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Abstract
Many telepresence robots are equippedwith a forward-facing camera for video communication and a downward-facing camera
for navigation. In this paper, we propose to stitch videos from the FF-camera with a wide-angle lens and the DF-camera with
a fisheye lens for telepresence robots. We aim at providing a compact and efficient user interface for telepresence robots with
user-friendly interactive experiences. To this end, we present amulti-homography-based video stitchingmethodwhich stitches
videos from a wide-angle camera and a fisheye camera. The method consists of video image alignment, seam cutting, and
image blending. We directly align the wide-angle video image and the fisheye video image based on the multi-homography
alignment without calibration, distortion correction, and unwarping procedures. Thus, we can obtain a stitched video with
shape preservation in the non-overlapping regions and alignment in the overlapping area for telepresence. To alleviate ghosting
effects caused by moving objects and/or moving cameras during telepresence robot driving, an optimal seam is found for
aligned video composition, and the optimal seam will be updated in subsequent frames, considering spatial and temporal
coherence. The final stitched video is created by image blending based on the optimal seam. We conducted a user study to
demonstrate the effectiveness of our method and the superiority of user interfaces with a stitched video.

Keywords Video stitching · Telepresence robot · User interface · Fisheye lens camera · Wide-angle lens camera · Image
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1 Introduction

A telepresence robot is a form of a video conferencing
device mounted on a mobile robot, which allows a remote
operator to teleoperate the robot as his/her embodiment to
actively telecommunicate with local persons [21]. In recent
years, telepresence robots are increasingly common in var-
ious everyday contexts, such as office environments [39],
remote education [38], technical mediation [1], elderly peo-
ple support [6], and residential care [42]. Many existing
telepresence robots [11,27,50] are equipped with a forward-
facing camera (FF-camera) for video communication and a
downward-facing camera (DF-camera) for navigation. The
two cameras provide two live videos displayed on two corre-
sponding windows in the GUI for operators perceving a local
environment. However, in testing a user interface with these
two video windows, we found that two video windows could
introduce some confusion over a local environment [21]. For
example, an operators often feels missing some views and
context of the local environment, and distracts the attention
due to frequently switching the two video windows. Fortu-
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nately, there is a great deal of overlap between two live videos
owing to the wide-angle lens of cameras. Therefore, we pro-
pose to stitch the two live videos from the FF-camera and the
DF-camera into a stitched video, and we aim at providing
a more compact and efficient user interface for telepresence
robots with user-friendly interactive experiences.

Video stitching has been widely used in video surveil-
lance [37], virtual reality (VR) [30], and digital entertainment
[46]. Existing methods mainly address two challenging
issues: very high computational cost and visual artifacts
(e.g., jitters, causing by the lack of a spatial and temporal
coherence stitching model between successive frames). In
our robotic telepresence application scenario, the FF-camera
uses a wide-angle lens for video communication, and the
DF-camera uses a fisheye lens to obtain a full view of the
telepresence robot and its surroundings for navigation. So
we have to face the strong distortion of fisheye videos and
non-ideal inputs (e.g., the optical centers of the cameras are
not exactly at the same location, the scene is non-planar,
and/or dominant foreground objects move across cameras).

A straightforward scheme to handle these challenging
issues is to perform image stitching on each pair of video
images. There are some works on stitching wide-angle
images [5,25] and fisheye images [20,52], which stitch the
distorted images by correcting the distortionor unwarping the
distorted images with the equirectangular projection. How-
ever, the distortion correction and the unwarping processmay
produce unnatural effects on regions near image edges. And
if being designed to improve stitching quality, these meth-
ods often suffer from a high computational cost. Directly
employing image stitching algorithms for video stitching also
introduces noticeable visual artifacts (e.g., jitters).

In this paper, we develop and implement a multi-homo-
graphy-based video stitching algorithm to create the stitched
video from a wide-angle camera and a fisheye camera for
telepresence robots. Our method consists of video image
alignment, seam cutting, and video image blending. To pro-
vide a stitched video without shape distortion caused by
stitching, we directly align the wide-angle video image and
the fisheye video image based on the multi-homography
alignment without distortion correction, unwarping with
equirectangular projection, or other pre-processes. To alle-
viate ghosting effects caused by moving objects and/or
moving cameras during telepresence robots driving, we use
an enhanced dynamic programming algorithm to find an
optimal seam for warped video image composition. The
selected optimal seam will be updated in subsequent video
images, considering spatial and temporal coherence. The
final stitched video is created through image blending on
the basis of the optimal seam. We conducted a user study on
a telepresence robot equipped with a wide-angle lens camera
and a fisheye lens camera to demonstrate the effectiveness of
our method.

Our contributions are three-fold:

– We propose to stitch videos captured from a FF-camera
and a DF-camera to provide amore compact and efficient
user interface for telepresence robots, and provide remote
operators with user-friendly interactive experiences.

– We present a multi-homography-based video stitching
method to stitch videos from a wide-angle camera and
a fisheye camera. Without calibration, distortion correc-
tion, and unwarping procedures, we can obtain a stitched
video with shape preservation in the non-overlapping
regions and alignment in the overlapping area.

– The user study results demonstrate the effectiveness of
our method and the superiority of the user interfaces with
a stitched video.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews the related work. Section 3 describes
the multi-homography-based video stitching algorithm for
telepresence. The user study settings, procedures, results, and
corresponding analyses are discussed in Sect. 4, and we con-
clude this work in Sect. 5.

2 RelatedWork

In this section, we make a review on image alignment and
video stitching.

2.1 Image Alignment

Image alignment is essential for video stitching, and has
attracted a lot of attentions in the past decades [48]. Con-
ventional methods typically estimate a global transformation
to bring an image pair into alignment [3,32,49], making an
assumption that the scene is a roughly planar, or images
are captured by purely rotating the camera about its optical
center. Such imaging conditions are rarely met in practice,
resulting in misalignments and ghosting effects in alignment
results.

To address these problems, many efforts have been
devoted to estimatingmultiple transformation. Gao et al. [15]
estimated dual-homography for the image alignment when
the scene can be divided into a distant plane and a ground
plane. Lin et al. [34] proposed a smoothly varying affine
transformation, according to the smoothly varying depth of
the scene. Similarly, Zaragoza et al. [53] presented an as-
projective-as-possible method (APAP) to estimate multiple
homographies for better alignment. Lou and Gevers [35]
described a piecewise planar region matching method to cal-
culatemultiple affine transformations, and they usedmultiple
planes to approximate the image. Thesemethods improve the
alignment quality but heavily depend on keypoint detection
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and feature matching algorithms to offer sufficient and uni-
formly distributed keypoint correspondences. Additionally,
keypoint detection, feature matching, and transformation
estimation are time-consuming for real-time applications.

More recently, deep convolutional neural networks have
been exploited to handle the problems of low efficiency
and sparse keypoint correspondences for image alignment.
DeTone et al. [10] designed a HomographyNet to directly
estimate a homography between two images in an end-to-
endmanner.With the success of theHomographyNet, several
deep learning-based homography estimation networks have
been presented. Nowruzi et al. [13] proposed a hierarchy
network using a twin convolutional network, while Chang et
al. [8] presented a cascade Lucas-Kanade network by com-
bining the Lucas-Kanade algorithm with the convolutional
neural network. Apart from these supervised learning-based
methods, an unsupervised homography estimation network
was introduced by Nguyen et al. [40] for UAV image align-
ment.

The alignment of wide-angle images and/or fisheye
images is more challenging, and suffers from heavy radial
distortion [52]. In order for bringing wide-angle images into
alignment, Jin [23] and Byröd et al. [5] estimated jointly the
lens distortion and the alignment transformation, assuming
that all images share the same distortion factors. For cameras
in different radial distortions, Ju and Kang [24] estimated the
lens distortion factor for each image, and then computed a
homography for the alignment of synthetic images, whereas
Kukelova et al. [28] estimated a homography and different
distortion factors to bring images of real scene into align-
ment. In addition, Ho and Budagavi [20] proposed to align
two images captured by a dual-fisheye lens camera. They
unwarped the fisheye images into spherical 2-Dimensional
space, and then employed a two-step alignment to register
the unwarped images. Due to the unwarping process, the
regions near edges of original images are stretched, leading
to shape distortions in alignment results.

In our application scenario, we need to bring a wide-
angle video image and a fisheye video image into alignment.
To obtain an alignment with shape preservation in both
the fisheye video image and the wide-angle video image
for telepresence, we also need to bring the image pair into
alignment without any distortion correction and unwarping
processes.

2.2 Video Stitching

There are several commercial video stitching softwares, such
as VideoStitch Studio1 and AutoPano.2 These softwares usu-
ally compute a 2D transformation relating two cameras,

1 https://www.orah.co/software/videostitch-studio/.
2 http://www.kolor.com/autopano/.

and then bring all pairs of video images into alignment
for the post-production of stitched videos. To improve the
quality of the stitched video, Li et al. [31] found double-
seam to eliminate intensity misalignment, and similar work
has been presented for designing a content-aware adaptive
blending [26]. Some works were presented to obtain bet-
ter alignment results. Lee and Sim [29] stitched videos by
projecting the background plane and the foreground objects
separately, while Jiang and Gu [22] stitched videos using
spatial-temporal content-preserving warps. For videos cap-
tured by handheld cameras, Su et al. [41,47] and Guo et
al. [17] combined the stitching and stabilization techniques
together into a unified optimization framework for video
stitching, whereas Lin et al. [33] stitched videos by recon-
structing the 3D scene using the recovered 3D camera paths
and the 3D scene points. These methods stitched videos in
an iterative manner with low computational efficiency.

Besides, someworkwas designed for real-time processing
or time-critical applications. For video surveillance appli-
cations, He and Yu [19] employed a background modeling
algorithm and a change-detection-based optimal seam selec-
tion approach to stitch videos captured by fixed cameras. A
Multi-UAV-based video surveillance system, SkyStitch [37],
was designed and implemented for real-time aerial surveil-
lance, employing flight information (e.g., the UAV attitude
andGPS location) got from the flight controller as assistance.
Okumura et al. [43] introduced a real-time video stitch-
ing method by implementing and improving a feature-based
algorithm on a field-programable gate array (FPGA). Apart
from hardware acceleration, EI-Saban et al. [12] developed
a real-time method to stitch independent videos streamed
by different mobile phones, while Silva et al. [46] stitched
several live videos into a 360o field of view and spread the
stitched video based on GPU.

Since most existing approaches are designed for stitch-
ing videos from conventional cameras, they can not handle
videoswith heavy lens distortions captured by thewide-angle
lens camera or fisheye lens camera. Considering the distor-
tion, a simplemethod is to undistort the video images through
a rectilinear projection, and then stitch the undistorted videos
frame-by-frame [45]. Nevertheless, the undistortion may
incur unnatural stretches on the regions near the borders of
video images, particularly in video images captured by fish-
eye lens cameras.

Different from the existing methods, we stitch two live
videos captured by a wide-angle lens camera and a fisheye
lens camera mounted on a telepresence robot, and provide a
more compact and efficient user interface for the operators
to obtain friendly interactive experience. Without calibra-
tion, distortion correction, and unwarping procedures, we
can obtain a stitched video with shape preservation in the
non-overlapping regions and alignment in the overlapping
area for telepresence.
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3 Video Stitching for Telepresence

In this section, we describe the algorithm that used to stitch
the videos captured from a wide-angle camera and a fish-
eye camera mounted on a telepresence. We combine video
image alignment, seam cutting and updating, image blend-
ing together to stitch the videos for telepresence, considering
spatial and temporal coherence to alleviate the jitters. The
pipeline of the video stitching algorithm is depicted in Fig. 1.

3.1 Video Image Alignment

Without calibration, distortion correction, and unwarping
procedures, we align the wide-angle video image and the
fisheye video image using the multi-homography alignment
method proposed in our previous work [52]. A keypoint
detector and descriptor (e.g., SUFT [2]) is used to obtain
feature points from the two video images. After feature
matching, inliers can be selected from the point corre-
spondences by using a multi-homography inlier selection
method. A global projective transformation and multiple
local homographies are then estimated from the inliers. The
final multi-homography warps are constructed by weight-
ing between the global homoggraphy and local homography,
in which local homographies are exploited for local region
alignment. As a result, we can achieve a good alignment
accuracy in the overlapping area and shape preservation in
non-overlapping regions.

3.1.1 Multi-homography Inlier Selection

Feature matching can produce point correspondences from
all the feature points, and there may include many mis-
matched points (i.e., outliers). To remove outliers from the
point correspondence set, an inlier selection method can be
employed. The Random Sample Consensus (RANSAC) [14]
is popularly used to select inliers by generating multiple
hypotheses for homography estimation.

In our work, the heavy lens distortion of the wide-angle
video image I and the fisheye video image I ′ should be taken
into consideration, since the homography is a plane trans-
formation. We employ a multi-homography inlier selection
method which can select more inliers for the alignment. A
conditional sampling strategy [9] is used to generate multiple
homography hypotheses. Given a set of point correspon-

dences F = {( fi , f ′
i )}N̂i=1, we generate M homography

hypotheses {h1, . . . , hM } by randomly sampling M mini-
mal subsets of point correspondences from F , where ( fi , f ′

i )

(denoted as Fi ) is a point correspondence between the wide-
angle video image and the fisheye video image. For each
point correspondence Fi , its corresponding residuals to all
homography hypotheses are calculated and ranked in a non-
descending order. According to the residual order, a new
list of homography hypotheses for Fi can be acquired by
hi = {hi1, . . . , hiM }. Fi is more likely to be an inlier of the
hypothesis with a lower residual.

Feature extrac�on
& matching

Outlier
removing Alignment

Alignment

Alignment model

Seam cu�ng
or upda�ng

Blending

Seam upda�ng constraint

Fig. 1 Pipeline of the video stitching of a wide-angle video and a fisheye video
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There may be many common hypotheses shared by hi

and h j at the top place of the list, especially when Fi and Fj

are in the same local area. A conditional inlier probability is
computed to guide the inlier selection after selecting Fi as
an inlier:

f (Fi , Fj ) = 1

m
|hi1:m ∩ h j

1:m |, (1)

where h1:m specifies the first-m hypotheses in the list, | · |
is the counting operator, and ∩ is the intersection operator.
Given the first selected inlier, the probability of that inlier
with the rest point correspondences of F is used to select the
second inlier.

In the experiment, the size of the minimal subset s, the
outlier threshold εo and εr , the number of homography
hypotheses M0 and M are set to 4, 1, 0.01, 10, and 500,
respectively.

3.1.2 Global Homography Estimation

Given an inlier set P = {pi , p′
i }Ni=1 between I and I ′, the

global homography Hg ∈ R
3×3 is defined by

p′ ∼ Hg p, (2)

where ∼ denotes an equality up to a scale. p and p′ are
represented in 2D homogenous coordinates, and Hg is also
in homogeneous. Omitting the scale term, Eq. (2) can be
rewritten as

⎡
⎣
x ′
y′
1

⎤
⎦ =

⎡
⎣
h1 h2 h3
h4 h5 h6
h7 h8 h9

⎤
⎦

⎡
⎣
x
y
1

⎤
⎦ . (3)

Through a cross product on both side, Eq. (3) becomes
03×1 = p′ × Hg p, and can be linearized as

03×1 =
⎡
⎣

01×3 −p� y′ p�
p� 01×3 −x ′ p�

−y′ p� x ′ p� 01×3

⎤
⎦ [h1, . . . , h9]� = Ah, (4)

and only two rows of A are linearly independent. Using the
Direct Linear Transformation (DLT) [18], a global homog-
raphy to fit all inliers can be solved by

h∗ = argmin
h

N∑
i=1

‖ Ãih‖2 = argmin
h

‖ Ãh‖2, (5)

s.t . ‖h‖2 = 1,

where Ãi is the first two rows of A for the i-th inlier, and
Ã ∈ R

2N×9 is the stack of all Ãi .

Equation (5) can be solved through singular value decom-
position (SVD), and global homography Hg is obtained by
reshaping h∗ into a 3 × 3 matrix.

3.1.3 Multi-homography Estimation

Due to strong distortions, wide-angle video image and fish-
eye video image alignment with a global homograhy will
introduce large misalignment [52]. To increase the align-
ment quality, multiple local homographies are estimated by
performing Moving DLT [53] on the inlier set P through

h∗ = argmin
h

N∑
i=1

‖wi Ãih‖2 = argmin
h

‖W Ãh‖2, (6)

s.t . ‖h‖2 = 1,

for each position p∗ in image I , and W ∈ R
2N×2N takes

the form as W = diag ([w1, w1, . . . , wN , wN ]). The scalar
weight wi is defined as

wi = max

(
exp

(−‖p∗ − pi‖2
σ 2

)
, γ

)
, (7)

where σ is a scale parameter, and γ ∈ [0, 1] is used to avoid
numerical issues. The inlier closer to p∗ is given a higher
weight, assuming that pixels in a local area share a homog-
raphy.

Due to a lack of point correspondences, local homo-
graphies in non-overlapping regions are also calculated by
inliers (i.e., some point correspondences in the overlap-
ping region). To alleviate the artifact, we integrate the local
homography h∗ and the global homography Hg into a new
homography, taking advantage of both homographies for
local alignment and shape preservation. The integration for-
mulation is given by

H = wHl + (1 − w)Hg, (8)

where w is the integration parameter, and Hl is the 3 × 3
matrix form of the local homography h∗.

Since the deformation caused by the global homogra-
phy increases along the positive u-axis from the overlapping
region to the non-overlapping regions [7], H is smoothed
from local homography to global homography along u-axis
using w,

w = (u − um)/(uM − um), (9)

where (u, v) is a new coordinate obtained by rotating the
original coordinate (x, y) of the warped image of I . um and
uM are the minimum and the maximum u coordinate of all
pixels, respectively. The rotation angel is θ = arctan(h8/h7).
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Note that image I ′ is warped by using R = H(Hl)
−1 to

compensate the local homography warping effects on the
overlapping region.

3.2 Optimal Seam Cutting and Updating

To alleviate ghosting effects caused bymoving objects and/or
moving cameras, an optimal seam is found for aligned video
composition, and the optimal seam will be updated in sub-
sequent frames, considering spatial and temporal coherence.
The final stitched video image, called forward-downward-
facing video image (FDF-video image), is created by using
the multi-band blending to provide a smooth transition of
lighting from the downward-facing video image (DF-video
image) to the forward-facing video image (FF-video image).

3.2.1 Seam Cutting

Seam cutting is utilized to select an optimal pixel-based con-
tinuous curve (seam) for image blending, which can alleviate
ghosting effects caused by moving objects and/or moving
cameras. As demonstrated in Fig. 2, the seam cutting task is
to find an optimal seam, e.g., the red line frompointA to point
B over the overlapping area. We use an enhanced dynamic
programming approach [16] that holds search directions as
shown in Fig. 3 to find the optimal seam.

The enhanced seam is defined as

Ci, j = ei, j +
min

(
Ci−1, j−1,Ci−1, j ,Ci−1, j+1,Ci, j−1,Ci, j+1

)
, (10)

where (i, j) is a pixel coordinate,C and e indicate the cumu-
lative cost and the gradient cost, respectively. To find a seam
without gradient difference and visible artifacts, we define
the gradient cost by gradient smoothness Sm and gradient
similarity Sd :

e = Sm + Sd . (11)

Given the overlapping areas Is and It of the two warped
images, Sm and Sd are defined as

Sm = ‖∇(Is + It )‖/mean(‖∇(Is + It )‖), (12)

Sd = ‖∇(Is − It )‖/mean(‖∇(Is − It )‖), (13)

Fig. 2 Seam cutting. The task is to find an optimal seam from point A
to point B, such as the red line

Fig. 3 Search directions of the
enhanced dynamic
programming algorithm

where ‖ · ‖ and ∇ are the L2-norm and the gradient operator,
respectively.

3.2.2 Selected Seam Updating

The selected seam will be dynamically updated in succes-
sive video images. Avoiding to introduce noticeable artifacts
caused by large drift of the optimal seams between successive
video images, we employ a seam updating method based on
temporal propagation constraint [44] to gain stable seams.

The temporal propagation constraint is constructed based
on location information of the optimal seam in the previous
video image. It is represented by a matrix Dt−1

w×h , where t

is the index of the video image. Each element of Dt−1
w×h is a

penalty for each point in the overlapping area, which equals
to horizontal distance between the corresponding point and
the optimal seamof the previous video image. In otherwords,
the penalty increases with the distance.

For the current video image,we canget a costmatrixCt
w×h

using Eq. (10). Combining with the temporal propagation
constraint, the final cost matrix C̃t

w×h is calculated using

C̃t
w×h = Ct

w×h + Dt−1
w×h . (14)

We can update the selected seam by performing the enhanced
dynamic programming algorithm again.

3.3 Video Image Blending

Due to the distinct orientations of the DF-camera and the
FF-camera, there exist lighting inconsistencies between the
same scenes of the DF-video image and the FF-video image.
Video image blending can be used to achieve a smooth tran-
sition of lighting from one image to the other. We utilize the
multi-band blending [4] which is widely used and relatively
insensitive to misalignment [54], for warped video image
composition.

We build a Laplacian pyramid on each warped video
image, and the blending becomes a solution of feather blend-
ing on each pyramid level. To obtain the weights used to
perform feather blending, each weight image built on the
optimal seam is converted into a Gaussian pyramid, and
each Gaussian pyramid level is a weight map for correspond-
ing level of the Laplacian pyramid. The FDF-video image is
reconstructed by interpolating and merging all the blended
pyramid levels.
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Fig. 4 Stitching results on wide-angle images and fisheye images of
different scenes. a Original wide-angle video images captured by the
FF-camera.bOriginal fisheye video images captured by theDF-camera,
corresponding to the original wide-angle video images in a. c Stitching
results (the FDF-video images)

3.4 Stitching Results

In general, each image pair should be aligned using the
alignment algorithm.However, alignment on every newcome
image pair will make the stitching slow due to the low com-
putational efficiency of keypoint detection, featurematching,
and inlier selection. Fortunately, the DF-camera and the FF-
camera are fixed on the vertical post of the telepresence robot.
We can assume that the configuration of the cameras are not
changed in a matter of seconds, so we do not need to estimate
the alignment model on every image pair.

Some stitched video images and the corresponding origi-
nal wide-angle video images captured by the FF-camera and
fisheye video images captured by the DF-camera are shown
in Fig. 4. These images consists of complex scenes and sim-
ple scenes, and are captured by a telepresence robot with a
wide-angle lens camera and a fisheye lens camera.

4 User Study

We conducted a user study to compare user interfaces with
one video (the FDF-video) and two videos (the DF-video
and the FF-video) for telepresence robots. For simplicity,
we denote the user interface with the FDF-video as ‘FDF’,

while the user interface with the FF-video and the DF-video
as ‘FF+DF’.

4.1 Experimental Platform

The experimental platform consists of a telepresence robot in
a local environment, user interfaces used by an operator in a
remote environment, and wireless communication networks
for connecting the two environments. An operator can use a
tablet in a remote environment to drive a telepresence robot
to perceive a local environment.

The telepresence robot used in our user study was devel-
oped in our lab, called Mcisbot [21], as depicted in Fig. 5. It
uses the Pioneer 3-AT as a mobile robot base equipped with
a special designed robot head for telepresence. The robot
head contains a light LCD screen, a forward-facing camera
(FF-camera), a downward-facing camera (DF-camera), and
a speaker & microphone, and all together are mounted on a
pan-tilt platform hold up by a vertical post. The FF-camera
with a wide-angle lens can provide a live video for clear
watching of targets or persons in front. The DF-camera with
a fisheye lens provides a complete watching of the ground
around the robot for navigation.

The Mcisbot was specifically designed to evaluate the
usability of the Touchable live video Image based User Inter-
face (TIUI). Themost notable feature of the TIUI is that there
are no explicit graphical buttons, arrow keys, and/or menus,
compared to traditional touchscreen GUIs. The TIUI allows
operators to drive the robot by directly touching the live
video images with finger touch gestures. Naturally, we use
the TIUI to test the effectiveness of the stitched video for con-
venience. Moreover, since traditional touchscreen GUIs are
widely used to support pilot operators to teleoperate telepres-
ence robots [11,36,50,51], we also conducted the user study
on the GUIs to evaluate the effectiveness of the proposed
method. Figure 6a shows the TIUI containing two separate
videos (the FF-video and the DF-video) and the one with a

Screen

Microphone
& Speaker

Pan-Tilt
Actuator

F-F Cam

D-F Cam

Lifting Post

Computer

Pioneer P3-AT
Robot

Fig. 5 The Mcisbot robot
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Fig. 6 Two kinds of user interfaces used in our user study. a The GUI
with two videos (left) and the GUI with a FDF-video (right). b The
TIUI with two videos (left) and the TIUI with a FDF-video (right)

stitched video (the FDF-video). The GUIs used in our exper-
iments are shown in Fig. 6b.

During the experiment, we resized both the wide-angle
video image and the fisheye video image to 640×480 for
stitching. Using a laptop computer with an I5-2410M Intel
2.30 GHz CPU and 4 GB RAM, we achieved a rate of video
stitching up to 15 fps (frames per second). Considering sys-
tem delay and video stitching efficiency, we directly show
the stitching result in the user interfaces, without any post-
processing.

4.2 Participants

We recruited 18 participants from the local university for the
user study, whose ages vary from 17 to 28 years (M = 21.28,
SD=2.803),whereMandSD indicate themean value and the
standard deviation, respectively. All participants use comput-
ers in their daily life. With a five-point scale for familiarity,
ranging from “1 = not at all familiar” to “5 = very familiar”,
all participants reported their familiarity with telepresence
robots (M = 1.72, SD = 0.752). A few of them heard of telep-
resence robots, but had no experience in telepresence robot
operation. The others expressed that they had no idea about
telepresence robots. Similarly, all the participants reported
how familiar they were with video chat on the same five-
point scale, and most of them had video chat experiences (M
= 3.83, SD = 1.200).

4.3 Environment Setup

We constructed an experimental room in our lab as a local
environment to simulate a complex environment, such as a
museum or a meeting room that contains some obstacles,
pictures, and chairs. The physical arrangement of the local
environment is shown in Fig. 7a. The obstacles and chairs
offered participants the direction to drive the robot to walk
around the local environment, and also played roles as anti-
collision objects for safely driving. Operators were located in
another room, specified as a remote environment, to remotely
drive the robot using the user interface, and a picture of an
operator driving the robot to walk around the experimental
room is shown in Fig. 7b.

4.4 Tasks

For comparing the FDF and the FF+DF, we assigned each
participant with tasks of animal picture recognition and robot
driving. When performing these tasks by using the FF+DF, a
remote operator has to perceive the local environment from
two videos, such that, he/she needs to frequently switch
his/her attention between the FF-video and the DF-video to
watch different parts of the local environment, i.e., look at the
animal pictures on the wall through the FF-video and look at
the floor through the DF-video for robot navigation. Besides,
a remote operator has to spend more time to become familiar
with the FF-video and the DF-video, and find the scene rela-
tionship between the FF-video and the DF-video. Instead, by

Wall EntranceObstacle Exit

Chair

Chair

Chair

(a)

(b)

Fig. 7 The local environment. a The physical arrangement of the local
environment. b The robot was driven to walk around the local environ-
ment
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using the FDF, a remote operator can directly perceive the
local environment from a single video.

Using each user interface, a participant was required to
drive theMcisbot robot towalk through the local environment
in safe. Meanwhile, he/she should recognize all the animal
pictures on the wall and tell the experimenter what animal
he/she has saw. There were 8 animal pictures on the wall and
with different recognition difficulty, e.g., different contrast
between the foreground and the background.

The two cameras are designed for different purposes, the
DF-camera for navigation and the FF-camera for commu-
nication. To keep the robot safe from collision with other
objects, operators needed to focus on the DF-video (or the
lower part of the FDF-video) all the time when they were
driving the robot. However, to recognize pictures on the wall,
participants needed to watch the FF-video (or the upper part
of the FDF-video). For safely driving, participants may stop
driving when they could not watch the ground around the
robot.

4.5 Measurements and Analyses

We investigated objective and subjective measurements for
evaluating the FDF and the FF+DF.

The objective measurements measure participants’ task
performance, including task completion time, total number,
correct number. The task completion time is timing from the
robot entering the entrance to it coming out from the exit.
The total number indicates the number of pictures seen by a
participant, and the correct number is the number of correctly
recognized pictures.

The subjective measurements were gained through three
questionnaires and consist of the perceived task success, the
participants’ preference between the FDF and the FF+DF.
For the participants’ preference, we compared the number
of persons for each option. There was a five-point scale for
other questions, and the larger was the better.

A one-way fixed-effects analysis of variance (ANOVA)
was conducted to test the effects of the two cases upon
measurements of task completion time and perceived task
success. For tests of statistical significance, we used a cut-
off value of p < 0.05.

4.6 Procedure

A mixed between- and within-subject user study was con-
ducted. The user interface type (the TIUI and the GUI)
was the between-subject variable, and all participants were
divided into two groups, one group using the TIUI and the
other group using the GUI. The number of videos, i.e., one
video (the FDF-video) and two videos (the FF-video and the
DF-video) was the within-subject variable such that a better
comparison between the two manners can be obtained. To

counterbalance the possible order effect, we permuted the
order of using theFDFand theFF+DF, i.e., the odd-numbered
participants first used the FDF, and the even-numbered par-
ticipants first used the FF+DF. We changed the locations of
animal pictures and furniture after the first trial and told the
participants that the physical layout of the environment may
have been changed. Besides, we also told participants that
the total number of animal pictures may have been changed,
and animal pictures may be different from those used in the
first trial. As a result, participants need to re-explore the envi-
ronment to complete the task in the second trial.

In preparation, a participant was given an overview of
the experimental task, and then an experimenter provided
the instructions on how to use the TIUI or the GUI to drive
the Mcisbot robot. All participants were given 10 minutes
to practice remotely driving the robot with the help of an
experimenter in the training room. This training environment
contained several different animal pictures for participants to
practice the recognition task. Most of participants completed
the practices in less than 10minutes.Andmost of participants
spent practice timewith the TIUI exceeding the GUI because
the GUI is simple and intuitive while skilled operation with
touchscreen gestures on the TIUI need to be obtained. But
using the TIUI to remotely drive the robot is more flexible
than the GUI, particularly changing the direction and speed
of the robot.

After the experimenter drove the robot to entrance of the
local environment, a participant started to operate through the
FDF (or the FF+DF), and the timer was started until the robot
came out from the exit. The number of the correctly recog-
nized pictures and the total number of the saw pictures were
accounted by the experimenter. The participant was asked to
fill in the first questionnaire and prepared to using the FF+DF
(or the FDF) to start the task again. Before the task, the exper-
imenter changed the locations of the pictures and furniture,
and told the participant that the layout of the environment
may have been changed. Then, the participant started to re-
explore the local environment again to complete the task.
After the task, the participantwas required to fill in the second
questionnaire, and the same objective measurements were
recorded. Finally, the third questionnaire designed for cap-
turing the participant’s preference on the FDF and the FF+DF
was also required to be filled in.

4.7 Results

We obtained 16 sets of effective experiment data, 8 sets
for each type of user interfaces (the TIUI and the GUI).
Figures 8 and 9 show the results of the user study using
the TIUI and the GUI, respectively. Herein, the experiment
focused on comparing the FDF and the FF+DF, so we run
data analysis on the TIUI and the GUI, respectively, and the
comparison of the TIUI and the GUI can be found in [21].
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Fig. 8 Evaluations on the TIUI. Note that the error bars show the stan-
dard deviations of the data
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Fig. 9 Evaluations on the GUI. Note that the error bars show the stan-
dard deviations of the data

The objective measurements include mean task completion
time (Task-completion time), the total number of pictures
seen by a participant (Total number), and the number of cor-
rectly recognized pictures (Correct number). The subjective
measurements are composed of perceived task success and
the participants’ preference between the FDF and the FF+DF.

The average task completion time using the TIUI with
the FDF was 177.25 s (SD = 54.22), and 214.75 s (SD =
42.48) for the FF+DF, as shown in Fig. 8. The effect on the
task completion time was not significant, F(1,14) = 2.37, p
= 0.146, η2 = 0.145, possibly because participants were not
skilled in changing the moving speed of the robot. For the
pictures that had been seen, the average number was 7.75
(SD = 0.46) and 7 (SD = 1.31) for the FDF and the FF+DF,
respectively. We did not found a significant effect of video
stitching on this measurement, F(1,14) = 2.33, p = 0.149, η2

= 0.143. Besides, the average number of correctly recognized
pictures using the FDF (M= 7.63, SD = 0.74) was larger than
using the FF+DF (M = 7, SD = 1.31), and F(1,14) = 1.38, p =
0.260, η2 = 0.090. There was a significant effect on perceived
task success with F(1,14) = 21, p = 0.0004, η2 = 0.6, (M =
4.5, SD = 0.53) for the FDF and (M = 3, SD = 0.76) for the
FF+DF. Additionally, almost all participants preferred using
the FDF than the FF+DF, as shown in Fig. 8b.

For the GUI, the average task completion time of using the
FDF (M = 216.63, SD = 46.11) was similar with the FF+DF
(M = 262.13, SD = 79.47), and F(1,14) = 1.96, p = 0.183,
η2=.123. The average number of pictures that had been seen
using the FDF (M = 7.88, SD = 0.35) and the FF+DF (M =
7.63, SD = 0.52) were almost the same. The average number
of correctly recognized pictures for FDF and FF+DF are 7.88
(SD = 0.35) and 7.38 (SD = 0.52), respectively. We found a
significant effect on this measurement, F(1,14) = 5.09, p =
0.041, η2 = 0.267. We found a significant effect on perceived
task success, F(1,14) = 7.18, p = 0.018, η2 = 0.339, and the
FDF had a mean value of 4.5 (SD = 0.53) while the FF+DF
was 3.38 (SD = 1.06). Similar to the user study using the
TIUI, almost all participants preferred to using the GUI with
the FDF rather than the FF+DF, as shown in Fig. 9b. For a
clear comparison, we list the results in Table 1.

Several participants reported that the FDF is a more com-
pact and high efficient user interface than the FF+DF. Using
the GUI, six participants said that the FDF was more conve-
nient in perceving the local environment, and they felt easier
in distance perception because the scene is continuous. Five
participants using the TIUI also gave us the same opinion.
Additionally, five participants using the GUI with two videos
described that they had to frequently switch between the FF-
video and the DF-video, and three operators using the TIUI
with two videos noticed the same problem. This problem
was not existing on the FDF, since the scene in the FDF was
continuous.

In summary, both the user study results on the TIUI and
the GUI have demonstrated the effectiveness of our method.
The telepresence robot incorporatingwith our video stitching
algorithm can provide more friendly interactive experiences.
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Table 1 Experimental results of the user study using the TIUI and the GUI

User interface Measurement Video Mean Standard deviation F-value P-value Effect size

TIUI Task-completion time FF+DF 214.75 42.48 2.37 0.146 0.145

FDF 177.25 54.22

Total number FF+DF 7 1.31 2.33 0.149 0.143

FDF 7.75 0.46

Correct number FF+DF 7 1.31 1.38 0.260 0.090

FDF 7.63 0.74

Perceived task success FF+DF 3 0.76 21 0.0004 0.6

FDF 4.5 0.53

Preference FF+DF 1 – – – –

FDF 7 –

GUI Task-completion time FF+DF 262.13 79.47 1.96 0.183 0.123

FDF 216.63 46.11

Total number FF+DF 7.63 0.52 1.27 0.278 0.083

FDF 7.88 0.35

Correct number FF+DF 7.38 0.52 5.09 0.041 0.267

FDF 7.88 0.35

Perceived task success FF+DF 3.38 1.06 7.18 0.018 0.339

FDF 4.5 0.53

Preference FF+DF 1 – – – –

FDF 7 –

5 Conclusions

This paper has proposed to stitch two live videos to pro-
vide a more compact and high efficient user interface for
remote operators of telepresence robots with friendly inter-
active experiences. The two live videos can be captured
by a forward-facing camera with wide-angle lens and a
downward-facing camera with fisheye lens for video com-
munication and navigation in robotic telepresence systems,
respectively. A multi-homography-based video stitching
algorithm, consisting of video image alignment, seam cut-
ting, and image blending, can stitch these videos without
calibration, distortion correction, and unwarping procedures.
The user study on a telepresence robot was conducted and
results demonstrated the effectiveness of our method and the
superiority of the user interface with a stitched video.
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