128 128 2 2 1.61E + 06 

conv3_1 56 56 128 256 3 3 9.25E + 08 

conv3_2 56 56 256 256 3 3 1.85E + 09 

conv3_3 56 56 256 256 3 3 1.85E + 09 

maxpooling 56 56 256 256 2 2 8.03E + 05 

conv4_1 28 28 256 512 3 3 9.25E + 08 

conv4_2 28 28 512 512 3 3 1.85E + 09 

conv4_3 28 28 512 512 3 3 1.85E + 09 

maxpooling 28 28 512 512 2 2 4.01E + 05 

conv5_1 14 14 512 512 3 3 4.62E + 08 

conv5_2 14 14 512 512 3 3 4.62E + 08 

conv5_3 14 14 512 512 3 3 4.62E + 08 

maxpooling 14 14 512 512 2 2 1.00E + 05 

Locality aware coding 7 7 512 2048 2.06E + 08 

maxpooling 7 7 2048 2048 7 7 1.00E + 05 

FC6 1 1 2048 512 1 1 1.05E + 06 

FC7 1 1 512 47 1 1 2.41E + 04 

Total 1.56E + 10 
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mage to be fixed-size due to fixed-length FC layer. It is not natural

or different scale images [57] . Fourth, as discussed in Introduction,

he FC feature may not be suitable to model an orderless represen-

ation for the texture classification. 

In order to overcome above shortcomings, we employ a new ag-

regation scheme, called global maxpooling, to replace traditional

ectorization. The global maxpooling takes the max value of each

hannel instead of vectorizing convolutional layer. This aggregation

cheme presents several attractive advantages: 

• As we encode the convolutional feature with regard to a dic-

tionary, the global maxpooling actually computes statistics

over all activations within a channel, i.e., an atom. Hence,

each atom is directly corresponding to the FC layer and fur-

ther corresponding to the classification task in the later Soft-

Max layer. Global maxpooling is more meaningful and inter-

pretable than the vectorization operation. 
• As global maxpooling generates FC layer by taking the max

values along with channels, the aggregation scheme is rel-

evant to the number of atoms K instead of image size. We

can input an image with any scale, which is not necessary

to adapt to the deep network. 
• Since the number of parameters is reduced, global maxpool-

ing is able to mitigate the overfitting, which improves the

networks generalization ability. 
• Global maxpooling can build an orderless representation

for the texture classification. We denote the set of lo-

cal features as F = [ f 1 , f 2 , . . . , f N ] , f i ∈ R 

K . The i th ele-

ment in our final global feature g can be obtained by g i =
max 

(
f 1 ,i , f 2 ,i , . . . , f N,i 

)
, where f j,i is the i th element in the j th

local features. We can see that global maxpooling is invari-

ant to the permutation of input, that is, is orderless. 

Clearly, the locality-aware coding and global maxpooling are

rainable and can be optimized by the standard backpropagation.

irst, an image is fed into the CNNs to extract the convolutional

eature. In order to implement the efficient forward and backward

ropagation, a fast version of locality-aware coding has been pro-

osed, in which the convolutional feature is encoded in a differ-

ntiable process with regard to a class-specific dictionary. Finally,
ll encoded features are aggregated by global maxpooling for the

lassification task. 

. Experiments 

.1. Datasets and evaluation 

We evaluate our method on three texture datasets, i.e., De-

cribable Textures Dataset (DTD) [64] , Flickr Material Dataset

FMD) [65] and K TH-TIPS-2b (K TH-T2b) [66] . Both DTD and FMD

re collected in uncontrolled conditions, which are so-called “in

he wild”. Since the DTD assigns the label by psychological liter-

ture, its labels are not the category of the material or object but

he feeling of human about an image. FMD’s labels are the cat-

gory of material, but the material isn’t cropped from the back-

round. KTH-T2b’s images are collected under controlled pose and

llumination with multi-scale. Fig. 4 illustrates these three texture

atasets for our experiments. For all datasets, we follow the stan-

ard train-test protocol. On the DTD and FMD datasets, we ran-

omly and evenly divide the dataset into train, valid, and test set

or 10 splits. We use the train and valid set for training and report

he Mean Accuracy on the test set across splits. On the KTH-T2b

ataset, we train the model on one sample and test on the remain-

ng three. 

.2. Implementation details 

Our locality-aware coding based on the convolutional feature is

rom the VGG-16 [21] which is pre-trained on the ImageNet. We

rop the VGG-16 at the last maxpooling layer to extract the con-

olutional features and insert our locality-aware coding layer and

axpooling layer following by two fully connected layers whose

utput dimension is 512 and the number of classes, respectively.

ropout is used on the first fully connected layer. Unless other-

ise stated, we use the fast version of locality-aware coding with

 = 1024 and L = 5 in our experiments. The dictionary is initial-

zed by concatenating the results of K -means algorithm in differ-

nt categories. We use SGD with a mini-batch size of 128. The
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Fig. 4. The sample images of the DTD, FMD, and KTH-TIPS-2b datasets. The DTD texture dataset which is collected in the wild focuses on the prior to high-level semantic 

understanding rather than material. The FMD dataset focuses on the material without alignment and crop, so that the material is bothered by background. The KTH-TIPS-2b 

dataset addresses the problem of category-level material classification under the varying scale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Comparisons with state-of-the-art methods in terms of Mean Accuracy (%). Hand- 

crafted features include texton-based methods (LM, MR8) and patch-based meth- 

ods. FV-CNN, B-CNN and Deep-TEN using the aggregated convolutional feature out- 

perform DeCAF and FC-CNN which use the FC feature. Our method encodes the 

convolutional feature to exploit the sparsity and locality with a dictionary in which 

atoms K = 1024 , K = 2048 and neighbors L = 5 . 

method DTD FMD KTH-T2b 

Hand-crafted features 

LM [9] 18.8 18.2 53.5 

MR8 [10] 15.9 22.1 53.0 

Patch 3 × 3 [11] 14.6 20.9 57.8 

Patch 7 × 7 [11] 18.0 21.2 58.4 

LBP riu 2 [13] 37.1 – 62.7 

CLBP [14] 42.6 43.6 64.2 

FC features 

DeCAF [42] 54.8 60.7 70.7 

FC-CNN [64] 59.5 69.3 71.1 

Convolutional features 

FV-CNN [28] 67.3 73.5 73.3 

FV-FC-CNN [28] 70.1 76.4 73.8 

B-CNN [27] 70.2 78.5 75.8 

Deep-TEN ResNet 50 [62] – 80.2 82.0 

VGG-16 baseline [21] 66.0 78.2 75.5 

Ours 1024,5 70.6 80.6 77.2 

Ours 2048,5 71.1 82.4 76.9 
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learning rate is started from 0.01 and divided by 10 when er-

ror plateaus. All the texture images are normalized by subtracting

123, 117, 104 for RGB channels, respectively. Following the standard

method in [18] , the images are augmented by randomly cropping

15 times for training and picking from the center and four corners

for testing. Our network is running based on Torch on an Inter(R)

i7-5930k CPU 3.5GHz, NVIDIA TitanX GPU and 32GB RAM. 

4.3. Comparisons with state-of-the-art methods 

To assess benefits of our method, we compare our method

trained for texture classification against the other state-of-the-

art approaches. Namely, we compare with previous methods from

hand-crafted texture descriptor to global FC feature to the convolu-

tional feature. In Table 2 , the comparison with the previous state-

of-the-art methods is illustrated. 

LM [9] and MR8 [10] treat the clustered filter bank response as

the texton, and then learn an image representation by distributions

on a texton dictionary. Later, Varma et al. [4,11] used the raw im-

age patch around a point instead of the filter bank response. We

evaluate 3 × 3 and 7 × 7 patch size in our experiment. As for LBPs

feature, two variants are compared here, including LBP riu 2 [13] and

CLBP [14] . LBP riu 2 considers circular symmetric and preserves only

those frequent patterns, and CLBP combines multiple LBP type fea-

tures via joint histogramming. From Table 2 , we can see the CNN-

based approaches outperform all head-crafted approaches. 

The Deep Convolutional Activation Feature (DeCAF) [42] is the

top output of AlexNet [18] , and the FC-CNN [64] is the top output

of VGG-16 [21] . Thus they are both the off-the-shelf feature from

the last FC layer with 4096 dimension. Clearly, the DeCAF and FC-

CNN, as discussed in introduction, are both unsuitable for texture

classification. 

The FV-CNN [28] uses Fisher Vector to aggregate the con-

volutional feature extracted from VGG-16. 65600 dimension FV

feature is produced by 64 Gaussian components and 512 dimen-

sion convolutional feature, then compressed to 4096 by PCA.

The convolutional feature is suitable for texture classification

because it can capture the orderless representation. This feature

aggregation scheme makes the FV-CNN perform significantly

better than the DeCAF and FC-CNN in all three datasets. The
V-FC-CNN [28] combining the FC feature’s and the convolutional

eature’s Fisher Vector is roughly equivalent to all above meth-

ds. The B-CNN [27] feeds the convolutional feature to bilinear

ooling which takes the location-wise outer product of the con-

olutional feature and sum pooling across all locations. Bilinear

ooling feature slightly improves the performance in all cases. The

eep-TEN [62] employs a VLAD-like pooling layer to aggregate

onvolutional feature. Since Deep-TEN uses ResNet [23] with 50

ayers while the other methods use VGG with 16 layers and

eep-TEN ignores the standard train-test protocol in KTH-T2b and

MD, it is not competitive compared with the other methods.

ur method outperforms Deep-TEN in the FMD dataset. The

ethods mentioned above improve the benchmark and verify the

onvolutional feature’s robustness and efficiency, but they just
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Fig. 5. The percentage of zero elements increases when an image passes through 

our deep network. The deep convolutional neural network tends to be sparse along 

with the depth. The adventive decrease in conv3_1, conv4_1 and conv5_1 is the 

result of maxpooling. 
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se the off-the-shelf convolutional feature by aggregating, without

xploiting the character of CNNs. 

The VGG-16 is the original network in [21] and trained in the

exture datasets with standard train-test protocol. Interestingly, the

GG-16 as a common network for classification is roughly equiva-

ent to the FV-CNN-like special-domain methods. To be more spe-

ific, we consider the key of the learned good representation is the

parsity and locality as discussed and showed in introduction and

he next section. Our method not only utilizes the convolutional

eature like FV-CNN and B-CNN, but also encodes the convolutional

eature to exploit the sparsity and locality like pure VGG-16 in

 trainable way, thus our method achieves the best performance

ith the dictionary where atoms K = 1024 , K = 2048 and neigh-

ors L = 5 . 

.4. Diagnostic analysis 

In this section, we analyze the effectiveness of sparsity and lo-

ality, the number of atoms and neighbors, and the effectiveness

f global representation. 

.4.1. The effectiveness of sparsity and locality 

The sparsity and locality are the key to the good performance

f CNNs. In this paper, we use locality-aware coding to explore

he sparsity and locality to build a robust network architecture

nd discriminative representation. In this section, qualitative exper-

ments will be illustrated to give an intuitionistic and visual result.

As shown in Fig. 5 , the deep convolutional neural network

ends to be sparse along with the depth. At the beginning, there

re no zero elements in the inputs of the conv1_1, but about

alf of the outputs are negative and will be switched off by

eLU (conv1_1: 45.86%). After the initialization in the conv1_2,

he percentage of zero elements increasingly rises layer by layer

conv1_2: 27.26%, conv2_2: 48.55%, conv3_3: 69.21%, conv4_3:

8.02%, conv5_3: 94.43%). The adventive decrease in the conv3_1,

onv4_1 and conv5_1 layer is the result of maxpooling between

wo stages of VGG-16. Maxpooling keeps the max values and

rops the smaller one, causing many zero elements dropped, even

hough ReLU tends to produce a sparse deep architecture. 

The sparsity is a valuable property brought by ReLU for deep

etworks. The sparsity makes deep network be a more robust ar-

hitecture with co-adaptation disentangling and model combina-

ion. The co-adaptation disentangling ensures invariance for small
hanges of the input. The model combination shapes the deep neu-

al model as an ensemble classifier of exponential linear models. 

Our locality-aware coding enhances these advantages by recon-

tructing the input feature using a dictionary. Only closest atoms

ill be selected as the neighbors dictionary so that the input fea-

ures are disentangling from the other neighbors dictionary. As

hown in Fig. 5 , locality-aware coding products more sparse output

 L / K ) for model combination and build an ensemble linear classi-

er. However, the network only with the sparsity is still hard to

btain a discriminative feature. The locality is more essential for

iscriminative than sparsity due to the semantic clustering. 

Locality-aware coding using a class-specific dictionary further

mplements the locality. A feature will be represented by the atoms

ear to itself, as the dictionary is generated by concatenating the

esult of a class-specific K -means algorithm. Locality-aware coding

nforces a tightness reconstruction based on the semantic cluster-

ng. Reasonably, the activation distribution in an encoded feature is

ighly peaked in one class. This leads to discriminative representa-

ion over learned CNNs. 

As depicted in Fig. 6 , we visualize the histogram generated by

he fabric and wood category from the FMD dataset. The fabric

nd wood corresponding atoms locate in the first and the last one

enth of our dictionary, respectively. The average activation values

f the conv5_3 and locality-aware feature are illustrated. It can be

een that the elements of locality-aware feature are very peaked at

he corresponding category atoms and approaching zero elsewhere,

s shown in Fig. 6 (b) and (d), which forms a good approximation to

he ideal discriminative representation. However, the conv5_3 fea-

ure can’t present such class-specific representation like locality-

ware feature, as shown in Fig. 6 (a) and (c). 

.4.2. The number of atoms and neighbors 

In this section, we investigate the number of the atoms K and

he neighbors L on the FMD dataset, to give a discussion of the per-

ormance of the number selection. As illustrated in Fig. 7 , it is no-

iced that the number of neighbors L is important. Some trade-off

hould be considered between reconstruction and locality: small L

s hard to reconstruct the original convolutional feature, but large

 disturbs locality-aware coding by more irrelevant atoms. In prac-

ice, we found that 5 nearest neighbors are the promising configu-

ation when K = 1024 or K = 2048 . 

We also experiment with three dictionaries which contain 1024,

048 and 4096 atoms, respectively. It can be seen that more atoms

on’t always lead better performance, because the outliers might

e captured as atoms, blurring the bounds between different cat-

gories. In our experiment, 2048 atoms are most suitable for the

MD dataset, more atoms might be better in a larger dataset. 

.4.3. The effectiveness of global representation 

The global maxpooling not only aggregates the encoded fea-

ure, also prevents locality-aware coding from overfitting due to

imensionality reduction. To investigate the effect of global max-

ooling, we evaluate the models with and without global maxpool-

ng for both locality-aware feature and VGG-16 feature on the FMD

ataset. 

Table 3 compares four models: VGG-16, VGG-16 WithGloMax ,

urs WithoutGloMax and Ours WithGloMax . VGG-16 WithGloMax is the stan-

ard VGG-16 model but using global maxpooling to replace the

raditional vectorization. Ours WithGloMax is our default configura-

ion used in our experiments where the encoded features are

ggregated by global maxpooling, while Ours WithoutGloMax does not

mploy the global maxpooling. Four models are pre-trained on the

MD dataset. 

In our method, only closest atoms will be chosen to represent

he input. Thus the activated atoms have a large probability to

ocate in the corresponding category region of the class-specific
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Fig. 6. Average activation values in FMD dataset. (a) Average of conv5_3 for fabric category, (b) Average of locality-aware feature for fabric category, (c) Average of conv5_3 

for wood category, (d) Average of locality-aware feature for wood category. (Note that since each layer is sparse, there is bias between real magnitude of activation values 

and that can be witnessed here.) 

Fig. 7. The performance of the different number of atoms and neighbors. 

 

 

 

 

 

Table 3 

Comparison for the effect of global maxpooling. VGG-16 WithGloMax is the standard 

VGG-16 model but replaces the vectorization with global maxpooling. Ours WithGloMax 

is our default model using global maxpooling to aggregate the local feature, while 

Ours WithoutGloMax does not utilize the global maxpooling. 

Network model Mean accuracy (%) 

VGG-16 78.2 

VGG-16 WithGloMax 77.1 

Ours WithoutGloMax 75.7 

Ours WithGloMax 80.6 
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dictionary. Although locality-aware feature (75.7%) is more class-

specific than VGG-16 (78.2%), it still suffers from overfitting due to

the high dimensionality in Ours WithoutGloMax . 

Global maxpooling aggregates all activations within a channel

to reduce the parameters in the followed FC layer, hence global

maxpooling improves our locality-aware coding generalization
bility (75.7% → 80.6%) by reducing the overfitting and building

 connection between atoms and classifier. Moreover, a single

ocality-aware feature’s activations mainly distribute in the cor-

esponding semantic region, thus taking the max values of the

ocality-aware feature in a channel won’t harm this semantic

egion, but make a more conclusive distribution. Fig. 6 (b) and (d)

ntuitively explain this point that global aggregation improves the

emantic clustering of the category region. 

On the contrary, global maxpooling doesn’t help in VGG-16,

ven harms the performance (78.2% → 77.1%). We conclude that,

lobal maxpooling computes the statistics within a channel, but

he convolutional features don’t take the locality into account,

eading a confused distribution in all region of channels. Fig. 6 (a)

nd (c) explain this point to some extent. 

The effect of global maxpooling for semantic locality is illus-

rated in Fig. 8 . We pick up locality-aware feature ( Fig. 8 (a)) from

he model Ours and VGG-16 feature ( Fig. 8 (c)) from the
WithoutGloMax 
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Fig. 8. Feature visualization on the FMD dataset. We visualize four kinds of features: (a) The locality-aware feature before vectorizing from the model Ours WithoutGloMax . (b) 

The locality-aware feature after global maxpooling from the model Ours WithGloMax . (c) The VGG-16 feature before vectorizing from the model VGG-16. (d) The VGG-16 feature 

after global maxpooling from the model VGG-16 WithGloMax . By comparing (a) with (b), we can see that the global maxpooling increases the semantic clustering for locality- 

aware feature. While there is no improvement in the semantic performance of VGG-16 in (c) and (d). For all four subfigures, we pick 10,0 0 0 samples and use the t-SNE 

algorithm to visualize them (best viewed in color). 
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Table 4 

Comparisons for three different CNN backbones on the FMD dataset. Our method 

is applied to three different CNN backbones including VGG-16, ResNet18, and 

ResNet50. 

Network model Mean accuracy (%) 

VGG-16 78.2 

Ours VGG −16 80.6 

ResNet18 74.8 

Ours ResNet 18 76.3 

ResNet50 80.9 

ResNet50 reduce 80.0 

Ours ResNet 50 81.2 
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odel VGG-16 before vectorized, and pick up locality-aware fea-

ure ( Fig. 8 (b)) from the model Ours WithGloMax and VGG-16 feature

 Fig. 8 (d)) from the model VGG-16 WithGloMax after global maxpool-

ng. Four kinds of features are picked on the FMD dataset, each

f them contains 10,0 0 0 samples. Then we visualize these four

inds of features by running t-SNE algorithm [43] to find a 2-

imensional embedding of the high-dimensional feature, and color

hem with regard to category. Four subfigures in Fig. 8 show the

emantic clustering. By comparing Fig. 8 (a) with (b), we can see

hat the global maxpooling increases the semantic clustering for

ocality-aware feature. The distribution is more tightness and dis-

riminative. On the contrary, as shown in Fig. 8 (c) and (d), there

s no improvement for global maxpooling in the semantic perfor-

ance of VGG-16. 

.4.4. The impact of backbones 

The proposed locality-aware coding layer can be built on any

NN base model, e.g., ResNet18, ResNet50 and VGG-16. The per-

ormance of these three models on the FMD dataset are shown

n Table 4 . ResNet uses the residual connection between convolu-

ional module, which makes it possible to build very deep network.

e employ the standard ResNet18 and ResNet50 in our experi-

ent. We can see the ResNet50 with 49 convolutional layers sig-

ificantly outperforms the ResNet18 and VGG-16 networks. How-

ver, ResNet18 is worse than VGG-16, because the ResNet18 may

e trapped into a local minima as it is unnecessary to use residual

rchitecture when its depth is similar with the VGG-16 network.

e further apply our locality-aware coding technique to three

ackbone models. For the VGG-16 and ResNet18 networks, locality-

ware coding leads to 2.4% and 1.5% increase, respectively. For the

esNet50 network, in order to keep the dictionary over-complete,

e add an extra convolutional layer with 1 × 1 kernel to reduce
he dimensions of final feature from 2048 to 512. The performance

f the reduced ResNet50 is also reported in Table 4 referred to as

esNet50 reduce . It is little worse than the original ResNet50, and our

ethod can improve the ResNet50 reduce with 1.2%. 

.4.5. Visualization of the atoms 

We provide a visualization of atoms chosen by a given feature,

s shown in Fig. 9 . Rather than maximize post-probability [67] , we

imply represent an atom by its nearest convolutional feature and

orresponding receptive field patch. To this end, we first extract

ll convolutional feature as feature space. Then each atom finds its

earest neighbor in the feature space and binds with the neigh-

or’s receptive field patch. Given an input convolutional feature,

ur method encodes it using the dictionary. As L = 5 , 5 atoms are

ctivated and their binded receptive field patches are shown in

ig. 9 . The weighted average image that generated by atoms ac-

ivation values is also shown. In this way, we can understand how

ur method encodes feature with regard to nearest neighbor, i.e.,

ocality. 
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Fig. 9. Visualization of the atoms. We randomly pick 10 patches for each FMD dataset categories. Then we visualize the corresponding receptive field of atoms chosen by 

input patches. The first line is the picked patches, the middle five lines are the chosen atoms ordered by their values, and the bottom line is the weighted average image. 

The red box indicates that the atom and the input patch belong to the same category. 
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We experiment on the FMD dataset using randomly picked

patches for 10 categories. In Fig. 9 , the first line is the picked

patches, the middle five lines are the chosen atoms ordered by

their values, the bottom line is the weighted average image. The

red highlighted indicates that the chosen atom belongs to the same

category with the input patch. It can be seen that the atoms with

the same category tend to have high weight and rank in the top,

and the majority of the chosen atoms are the same category with

the input patch. The visualization demonstrates the effectiveness

of locality-aware coding. The locality-aware coding force represen-

tation is restrained by semantic locality. Thus the activation distri-

bution for each encoded feature is highly peaked in one category

region. 

4.5. Discussion 

Our model outperforms traditional off-the-shelf methods and

achieves state-of-the-art results on DTD, FMD and KTH-T2b

datasets, which is attributed to the following reasons. First, our

method integrates the standard convolutional layers and the pro-

posed locality-aware coding layer which is readily pluggable into

any CNN architecture and amenable to training via backpropaga-

tion. This makes our method outperform the non-deep methods,

e.g., hand-crafted methods [9–11] and FV-CNN [28] . Second, we

build an orderless feature using a global representation layer. The

orderless property is suitable for texture classification, and thus we

can get better accuracy than FC-CNN [28] and VGG-16 [21] . Third,

the locality-aware coding tends to enforce a tightness reconstruc-

tion based on the semantic clustering such that the activation dis-

tribution in an encoded feature is highly peaked in one class. This

leads to a discriminative representation over the CNN features as

discussed in Section 3.1 and Section 4.4 . 

As shown in Fig. 9 , an obvious category correlation can be seen

between hard samples like the paper and plastic category, which

may result in misclassification. Because the paper and plastic are

visually similar and will confuse with each other’s feature atoms.

We can increase the number of atoms to construct a larger feature

space to address this problem, but with the increase of computa-
ional complexity brought by more atoms. We can also see that the

tone category has very strong distribution in the feature space, so

he chosen atoms are stone category uniformly. However, stone’s

trong performance may harm the encoding of the wood category,

ue to the mutual porous appearance character. 

. Conclusion and future work 

In this paper, we have presented a new trainable layer named

ocality-aware coding by investigating the effectiveness of sparsity

nd locality in the CNNs for texture classification. Our method

ntegrated the standard convolutional layers and a class-specific

ictionary learning which is readily pluggable into any CNN

rchitecture and amenable to training via backpropagation. The

ocality-aware coding layer built on top of CNN activations leads

o better accuracy and improved the discriminative power of the

NNs feature while allowing arbitrary input image sizes. Our

odel outperforms traditional off-the-shelf methods and achieves

tate-of-the-art results on DTD, FMD and KTH-T2b datasets. 

There are two interesting directions for future work: 

• In this work, we exploited the global maxpooling scheme to

aggregate the CNN features. Several works [68] demonstated

that the second-order statistic representation e.g., the Symmet-

ric Positive Definite (SPD) matrix, is more applicable for texture

classification. Hence, it is interesting to aggregate the CNN fea-

tures under an end-to-end deep network on SPD manifolds. 
• Our method adopted a locality-aware coding layer conducted

with the locality constraint to capture class-specific informa-

tion of samples. It is interesting to incorporate more complex

networks such as ResNet [23] to further improve performance.
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