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Abstract

Compositional generalization is the ability of gen-
eralizing novel compositions from seen primitives,
and has received much attention in vision-and-
language (V&L) recently. Due to the multi-modal
nature of V&L tasks, the primitives composing
compositions source from different modalities, re-
sulting in multi-sourced novel compositions. How-
ever, the generalization ability over multi-sourced
novel compositions, i.e., multi-sourced composi-
tional generalization (MSCG) remains unexplored.
In this paper, we explore MSCG in the context of
visual question answering (VQA), and propose a
retrieval-augmented training framework to enhance
the MSCG ability of VQA models by learning uni-
fied representations for primitives from different
modalities. Specifically, semantically equivalent
primitives are retrieved for each primitive in the
training samples, and the retrieved features are ag-
gregated with the original primitive to refine the
model. This process helps the model learn consis-
tent representations for the same semantic primi-
tives across different modalities. To evaluate the
MSCG ability of VQA models, we construct a new
GQA-MSCG dataset based on the GQA dataset, in
which samples include three types of novel com-
positions composed of primitives from different
modalities. Experimental results demonstrate the
effectiveness of the proposed framework.

1 Introduction

Compositional generalization refers to the ability of gener-
alizing novel compositions from seen primitives. In vision-
and-language (V&L), the primitives of a composition come
from either the linguistic modality or the visual modality, i.e.,
compositions are multi-sourced. As shown in Figure 1, in the
context of visual question answering (VQA), “white (linguis-
tic modality) + dog (linguistic modality)” is an novel compo-

sition, and “white (linguistic modality) + (visual modal-

ity)” and “ (white + dog in visual modality)” are also novel
compositions. However, prior works [Dankers et al., 2022;
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Figure 1: Multi-sourced novel compositions in the context of VQA.

Li et al., 2024b; Li et al., 2023b] only consider novel com-
positions of primitives from a single modality (e.g., “white +
dog”). Whether the model’s generalization ability to different
modality primitives’ novel compositions (i.e., multi-sourced
novel compositions) remains unexplored. To generalize over
multi-sourced compositions, a model needs to not only have
the ability to understand individual primitives but also the
ability to align primitives of different modalities.

To address the above issue, we propose a retrieval-
augmented training framework. The basic idea of the
framework is to learn similar representations for primitives
from different modalities by retrieving semantically equiv-
alent primitives, thereby maintaining consistent generaliza-
tion ability for multi-sourced compositions. Specifically,
the framework consists of three key components: retrieval
database construction, feature retrieval, and feature aggrega-
tion. For the retrieval database, we construct separate primi-
tive databases for the linguistic and visual modalities, where
words with the same prototype are treated as the same lin-
guistic primitive, and visual entities with the same label are
treated as the same visual primitive. For the same primitive,
both the linguistic/visual primitive databases contain multi-
ple instances of that primitive in different contexts. For ex-
ample, for the linguistic primitive “dog”, the linguistic primi-
tive database contains instances of “Is the dog black?”, “How
many dogs are there?”, “Do you see a golden dog in this
picture?” in different contexts. During training, for each
primitive in the training sample, semantically similar prim-
itives from both the linguistic and visual primitive databases
are retrieved. The retrieved features are then aggregated
with the original primitive features to optimize the model.
Since the representations in the primitive databases are up-



dated throughout the training, the model continuously refines
its current representation by leveraging the retrieved relevant
features to learn similar representations for the same semantic
primitives across different modalities and contexts.

To quantitatively evaluate the generalization ability of
VQA models for multi-sourced novel compositions, we con-
struct the GQA-MSCG dataset based on the GQA dataset
[Hudson and Manning, 2019]. We categorize compositions
based on the modality of the primitives from the composi-
tion, resulting in three types of novel compositions: [Lin-
guistic primitive, Linguistic primitive] (LL), [Visual primi-
tive, Visual primitive] (VV), and [Linguistic primitive, Vi-
sual primitive] (LV). We construct three basic test splits, la-
beled LL, V V , and LV , each containing test samples of dif-
ferent types of novel compositions. To further explore how
the co-occurrence of different types of novel compositions in
samples affects model performance, we construct test splits,
where each sample simultaneously contain two types of novel
compositions: LL+ V V , LL+ LV , and V V + LV , as well
as a test split, where each sample contain all three types of
novel compositions: LL + V V + LV . Experimental results
demonstrate that the proposed framework significantly im-
proves VQA models’ generalization ability to multi-sourced
novel compositions while maintaining their independent and
identically distributed (IID) generalization ability.

To sum up, our contributions are as follows:

• We are the first to explore the multi-sourced composi-
tional generalization in V&L, which is critical for cross-
modal understanding.

• We propose a retrieval-augmented training framework
that improves the multi-sourced compositional general-
ization ability of VQA models by learning similar repre-
sentations for primitives from different modalities.

• We present a GQA-MSCG dataset to evaluate the multi-
sourced compositional generalization ability of VQA
models with different types of novel compositions.

2 Related Work

Compositional generalization has garnered significant atten-
tion in various research fields. In natural language process-
ing (NLP), works [Li et al., 2021; Dankers et al., 2022] fo-
cus on improving the compositional generalization ability of
models for tasks like machine translation. Additionally, Chai
et al. [2024] used text generation models for data augmen-
tation during training to enhance compositional generaliza-
tion in multi-label text classification tasks. In computer vi-
sion (CV), works [Naeem et al., 2021; Jing et al., 2024;
Li et al., 2024b] focus on improving compositional gen-
eralization for tasks like compositional zero-shot learning,
specifically for novel compositions of [visual primitive, vi-
sual primitive]. In V&L, Pantazopoulos et al. [2022] con-
structed the first dataset to evaluate the compositional gen-
eralization ability of image captioning models. Works [Bah-
danau et al., 2018; Akula et al., 2021; Yamada et al., 2024;
Li et al., 2023a] focus on enhancing the compositional gener-
alization ability of VQA models. Moreover, Li et al. [2022]

constructed the Charades-CG and ActivityNet-CG datasets

for temporal video grounding (TVG) and used variational
cross-graph reasoning to improve the compositional general-
ization ability of TVG models. These works primarily focus
on improving the generalization ability of models for novel
compositions involving the same modality of primitives, e.g.,
works in NLP and V&L focus on [linguistic primitive, lin-
guistic primitive] compositions, and works in CV focus on
[visual primitive, visual primitive] compositions. In contrast,
we explore the compositional generalization ability of V&L
models for novel compositions involving different modal-
ity primitives, construct a new benchmark GQA-MSCG, and
propose a retrieval-augmented training framework to improve
the model’s generalization ability for different types of novel
compositions.

3 Framework

3.1 Overview

The overall framework of the proposed framework in the con-
text of VQA is shown in Figure 2. For the training set Dt,
the first step is to construct linguistic and visual primitive
databases, Dq and Dv , respectively, for retrieval purposes.
primitives with the same category (e.g., dog, cat) or attribute
(e.g., blue, big) are treated as the same type of primitive. Both
Dq and Dv contain multiple instances of each primitive in
different contexts from Dt. During training, for each train-
ing sample (Q, V ), where Q represents the question and V
represents the image, the retrieval module is used to retrieve
similar primitives from Dq and Dv for the primitives in Q
and V at feature level, respectively. The retrieved features
are then aggregated with the original primitive features and
used to replace the original features for training. Through
this training process, the VQA model continuously refines its
feature extractor by leveraging the retrieved relevant features,
thereby learning similar features for the same semantic prim-
itives across different modalities and contexts, thus improv-
ing the generalization ability of the model for multi-sourced
novel compositions.

3.2 Retrieval Database Construction

To ensure fairness in the comparison, the retrieval database is
constructed based on the training set Dt to avoid introducing
external data during training.
Linguistic Primitive Database. For the linguistic primitive
database, we first extract all words from the questions in Dt

using the NLTK toolkit [Bird et al., 2009]. All words are lem-
matized, and words with part-of-speech tags as nouns, verbs,
adjectives, and adverbs are considered as linguistic primi-
tives. The set of all unique linguistic primitives is denoted
as Sq . For each linguistic primitive, Tq questions contain-
ing the primitive are sampled from Dt. Although the mean-
ing of the primitive remains the same across these Tq ques-
tions, the different questions provide different contexts. In
different contexts, the features of the same linguistic primi-
tive, extracted using a recurrent neural network, will differ.
Thus, it is necessary to sample different questions for each
linguistic primitive. To preserve the different contexts of the
linguistic primitives, the linguistic primitive database stores
the original questions, not just the linguistic primitive itself.
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Figure 2: The overall framework of the proposed framework.

The resulting linguistic primitive database is represented as

Dq =
⋃

p∈Sq
fq(p), where fq(p) = {pi}

Tq

i=1 represents the

Tq sampled questions containing the linguistic primitive p.

Visual Primitive Database. The process of constructing the
visual primitive database relies on the scene graph annota-
tions, which contains information about object categories and
attributes in the images. Objects in the images are treated
as visual primitives, with category and attribute information
serving as the labels of these primitives. After removing du-
plicates from the images in Dt, the resulting set of labels is
denoted as Sv . Similar to linguistic primitives, even though
different visual primitives may share the same label, they rep-
resent different visual expressions of objects with the same
type/attribute. Therefore, for each label, Tv images contain-
ing the visual primitive with the label are sampled. Since
different VQA models use different visual encoders, the in-
put forms are not limited to object-level features. To address
this, the visual primitive database stores the original images,
not just the visual primitives. The resulting visual primi-
tive database is represented as Dv =

⋃
l∈Sv

fv(l), where

fv(l) = {p
(l)
i }Tv

i=1 represents the Tv sampled images contain-
ing visual primitives with label l.

3.3 Feature Retrieval and Aggregation

To perform retrieval and aggregation at the feature level, both
the training samples and all primitives in the two primitive
databases (Dq and Dv) need to pass through the feature ex-
tractors of the VQA model. For a question Q, we obtain its

feature hq = gq(Q) = {hi
q}

N
i=1, where gq(·) denotes the lin-

guistic feature extractor of the VQA model. Here, hi
q rep-

resents the feature of the i-th word, and N is the number of
words. For an image V , the visual feature extractor gv(·)
typically produces two types of features: “object-level” fea-
tures or “patch-level” features, which can be represented as

hv = gv(V ) = {hi
v}

M
i=1, where hi

v represents the feature of
the i-th object/patch, and M is the number of objects/patches.

After obtaining the primitive-level features (word-level,
object-level, patch-level), for each primitive feature in the
training sample, retrieval is performed on the primitive fea-
ture sets of the questions and images in Dq and Dv (processed
by gq(·) and gv(·)). Specifically, for a primitive feature p in
the training sample, the top Kq most similar primitive fea-

tures {p
(i)
q }

Kq

i=1 are retrieved from the primitive feature set in

Dq , and the top Kv most similar primitive features {p
(i)
v }Kv

i=1
are retrieved from the primitive feature set in Dv . We use
cosine similarity cos(·, ·) to measure the similarity between
two primitive features. The features are aggregated using a
weighted average

pa = p+wq·

∑Kq

i=1 cos(p, p
(i)
q )

Kq

+wv·

∑Kv

i=1 cos(p, p
(i)
v )

Kv

, (1)

where the hyperparameters wq and wv control the contribu-
tions of the different modality primitive databases. We use the
aggregated feature pa to replace the original primitive feature
p for training.

3.4 Optimization

The proposed framework is applicable to different VQA base-
line models, using the same optimization approach as the
baseline model without introducing additional training losses



or constraints. Therefore, for a VQA baseline model using
the training loss L, for a training sample (Q, V ) with ground-
truth A, the training loss for both the baseline model and the
model with our framework is the same:

L = loss(P (Q, V ), A), (2)

where P (Q, V ) represents the output of the VQA model
(e.g., a distribution vector over the number of categories),
and loss(·, ·) represents the training loss function, such as the
cross-entropy loss used in the UpDn model [Anderson et al.,
2018].

4 GQA-MSCG Dataset

In order to quantitatively evaluate the generalization ability of
VQA models to multi-sourced novel compositions, we con-
struct the GQA-MSCG dataset based on the GQA dataset
[Hudson and Manning, 2019]. The process of constructing
the GQA-MSCG dataset consists of three main steps: compo-
sition extraction, sample filtering, and sample classification.
Composition Extraction. We use the same steps as in Sec-
tion 3.2 to extract the linguistic and visual primitives for all
samples in the train balanced split Dt of the GQA dataset.
The linguistic and visual primitives for a sample s ∈ Dt are
represented by Pq

s = {pqis }Ni=1 and Pv
s = {pvi

s }Mi=1, respec-
tively, where N and M denote the number of linguistic and
visual primitives in the sample. The compositions in sam-
ple s are represented as Cs = {[p1, p2]|p1 ∈ Pq

s ∪ Pv
s , p2 ∈

Pq
s∪P

v
s , p1 ̸= p2}. Thus, the complete set of primitives in Dt

can be expressed as PDt
=

⋃
s∈Dt

Pq
s ∪P

v
s , and the complete

set of compositions can be expressed as CDt
=

⋃
s∈Dt

Cs.
Similarly, the compositions in the val all split Dv of the GQA
dataset can be processed to obtain all compositions. We de-
note the set of all compositions as CDv

.
Sample Filtering. For a sample s ∈ Dv , if the sample sat-
isfies the following conditions simultaneously, it is added to
the candidate test sample set Dc:

• All primitives in the sample must appear in the training
set — ∀p ∈ Pq

s ∪ Pv
s , p ∈ PDt

.

• The sample must contain at least one composition not
seen in the training set (i.e., an novel composition) —
∃c ∈ Cs, c /∈ CDt

.

Sample Classification. Based on the modality of the prim-
itives in a composition, we categorize three types of novel
compositions: [Linguistic primitive, Linguistic primitive]
(LL), [Visual primitive, Visual primitive] (VV), and [Linguis-
tic primitive, Visual primitive] (LV). Test samples in Dc are
classified into seven categories: (1) LL: Samples containing
only novel compositions of the type LL. (2) V V : Samples
containing only novel compositions of the type VV. (3) LV :
Samples containing only novel compositions of the type LV.
(4) LL+V V : Samples containing both novel compositions of
the type LL and VV. (5) LL+ LV : Samples containing both
novel compositions of the type LL and LV. (6) V V + LV :
Samples containing both novel compositions of the type VV
and LV. (7) LL+V V +LV : Samples containing novel com-
positions of all three types: LL, VV, and LV. Samples in LL,
V V and LV are used to evaluate the multi-sourced compo-
sitional generalization ability, while samples in LL + V V ,
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Figure 3: Level-1 samples in the GQA-MSCG dataset.
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Figure 4: Level-2 samples and Level-3 samples in the GQA-MSCG
dataset.

LL+LV , V V +LV and LL+V V +LV are used to further
evaluate the impact of the co-occurrence of different types of
novel compositions on model performance.

For each category of test samples, we randomly sample
5,000 samples from Dc, resulting in a total of 35,000 samples
for the GQA-MSCG dataset. Samples containing x types of
novel compositions are referred to as Level-x samples, and
the difficulty of the samples increases as x increases. For



Table 1: Accuracy (%) on the GQA-MSCG dataset.

Type Model
Level-1 Level-2 Level-3

Overall
LL VV LV LL+VV LL+LV VV+LV LL+VV+LV

Small Model CFR [Nguyen et al., 2022] 74.78 72.18 73.36 72.26 73.56 70.94 69.78 72.41
(≤ 0.2B) + RAG (Ours) 76.28 73.88 75.64 73.58 75.66 73.18 71.22 74.21

Large Model

LLaVA-1.5 [Liu et al., 2023] 70.22 70.34 69.62 67.04 68.84 68.40 64.14 68.37

(≥ 7B)

LLaVA-1.6 [Liu et al., 2024a] 72.36 71.52 72.60 69.70 69.50 69.98 67.60 70.46

Qwen-VL [Bai et al., 2023] 72.24 65.54 69.06 68.18 72.08 66.04 66.32 68.49
+ RAG (Ours) 74.68 68.90 71.98 71.50 74.82 68.92 69.88 71.53

example, samples in LL, V V and LV are Level-1 samples,
LL + V V , LL + LV and V V + LV are Level-2 samples,
LL+ V V +LV are Level-3 samples. As the level increases,
the co-occurrence count of novel composition categories in
the test samples continues to rise, making the difficulty of the
test samples increasingly higher. The test samples of GQA-
MSCG are shown in Figure 3 and Figure 4, where the words
or visual regions of the same color in a sample represent a
pair of novel compositions in the sample.

5 Experiments

5.1 Experimental Setup

Dataset. We evaluate proposed frameworks on the VQA
task, three datasets are selected to validate the effectiveness
of the proposed frameworks: the GQA dataset [Hudson and
Manning, 2019], the VQA v2 dataset [Goyal et al., 2017]

and our GQA-MSCG dataset. The GQA dataset is a widely
used large-scale dataset in VQA, containing a large number
of template-based compositional questions. The VQA v2
dataset is an extended balanced version of the VQA v1 dataset
[Antol et al., 2015], where questions are human-made. These
two datasets are often used to test the generalization ability of
VQA models to IID data as well as their ability for compo-
sitional reasoning. Our GQA-MSCG dataset is used to eval-
uate the VQA model’s ability to generalize consistently to
multi-sourced novel compositions, which refers to the VQA
model’s ability to generalize to novel compositions of primi-
tives from different modalities.

Baseline Models. We use CFR [Nguyen et al., 2022] and
Qwen-VL [Bai et al., 2023] as baseline models. The baseline
models combined with the proposed framework are referred
to as CFR+RAG and Qwen-VL+RAG, respectively. CFR is a
representative small model in the VQA task with a parameter
size less than 0.2B. Qwen-VL is a popular open-sourced mul-
timodal large model (with more than 7B parameters), which
can be applied to various vision-and-language tasks such as
VQA, image captioning, visual dialogue, and others. For both
CFR and Qwen-VL, we reimplemented them based on their
officially released code.

Implementation Details. For experiments on all three
datasets including GQA, GQA-MSCG and VQA v2, we fine-
tune Qwen-VL and Qwen-VL+RAG with LoRA [Hu et al.,
2022] with a maximum of 2 epochs. For CFR+RAG and
Qwen-VL+RAG, we set wq = 0.6 and wv = 0.4.

For experiments on the GQA dataset and the GQA-
MSCG dataset, we fine-tune CFR, Qwen-VL, CFR+RAG,
and Qwen-VL+RAG using the train balanced split of the
GQA dataset and selected the best-performing model weights
on the val balanced split of GQA. Using these model weights,
we present the experimental results on the test-dev split of
the GQA dataset and all seven test splits of our GQA-MSCG
dataset. The maximum number of epochs for fine-tuning CFR
and CFR+RAG was set to 12. The sampled number Tq and
Tv for constructing Dq and Dq are set to 8 and 32, respec-
tively. Moreover, we use the scene graph provided by GQA
to construct Dv . The number of aggregated primitive Kq and
Kv are set to 4 and 16, respectively. Distinctively, for ex-
periments on the VQA v2 dataset, we set Tq = 1, Tv = 32,
Kq = 4 and Kv = 4. For constructing Dv , we use the ob-
ject categories detected by Faster R-CNN [Ren et al., 2016],
ignoring the object attributes.

5.2 Multi-Sourced Compositional Generalization
Performance

We evaluate the MSCG ability of VQA models on the pro-
posed GQA-MSCG dataset. We compare with multimodal
large models, including LLaVA-1.5 [Liu et al., 2023] and
LLaVA-1.6 [Liu et al., 2024a], with the experimental re-
sults shown in Table 1. We can observe that: (1) As the co-
occurrence count of novel composition categories in the test
samples increases (Level-1 → Level-3), the model’s perfor-
mance gradually decreases. For example, LLaVA-1.5 has an
accuracy of 70.22% in the LL split, 67.04% in the LL+V V
split, and 64.14% in the LL+ V V + LV split. (2) Different
VQA models exhibit significant differences in their ability to
generalize to novel compositions of different modality prim-
itives. For example, LLaVA-1.5 performs better on the V V
split than on the LL split, while Qwen-VL shows the oppo-
site. (3) Both small VQA models (e.g., CFR) and large VQA
models (e.g., Qwen-VL) benefit significantly from the pro-
posed framework, which enhances their generalization ability
to multi-sourced novel compositions.

As a result, based on the experimental results, the follow-
ing conclusions can be drawn: (1) Existing VQA models still
have shortcomings in handling complex compositional ques-
tions. (2) It is necessary to specifically consider the multi-
sourced compositional generalization ability for VQA mod-
els. (3) The proposed framework is highly versatile and can
be applied to different baseline models, improving their gen-
eralization ability to novel compositions of primitives from



Table 2: Accuracy (%) on the test-dev split of the GQA dataset.

Type Model Accuracy

Attention-based MAC [Hudson and Manning, 2018] 52.43

Graph-based LCGN [Hu et al., 2019] 55.63

NMN-based MMN [Chen et al., 2021] 59.14

Pretrain-based
BLIP-2 (FlanT5XXL) [Li et al., 2023c] 44.70

(zero-shot)
MiniGPT-4 [Zhu et al., 2023] 43.50
LLaVA-1.5 [Liu et al., 2023] 61.93
LLaVA-1.6 [Liu et al., 2024a] 64.26

Pretrain-based

CFR [Nguyen et al., 2022] 70.27

(fine-tuned)

+ RAG (Ours) 71.70

Qwen-VL [Bai et al., 2023] 54.98
+ RAG (Ours) 56.11

Table 3: Accuracy (%) on the val split of the VQA v2 dataset.

Type Model Accuracy

Small Model

DLR [Jing et al., 2020] 57.96

(≤ 0.2B)

CF-VQA [Niu et al., 2021] 63.73
CLS [Mao et al., 2024] 63.94
ASS [Li et al., 2024a] 64.00
KDAR [Peng and Wei, 2024] 65.54

Large Model

PNP-VQA [Tiong et al., 2022] 63.30

(≥ 7B)

BLIP-2 (FlanT5XXL) [Li et al., 2023c] 65.20

Qwen-VL [Bai et al., 2023] 69.04
+ RAG (Ours) 69.82

different modalities.

5.3 Independent and Identically Distributed
Generalization Performance

We verify the improvement of the proposed framework in
IID generalization performance on the test-dev split of the
GQA dataset [Hudson and Manning, 2019] and the val split
of the VQA v2 dataset [Goyal et al., 2017]. For GQA, we
compare to five different types of VQA models, including
attention-based MAC [Hudson and Manning, 2018], graph-
based LCGN [Hu et al., 2019], neural modular network based
(NMN-based) MMN [Chen et al., 2021], zero-shot pretrain-
based BLIP-2 [Li et al., 2023c], MiniGPT-4 [Zhu et al.,
2023], LLaVA-1.5 [Liu et al., 2024b], LLaVA-1.6 [Liu et
al., 2023], and fine-tuned pretrain-based CFR [Nguyen et al.,
2022], Qwen-VL [Bai et al., 2023]. For VQA v2, we compare
to VQA models with less than 0.3B parameters (DLR [Jing
et al., 2020], CF-VQA [Niu et al., 2021], CLS [Mao et al.,
2024], ASS [Li et al., 2024a], KDAR [Peng and Wei, 2024])
and VQA models with more than 7B parameters (PNP-VQA
[Tiong et al., 2022], BLIP-2 [Li et al., 2023c], Qwen-VL [Bai
et al., 2023]).

Experimental results on the test-dev split of the GQA
dataset are shown in Table 2. From the table, we can ob-
serve that: (1) Pretrain-based models outperform other types
of models (such as attention-based, graph-based, and NMN-

Table 4: Ablation studies on the GQA-MSCG dataset.

Model Dq Dv

Level-1

LL VV LV

CFR [Nguyen et al., 2022] - - 74.78 72.18 73.36

+ RAG
✓ - 76.18 73.46 74.24

(Ours)
- ✓ 75.66 73.66 74.80
✓ ✓ 76.28 73.88 75.64

based frameworks) in terms of IID generalization perfor-
mance. (2) The proposed framework further enhances the IID
generalization performance of baseline models (e.g., 1.43%
and 1.13% absolute performance gains in accuracy for CFR
and Qwen-VL, respectively). These experimental results
demonstrate that the proposed framework is applicable to dif-
ferent task scenarios, including multi-sourced compositional
generalization scenario and independent and identically dis-
tributed generalization scenarios.

Experimental results on the val split of the VQA v2 dataset
are shown in the Table 3. The results demonstrate that our
framework is inoffensive for IID generalization. The rea-
son why the performance gains of the proposed framework
on VQA v2 are less than on GQA is that the questions in
GQA are more compositional and thus are more suitable to
be improved by our framework. Such experimental results
further prove the effectiveness of the proposed framework for
improving the IID generalization ability of VQA models.

5.4 Ablation Studies

The results of ablation studies on the GQA-MSCG dataset us-
ing CFR as the baseline model are shown in Table 4. From
the experimental results, the following conclusions can be
drawn: (1) Conducting retrieval only on the question re-
trieval database Dq or the image retrieval database Dv dur-
ing training can also improve the baseline model’s perfor-
mance, especially for novel compositions of specific modal
primitives. For example, when retrieval is performed only
on Dv , improvements are more evident for compositions of
visual modal primitives (the VV split). (2) Overall, using
both the question and image retrieval databases simultane-
ously results in the best performance (highest average accu-
racy across all splits). These ablation study results confirm
the necessity of multi-sourced retrieval during training and
demonstrate that the linguistic primitive database Dq or vi-
sual primitive database Dv are complementary, helping to en-
hance the baseline model’s generalization ability across dif-
ferent compositions.

5.5 Parameter Analysis

We analyze the influences of wq and wv on the MSCG abil-
ity of our framework, which denote the explicit contributions
of the linguistic primitive database and the visual primitive
database, respectively. Figure 5 shows the performance vari-
ations of the proposed framework with changing values of
wq and wv . First, we conduct an initial analysis of wq and wv

by setting them to the same value. The experimental results
are shown in Figure 5 (a). It can be seen that as the values
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Figure 5: Parameter analysis using CFR as the baseline model on the GQA-MSCG dataset.
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Figure 6: The qualitative comparison between CFR+RAG (Ours)
and CFR on the GQA-MSCG dataset.

increase, the performance of the proposed framework peaks
when wq = wv = 0.4, and further increasing wq and wv does
not improve the performance. Furthermore, we analyze the
effectiveness of the proposed framework with wq ̸= wv by
fixing wq or wv at 0.4 and adjusting the other parameter (i.e.,
wv or wq), as shown in Figures 5 (b) and (c). We can observe
that: (1) The performance of CFG+RAG fluctuates obviously
when adjusting either wq or wv . (2) CFR+RAG performs best
with setting wq = 0.6 and wv = 0.4 simultaneously. Based
on the above experimental results, we set wq to 0.6 and wv to
0.4 for all experiments.

5.6 Qualitative Analysis

For each split of Level-1, we provide two qualitative exam-
ples of CFR+RAG (Ours) and CFR (the baseline model) on
the GQA-MSCG dataset in Figure 6. In the figure, novel
compositions of linguistic primitives are highlighted in red
text, and visual primitives are enclosed in red boxes. It can
be observed that for test samples with novel compositions
composed of primitives from different modalities, the pro-
posed framework helps the baseline model make more ac-
curate predictions. For example, in the first sample from
the GQA-MSCG dataset’s LL split, the question is “Are the
jeans different in color than the flowers?”, which includes the
novel composition of linguistic primitives “jeans + flowers”.
The baseline model CFR gives an incorrect answer, “no”. In
contrast, after incorporating CFR into the proposed frame-
work, it correctly predicts “yes”. Moreover, for test samples
in the V V and LV splits, the proposed framework still pro-
vides accurate answers, thanks to the alignment of primitives
with the same semantics across different contexts and modal-
ities. These qualitative examples demonstrate that the pro-
posed framework enhances the baseline model’s generaliza-
tion ability to multi-sourced novel compositions, proving the
effectiveness of the framework.

6 Conclusion

In this paper, we explored the multi-sourced compositional
generalization ability of models in the context of VQA. We
have presented a retrieval-augmented training framework to
encourage VQA models to learn unified representations for
the same semantic compositions by aligning semantically
equivalent primitives across different modalities at the fea-
ture level. The proposed framework can be seamlessly in-
corporated into existing VQA models to improve their multi-
sourced compositional generalization ability. We extend the
GQA dataset to construct a GQA-MSCG dataset, which en-
ables the quantitative evaluation of the multi-sourced compo-
sitional generalization ability for VQA models. Experimen-
tal results demonstrate that our framework can improve not
only the multi-sourced compositional generalization ability,
but also the IID generalization ability.
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