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Abstract— Many existing mobile robotic telepresence systems
have equipped with two web cameras, one is a forward-facing
camera (FF camera) for video communication, and the other is
a downward-facing camera (DF camera) for robot navigation.
In this paper, we present a new framework of autonomous
person-following for telepresence robots using the two web
cameras. Based on correlation filters tracking methods, we use
the FF camera to track the upper body of a person and the DF
camera to localize and track the person’s feet. We improve the
robustness of feet trackers, consisting of a left foot tracker and a
right foot tracker, by making full use of the spatial constraints of
the human body parts. We conducted experiments on tracking
in different environmental situations and real person-following
scenario to evaluate the effectiveness of our method.

I. INTRODUCTION

A telepresence robot is a mobile videoconferencing system
which can be teleoperated by a remote operator [1], and
has many applications in terms of telepresence in local
environments such as home, office, school, exhibitions, etc.
A remote operator can teleoperate a telepresence robot, as
his/her embodiment, to interact with local persons. In many
situations, a telepresence robot needs to follow a local person
to a new destination or to walk together with a local person
whom a remote operator is interacting with. Therefore, a
telepresence robot should have the ability of following a local
person to reduce the burden on a remote operator to drive the
robot, which makes you have more energy to communicate
and interact with the local person.

The most popular approaches of person-following for
social robots are to use laser range finders (LRFs) [2], [3],
[4], [5], [6] or stereo vision [7], [8] to detect, localize, and
track a person. Telepresence robots are a kind of social
robots, which have commonly equipped with web cameras
for video communication and navigation. In order to make
a robot have the ability of following a person, researchers
usually add distance imaging sensors, such as LRF or Kinect,
to the robot [9]. In this paper, we present a person-following
framework only using the web cameras of a telepresence
robot without adding distance image sensors. Specifically,
since many mobile robotic telepresence systems have a FF
camera for video communication and a DF camera for robot
navigation, we use the FF camera to track the person’s upper
body and the DF camera to localize and track the person’s
feet, as shown in Fig. 1.

For upper body tracking in our system, scale change is
a major issue that often affects tracking results. We use the
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Fig. 1. System overview. The telepresence robot automatically follows
a person using two web cameras, which can reduce the workload of
controlling the robot.

fast discriminative scale space tracking (FDSST) algorithm
[10], which is designed to estimate the scale by additionally
training a scale filter, to cope with scale changes. For
feet tracking, factors affecting the results are illumination
changes, fast motion, other people wearing similar shoes or
pants, etc. One foot tracker might shift to the other foot
because they are very similar in appearance [11]. Another
problem we have to face is that self-occlusion during turning
around will cause tracking failure. In order to alleviate the
above issues, we use the spatial constraints of the body parts
to improve the robustness of the feet tracker.

II. RELATED WORK

One of the most common frameworks of person-following
is to use laser range finders (LRFs) [9], [12]. For example
Leigh et al. [12] proposed a tracking method with good
portability to track both legs by using an LRF. Local occu-
pancy grid maps is also integrated to improve data associa-
tion. Utilizing stereo vision is another popular approach to
achieve person-following through depth maps [7], [15]. For
example, Chen et al. [7] proposed an online Ada-Boosting
tracking algorithm with integrated depth information from a
stereo camera. Pang et al. [15] used a binocular camera to
obtain depth maps and integrated local depth pattern features
into the kernelized correlation filter (KCF).

There has been few work on person-following for robotic
systems only using web cameras. Anezaki et al. [16] pro-
posed a human-tracking robot using QR code recognition
and shape-based pattern matching. Shukor et al. [17] used
a color-based detection methond for object tracking and fol-
lowing robot in library environment. Hu et al. [18] proposed
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a person tracking and following method combining clothes
color features of the person’s upper body and the contour of
the head-shoulder. All the above work employs the change of
person’s shape scale (pixel number) to control the movement
of the robot. This control strategy isn’t robust, especially
when there is an out-of-plane rotation of the human body.
Different from the work mentioned above, we propose to
calculate the distance directly in the two-dimensional space
of two-dimensional ground plane image from the DF camera.

In our system, we use the FF camera to track the upper
body of a person and the DF camera to localize and track
the persons feet. A similar work was done by Koide and
Miura [20]. They proposed an online boosting based person-
following approach using the combination of color, height
and gait features to identify the followed person. They used a
face-forward camera to capture the followed person’s image,
and then identify to identify the color feature of clothes and
estimate the height based on imaging geometry. However,
without the help of LRFs, it is difficult to estimate the
person’s height to meet the needs of applications. Besides,
gait features were calculated by the accumulated range data
of the legs from the LRF.

III. PLATFORM

We use a telepresence robot developed in our lab as a
testing platform, called Mcisbot [21], as shown in Fig. 1.
The Mcisbot contains the Pioneer 3-AT as mobile robot base
and a telepresence head. The robot head consists of a light
LCD screen, a FF camera, a DF camera, and a speaker
& microphone, and all together are mounted on a pan-tilt
platform hold up by a vertical post. The post can be moved
vertically to adjust the robot height ranging from 1200mm-
1750mm, covering school child and adult body heights. The
robot has equipped with a FF camera primarily for video
communication and a DF camera for navigation.

Different from other telepresence robots that are piloted
through a traditional GUI with a key board and mouse
or touchscreen GUI with a graphical buttons, the Mcisbot
can be piloted through a touchable live video image based
user interface (TIUI), as shown in Fig. 2. The TIUI only
contains the live video(s) from the Mcisbot robot without or
almost without graphical buttons, keys, and menus. A remote
operator can use the TIUI to not only drive a telepresence
robot but also operate local objects just by touching their live
video images. In our scenario, a remote operator can directly
choose the person to be followed simply by touching the live
video image of the person with touchscreen gestures.

IV. PERSON-FOLLOWING FRAMEWORK

The framework mainly consists of the upper body tracking
and feet tracking, based on correlation filters that have
shown accurate and high speed performance on tracking
benchmarks [22]. The fast discriminative scale space tracking
(FDSST) algorithm [10] is used to track the upper body,
and the general Kernelized correlation filter (KCF) [23] is
used as the baseline tracker to track feet. We integrate color
naming (CN) features into the histogram of oriented gradient

Fig. 2. Touching live video image user interface (TIUI).

(HOG) features to enhance the discriminative features of feet
appearance. In particular, we also utilize spatial constraints
between human body parts to make sure that feet trackers can
track the correct target. Thus, we refer to our feet tracking
method as the KCF-SC, as spatial constraints of human body
parts are utilized.

A. Upper body tracking

The FDSST [10] is a high-performance tracker dealing
with the scale change of the tracking target. A translation
filter is first used to estimate the new target location and a
scale filter is then applied to estimate the scale of the target.

1) Translation filter: We use the kernel correlation filter
(KCF) as the translation filter to model the appearance of a
target in the kernel space. The filter is trained on a M ×N
image patch p, which consists of each shifted sample pm,n,
(m,n) ∈ {0, 1, ...,M−1}×{0, 1, ..., N−1}. The convolution
response f is calculated by f(pm,n) = w · ϕ(pm,n), where
ϕ denotes the mapping to the kernel space. Then the filer w
can be trained in

w∗ = argmin
w

∑
m,n

(f(pm,n)− gm,n)
2 + λ∥w∥2, (1)

where g is the desired correlation output that is usu-
ally a Gaussian function and λ denotes the regularization
parameter. To optimizing the training process, a kernel
k(p, p

′
) = ϕ(p) · ϕ(p′

) is used to calculate the filter w =∑
m,n αm,nϕ(pm,n), where α is the dual variable of w. α is

calculated in the Fourier domain by

α̂ =
ĝ

k̂pp + λ
, (2)

where kpp is a matrix whose element (m,n) is k(pm,n, p)
and ĝ denotes the DFT operation on g. When there comes a
new frame, the patch z is extracted at the last target location
and the response map is given by

f(z) = F−1(k̂pz ⊙ α̂), (3)

where ⊙ denotes the element-wise multiplication. The lo-
cation of the target in the new frame can be estimated by
searching the location of the max value of f(z).
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To further reduce the computations, two approuaches are
used. One is the sub-grid interpolation of correlation scores
with trigonometric polynomials and the other one is reducing
the feature dimensionality using the Principal Component
Analysis (PCA) [10].

2) Scale filter: The body scale will change while the
person moves. The scale filter is applied to estimate the
scale by computing correlation scores at the location obtained
by the translation filter in the scale dimension [10]. The
desired output correlation output g here is a one-dimensional
Gaussian function as the lable of scales is one-dimensional.
The learning and detection steps are similar to those of the
translation filter, aiming to estimate the scale of the target
based on the correlation results. The feature dimension of
the scale filter can also be reduced by using the PCA.

B. Feet tracking

In our practice, unlike the upper body, the scale of the
each foot changes little. Thus, we only use the KCF to
perform feet tracking without scale estimation for decreasing
the computational cost.

1) Incorporating CN features into HOG: The KCF tracker
only takes HOG features to track targets. It has been con-
firmed that combining complex color features with lumi-
nance could show outstanding performance in object de-
tection and tracking [24]. Eleven basic colors, black, blue,
brown, gray, green, orange, ping, purple, red, white, and
yellow, are used to represent pixels. We generate the CN
feature map from the RGB color space and concatenate it
with the HOG feature to obtain a new feature map of the
tracking target.

2) Spatial constraint between upper body and feet: When
a person is walking, his/her upper body is alway above the
feet. Therefore the detection area of feet can be guided by
the tracking result of the upper body, which improves the
detection speed and reduce background interference. Fig. 3
shows the located area of feet. In our practice, the range of
feet motion is approximate to a sector area of about θ =
80 degrees. According to the location of the upper body,
we estimate the deflection angle of the feet relative to the
orientation of the robot. The horizontal coordinate can then
be calculated according to the deflection angle.

Fig. 3. The range of feet motion is a sector area of about 80 degrees based
on the location of the upper body.

3) Spatial constraint between two feet: We assume that
the displacement of the foot is not very large in successive
frames. We multiply a binary mask with each value of the
response map f(z). The modified convolution conresponse
value of each location (m,n) of the image patch z is
f

′
(zm,n) = γm,nf(zm,n). The distance between the location

(m,n) and the center of the response map is defined as dm,n.
The value of each binary mask is defined as

γm,n =

{
c, if dm,n > T
1− c, if dm,n <= T.

(4)

Note that c is a constant close to zero. We set c to 0.1 and T
to 2. Via the modified response map, it is effective to prevent
any tracker from shifting to the other foot when the person
walks straight. However, when the person turns, the foot of
swing leg is occluded by the supporting leg. In this case the
binary mask is invalid. To cope with this situation, the pixel
distance d between the bounding boxes from the two feet
trackers is used to control the value of a switch s, which
equals to 0 when d > 30, and equals to 1 when d <= 30.
When s equals 1, it means that one foot tracker has shifted
to the other foot. In this case, if the location of the bounding
box from the left/right foot transits, the corresponding foot
tracker would detects an area at distance ℓ to the left/right
side of the right/left foot.

C. Tracker recovery using Kalman filtering

A two-dimensional Kalman filtering method is used to
estimate the location of a target to deal with the situation
where the tracker fails. The state variable xt at time t is a
R4 vector (pxt , p

y
t , v

x
t , v

y
t ). For each consecutive frame, the

elapsed time ∆t is used in state transition matrix F in

F =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 . (5)

Here ∆t is fixed to 0.05s. The initial value for the state is
a zero vector since the coincides with the origin and it is
stationary. When the tracking target is lost, the tracker will
search around the location predicted by the Kalman filter
until the max value of the response map is greater than a
presetting threshold.

V. ROBOT CONTROL

A pre-specified distance D needs to be maintained be-
tween the robot and the followed person. The real distance
between the robot and a person can be calculated directly
based on the pixel distance between the robot and the center
of two bounding boxes of the feet, as shown in Fig. 4 (a).

We define xm as the horizontal coodinate of the image
center from of the FF camera. x is the horizontal coor-
dinate shown of the upper body, as shown in Fig. 4 (b).
The distance between them is the parameter for controlling
angular velocity of the robot. We use Proportional and
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Fig. 4. (a) The distance dp between the robot and the followed person
can be calculated based on the feet tracking result. (b) The orientation
information can be obtained based on the upper body tracking result.

Differential components of the PID controller to control the
linear velocity ν and angular velocity ω at time t:

ν = Kl
p(d

r
t −D) +Kl

d(d
r
t − drt−∆t),

ω = Ka
p (xt − xm) +Ka

d (xt − xt−∆t).
(6)

Kl
p, Kl

d, Ka
p , Ka

d are PD constants, (drt −D), (xt − xm)
are error terms for linear velocity and angular velocity
respectively, and dt is the time difference.

VI. EXPERIMENTS
A. Experiment on video sequences

We got four video sequences by controlling the telep-
resence robot manually to follow a person, among which
two were captured in our laboratory and the other two were
captured in ourdoor environment. All videos contain different
feet tracking challenges. The duration of each video is 40s,
25s, 50s, and 45s, containing 993, 630, 1237 and 1144
frames, respectively. We evaluate our tracking methods based
on tracking success rate. When the person turns around, the
tracker will would to the other foot in some frames because
of the self-occlusion. We still consider that the tracking is
successful in this case as it is inevitable.

Fig. 5. Comparisons between the KCF-SC and the KCF.

The tracking results in the four videos are shown in
Figures 6-9. The number under each col indicates the frame

numbe. The first row is the results of upper body tracking,
the second row and the third row show the cropped track-
ing results of the KCF trackers and the KCF-SC trackers,
respectively.

Fig. 6. Tracking results in the video 1. (a) The KCF trackers maintain
successful in tracking in the first 304 frames, but after that, the right
foot tracker fails due to the self-occlusion. (b) The KCF-SC trackers keep
working well, even when the person turns around.

Fig. 6 shows the tracking results in the video 1. The video
1 was captured in the lab with background interference like
chairs, flowerpots, etc. In the frame #304, the person turns
left at a cornor. When the turning is over, the right foot
tracker of the KCF-SC tracks the right foot again. However,
the right foot tracker of the KCF shifts to the ground in the
frame #411.

Fig. 7. Tracking results in the video 2. There are two persons walking
side-by-side, and they wear the same color of pants and shoes. (a) The right
foot tracker of the KCF shifts to the other person’s left foot in the frame
#194. In the frame #423, the tracker fails. (b) The KCF-SC trackers keep
stable throughout the process.

Fig. 7 shows the tracking results in the video 2. The video
2 was also captured in the lab, and there are two persons
wearing the same black pants and black shes, and walking
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side by side. In the frame #194, they are all turning around.
The KCF-SC trackers still work well after turning. However,
the right foot tracker of the KCF shifts to the other person’s
left foot in the frame #194 and shifts to the ground later.

Fig. 8. Tracking results in video 3. The video was captured in a bike
parking area where bikes might have an influence on the tracking. (a) The
left foot tracker of the KCF shifts to the left leg in the frame #489 and then
it shifts to the ground after a while. (b) Both feet trackers of the KCF-SC
can track their targets accurately although tracking falilures occur in some
frames.

Fig. 8 shows the tracking results in the video 3. The video
3 was captured in an outdoor bicycle parking lot. In this
video, the KCF-SC trackers keep an accurate tracking of the
targets thoughout the whole process. The left foot tracker
fails and shifts to the left leg in the frame #489.

Fig. 9. Tracking results in video 4. The illumination change is the major
challenge in this video. Due to the interference of infrared, the image taken
by the DF camera has a color difference. (a) The right and left foot trackers
of the KCF shift away in the frames #455 and #1077 respectively. (b) Both
trackers of the KCF-SC maintain accurate tracking.

Fig. 9 shows the tracking results in the video 4. The
video 4 was captured on outdoor pavement with illumination
changes. In the frames #455 and #748 of the video, the
brightness of the area where the feet are located suddenly

dims. The KCF-SC trackers work well throughout the track-
ing process. The right foot tracker and left foot tracker of the
KCF fail in the frames #455 and #1077 frames, respectively.

From the experiment results described above, we can see
that, in contrast to the baseline KCF, the KCF-SC method
has much more satisfactory tracking accuracy.

B. Experiment on person-following

We conducted an experiment on person following to verify
the usage of our method in robotic telepresence systems.An
remote operator first teleoperates the telepresnece robot to
move to the front of the local person being followed, and
activates the autonomous person-following function when the
person turns around. After that, the robot can autonomously
follow the local person walking around. In our experiment,
the local person walks at a speed of about 0.5m/s. We
recorded the distance between the robot and the followed
person, and the horizontal difference between the center of
the upper body and the the image center of the FF camera
at 0.05s intervals. The testing data are shown in Figures 10
and 11. The duration of the following experiment is about
50s.

Fig. 10. The distance between the robot and the followed person and the
robot for a run. It maintains between 0.6m and 1.4m.

From the two figures, we can see that the distance between
the robot and a person is ranging from 0.6m and 1.4m,
and the horizontal difference between upper body and FF
camera’s image center changes drastically when the turning
happens at about 17s and 42s. During the whole experiment,
the telepresence robot could always follow the local person
fluently. Although the trackers might fail in several frames,
the tracking would be recovered soon so that it actually has
no effect on the following.

VII. CONCLUSION

In this paper, we have presented an autonomous person-
following framework for telepresence robots only using two
web cameras. The framework combines the upper body
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Fig. 11. The horizontal difference between the center of the upper body
and the image center from the FF camera for a run. It changes drastically
because of the turning.

tracking through an FF camera and the feet tracking through
a DF camera to realize autonomous person-following robots
without adding ranging sensors. The spatial constraint of
upper body on feet can be used to prevent feet tracking from
the disturbance of background, and the spatial constraint
between two feet can ensure the robustness of trackers. The
experimental results show the effectiveness of our method.
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