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Abstract

The matching formulation makes it naturally hard for the
stereo matching to handle ill-posed regions like occlusions
and non-Lambertian surfaces. Fusing monocular priors
has been proven helpful for ill-posed matching, but the
biased monocular prior learned from small stereo datasets
constrains the generalization. Recently, stereo matching
has progressed by leveraging the unbiased monocular prior
from the vision foundation model (VFM) to improve the
generalization in ill-posed regions. We dive into the fusion
process and observe three main problems limiting the
fusion of the VFM monocular prior. The first problem is the
misalignment between affine-invariant relative monocular
depth and absolute depth of disparity. Besides, when we
use the monocular feature in an iterative update structure,
the over-confidence in the disparity update leads to local
optima results. A direct fusion of a monocular depth map
could alleviate the local optima problem, but noisy disparity
results computed at the first several iterations will misguide
the fusion. In this paper, we propose a binary local ordering
map to guide the fusion, which converts the depth map into
a binary relative format, unifying the relative and absolute
depth representation. The computed local ordering map
is also used to re-weight the initial disparity update,
resolving the local optima and noisy problem. In addition,
we formulate the final direct fusion of monocular depth to
the disparity as a registration problem, where a pixel-wise
linear regression module can globally and adaptively align
them. Our method fully exploits the monocular prior to
support stereo matching results effectively and efficiently.
We significantly improve the performance from the exper-
iments when generalizing from SceneFlow to Middlebury
and Booster datasets while barely reducing the efficiency.
https://github.com/YaoChengTang/Diving-into-the-Fusion-
of-Monocular-Priors-for-Generalized-Stereo-Matching

1. Introduction

Stereo matching provides dense depth for various down-
stream applications, such as autonomous driving, robotics,
AR/MR, etc. These applications require stereo match-
ing to generalize across different scenes from wild worlds.
However, the generalization of stereo matching becomes
poor in ill-posed regions due to occlusion, texture-less, and
non-Lambertian surfaces (e.g., reflective or transparent sur-
faces). Fusion of monocular priors is proven to help correct
the ill-posed binocular matching results [9, 15, 18, 22, 23,
33, 47, 54]. But the monocular prior trained on the limited
data distribution of stereo datasets is susceptible to domain
bias and can only capture significantly biased monocular
features for certain scenes [13, 30].

Taking advantage of large-scale scenes and the easily
collected ground truth of monocular depth, the vision foun-
dation model can provide an unbiased monocular prior
[16, 48, 49]. Recently, some methods have made great
progress in fusing the unbiased monocular prior into the
stereo matching to improve the generalization in ill-posed
regions [3, 8, 46]. In this paper, we dive into the fusion
mechanism and find three main problems limiting a full ex-
ploration of the unbiased monocular prior. The first prob-
lem lies in the natural gap between the affine-invariant rel-
ative depth from monocular depth and absolute depth from
disparity. Although we can forcibly align the two kinds of
depth with a complex mutual refinement, these alignments
could involve heavy computation and greatly harm the effi-
ciency [8, 46]. The other problem exists in the fusion with
monocular feature maps in an iterative refinement structure
[7, 43, 47]. The implicit feature fusion makes the fusion
more biased to the binocular information due to the iter-
ative update training scheme, where the over-confidence of
the disparity update causes local optima, as shown in Figure
1. An additional fusion of monocular depth could alleviate
the local optima, but the direct fusion of the depth map is
easily affected by the noisy depth results. Even with un-

https://github.com/YaoChengTang/Diving-into-the-Fusion-of-Monocular-Priors-for-Generalized-Stereo-Matching
https://github.com/YaoChengTang/Diving-into-the-Fusion-of-Monocular-Priors-for-Generalized-Stereo-Matching
https://arxiv.org/abs/2505.14414v1
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Figure 1. The visualization of different ill-posed regions in the Booster dataset. Our method achieves an overwhelming advantage in all
kinds of regions.

biased and smooth monocular depth from the VFM, noisy
disparity at early iterations slows down a good fusion.

In this paper, we present a new depth representation
called the local binary ordering map that indicates whether
two pixels are farther or closer. It converts the depth into a
binary relative depth representation, unifying the monocular
depth and binocular disparity. The local binary order map
also guides fusion in an explicit manner, which restricts the
influence of the large noise from outliers. Furthermore, we
formulate the binocular disparity map as a noisy version of
monocular depth registered by specific pixel-wise scale and
shift. Therefore, the alignment between monocular depth
and binocular disparity can be deemed a noisy linear regres-
sion problem about the registration parameters. The regis-
tration formulation globally and adaptively aligns the two
kinds of depth in an efficient manner.

Our network can be divided into three modules. The
monocular encoder extracts unbiased monocular priors, in-
cluding monocular depth and context features, using a large
pre-trained monocular network like [48–50]. Then, the fu-
sion can be realized by an iterative local fusion module and
a global fusion module to fully exploit the usage of the
monocular priors with matching information. The iterative
local fusion module uses a two-stream architecture to up-
date the disparity iteratively. The first stream computes two
binary ordering maps from monocular depth and binocular
disparity through a series of LBP-like convolution blocks.
Then, we compute the differences between the two binary
ordering maps to form a local guidance for fusion. At the
same time, the second stream predicts an initial disparity
update result through a multi-level GRU using cost volume
and monocular context features. The local guidance is used

to re-weight the initial disparity update result, resolving the
local optima. After local fusion, the global fusion module
realizes the optimization of the disparity map by register-
ing to monocular depth. We first compute two parameters
to register the relative depth to the absolute depth globally.
It solves the noisy linear regression problem between op-
timized disparity and monocular depth through a series of
convolutions. Then, we compute a confidence map using
the cost volume, the hidden state of GRU, and the local
guidance from the last iteration. The confidence map guides
the fusion of the optimized binocular disparity and the reg-
istered monocular depth as the final prediction.

We compare our model with state-of-the-art methods us-
ing the standard setting, training on the SceneFlow dataset,
and testing on five real-world datasets with various ill-posed
areas, including KITTI 2012, KITTI 2015, Middlebury,
ETH3D, and Booster. The results demonstrate that our
method significantly enhances the performance of state-of-
the-art approaches, as shown in Figure 1. Experiments show
that our method achieves a 10-point improvement in the
bad2 metric for transparent regions on the Booster dataset
and reduces errors by more than 50% on Middlebury and
ETH3D, where we do not use additional stereo data or spe-
cific data augmentation. Meanwhile, even involving a VTF
model, our method barely raises the time cost, benefiting
from the elegant explicit designs.

2. Related Work

2.1. Generalized Stereo Matching

Generalized stereo matching aims to produce a reliable
dense disparity map when the target domain (e.g., real-



world data) differs from the source domain (e.g., synthetic
data). Some methods focus on the learning of domain in-
variant features [4, 9, 17, 22, 33, 40, 54]. MS-PSMNet
[4] replaces the learning-based features with hand-crafted
features to force the stereo network focus on the matching
space. MS-PSMNet has achieved great improvement, but
its hand-crafted features limit the performance of the stereo
network. Thus, many methods turn to improve the train-
ing process by transforming learning [22], meta-learning
[17, 40], contrastive learning [33, 54], and fisher informa-
tion [9].

The above feature-based methods significantly improve
the generalization of stereo matching. However, it is diffi-
cult for them to eliminate domain gaps due to the complex-
ity of real-world scenarios. Then, some researchers inte-
grate other modalities to enrich the features of RGB images
[42, 52]. They achieve impressive performance but require
additional devices. Instead, other researchers propose to
generate more and better data for training [3, 5, 39, 41, 46].
AdaStereo [39] and HVT-RAFT [5] augment the training
data in color space to enrich the domain distribution in the
synthetic dataset. They improve greatly, but the rendered
images in the synthetic dataset are unrealistic to the real
world. Thus, NerfStereo [41] turns to reconstruct the real-
world scenes from Nerf and re-renders stereo images to im-
prove the quality of training data.

In addition to improving generalization from features
and data, some methods focus on architecture design with
specific knowledge of stereo matching [7, 12, 14, 20, 43, 47,
53]. DSMNet [53] uses long-range matching information
in cost aggregation to correct the mismatched points. The
improvement in cost aggregation is remarkable, but the ad-
ditional operations in 3D space are time-consuming. Many
methods then turn to incorporating global information when
constructing cost volume. STTR [20] and CSTR [14] use
transformers to capture long-range matching information.
Other methods [7, 43, 47] build auxiliary volume to aug-
ment the original cost volume. There are also some meth-
ods resolving the generalization problem from uncertainty
learning [15, 23].

The aforementioned approaches have achieved great per-
formance but still rely on biased monocular priors. Our
method introduces unbiased monocular priors from a pre-
trained large model and uses effective fusion mechanisms
to fuse them, achieving impressive generalization ability.

2.2. Fusing Monocular and Stereo Estimation

Inspired by the human vision system that fuses binocular
disparity and monocular depth cues [3, 8, 10, 34, 44–46], re-
searchers are exploring the fusion mechanism for machine
vision. Tradition method [35] achieves it via an MRF opti-
mization objective that relies on the binocular disparity and
monocular cues. Deep learning methods mainly focus on

volume fusion or depth map fusion [3, 8, 46]. The volume
fusion methods introduce monocular priors into cost vol-
ume [3, 8, 19, 46, 51]. These methods require a fixed dispar-
ity range and depend on domain-biased monocular priors.
Our method assumes no limit on the disparity range and in-
troduces unbiased monocular priors from a pre-trained large
model. The depth map fusion methods fuse the monoc-
ular depth and the binocular disparity in one-stage post-
processing [1, 2, 6, 24, 55]. These methods mainly predict
affine-invariant monocular depth, which is not aligned with
binocular disparity and results in noise in fusion. Instead,
our method uses local ordering maps to make compatibility
between monocular depth and binocular disparity, reducing
noise in the iterative matching process. Based on the op-
timized binocular disparity, the monocular depth is further
globally aligned with it by learning two parameters to solve
the scale ambiguity in monocular results.

3. Method
Our network structure is illustrated in Figure 2. First, we
extract features from the left and right images to construct
a cost volume. Meanwhile, the monocular encoder module
extracts initial hidden states, context features, and monoc-
ular depth from the left image using a pre-trained large
monocular model [49]. Then, the local fusion module it-
eratively optimizes the disparity estimation with monocu-
lar priors using the local binary ordering map. Finally, the
global fusion module registers the optimized disparity with
the monocular depth as the final result.

3.1. Monocular Encoder
The monocular priors learned by the stereo-matching model
are heavily biased due to the scarcity of wild-world stereo
data [13, 30]. This paper uses the widely used DepthAny-
thing v2[49] to extract unbiased monocular priors to miti-
gate the domain gap, including monocular context features
and depth. However, it is flexible to use other VTFs as long
as the monocular prior is not biased to specific scenarios.

As shown in Figure 2, given an image with a resolution
of H ×W , we pre-process the image as DepthAnything v2
[49] by resizing the longest side of the image to 512 pixels.
The resized image is then fed into a frozen DepthAnything
v2 to extract intermediate features before the DPTHead [32]
and monocular depth after the DPTHead. These intermedi-
ate features and monocular depth are subsequently resized
to a H/4 ×W/4 resolution using a bilinear function to in-
teract with the stereo-matching pipeline. We build a two-
stream convolution module to generate the initial hidden
state and monocular context features from the intermediate
features. Although the output of DepthAnything v2 is in-
verse depth (disparity under unknown camera parameters),
we refer to it as monocular depth for consistency descrip-
tion.
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Figure 2. The pipeline of our method. w⃝ represents the warping operation when constructing the cost volume. L⃝ is look up operation
used to sample cost volume. c⃝ represents concatenation. +⃝ represents add operation, while ×⃝ represents multiplication.

3.2. Iterative Local Fusion

The iterative local fusion module leverages the binary local
ordering map to update disparity with monocular priors it-
eratively. The binary local ordering map helps mitigate the
impact of outlier noises by converting absolute values into
ordering relationships, which is much more robust than the
pixel-wise depth value. Besides, it also unifies the affine-
invariant depth and absolute disparity to be compatible with
the order relationship.

To compute the binary local ordering map, we use a se-
ries of LBP-like operations [28, 29] with varying window
sizes to extract local ordering features. Each LBP-like oper-
ation consists of a convolution with fixed weights followed
by a sigmoid function, which measures the relative depth
relationships between the center pixel of the window and
its neighboring pixels, indicating which pixels are closer or

farther. The formulation of the local ordering map MO at
pixel (u, v) is as follows:

MO(u, v) = {σ(D(u′, v′)−D(u, v)) | (u′, v′) ∈ N(u,v)},
(1)

where D is depth or disparity map, σ is the sigmoid func-
tion and N is the neighborhood. To employ the binary local
ordering map into the iterative refinement structure, we use
the LBP-like encoder to extract local ordering maps from
both monocular depth and binocular disparity in the previ-
ous iteration, as shown in Figure 2. These two kinds of local
ordering maps are concatenated to predict the monocular
guidance. The guidance G is then used to re-weight the ini-
tial disparity update ∆d to avoid local optima. We represent
the monocular guidance as a Beta distribution Beta(α, β).
During training, G is sampled via reparameterization trick.
At test time, we compute the distribution expectation to ob-



tain it: G = α/(α+ β). G is used to reweight the disparity
update, as defined in Equation (1) of the main text.

As we mentioned, the first several disparity predictions
are noisy, especially during training. The local order-
ing map may still have many wrong relative depth values,
leading to wrong guidance and slow training convergence.
Therefore, we propose to gradually release the influence of
guidance to the initial disparity update results as

∆̃d = ∆d(1 +G · r · t/T ). (2)

Here, r is the manually specified amplitude parameter that
controls the influence of the guidance. t represents the cur-
rent iteration number, and T is the total number of iter-
ations. The initial disparity update ∆d is predicted by a
multi-level GRU followed by a convolution block. Finally,
the disparity is updated by adding the re-weighted disparity
update to the disparity from the previous iteration:

Dt
d = Dt−1

d + ∆̃d. (3)

3.3. Global Fusion
After all iterations of disparity update, we use a global fu-
sion module to incorporate fine-grained 3D shape priors
from the monocular depth map into the disparity map, as
shown in Figure 2. Here, we formulate the optimized binoc-
ular disparity as a registered version of monocular depth
with minor noise by specific intrinsic parameters. There-
fore, monocular depth can be globally registered to binoc-
ular disparity. The registration can be deemed a linear re-
gression problem with noise between monocular depth and
binocular disparity. To this end, we first align the monocu-
lar depth Dm with the optimized disparity Dd by estimating
two registration parameters, a, b by

D̃m = a ·Dm + b,

a, b = F(Dm, DT
d ),

(4)

where F represents a network with a series of convolution
layers and ReLU activation, which take the concatenation
of the monocular depth Dm and the optimized disparity DT

d

as input. Simultaneously, we use the sampled cost volume,
hidden state, and weights from the previous iteration to pre-
dict a confidence map. This confidence, c, is then used to
fuse the aligned monocular depth D̃m and the optimized
disparity Dd as follows

Df = c ·DT
d + (1− c) · D̃m, (5)

where c is a confidence map. Df is the final disparity pre-
diction.

3.4. Loss
We use L1 loss to supervised the learning of each updated
disparity Dt

d, registered monocular depth D̃m, and the final

output of our method Df :

L =

T∑
t=1

γT+2−t||Dt
d −DG||1

+ γ||D̃m −DG||1 + ||Df −DG||1.

(6)

DG is the ground-truth disparity. γ is the balancing scalar.

4. Experiments

4.1. Implementation Details
For the stereo part, our pipeline is built on the classical iter-
ative structure of RAFT-Stereo [21], which is widely used
and flexible to deploy without stacking network tricks to
raise the computation burden. As for the monocular part, we
use DepthAnything V2 [48, 49] to extract unbiased monoc-
ular priors. Still, it is flexible to use other VTFs as long
as the monocular prior is not overfitted. We set parame-
ters set as r = 1 and γ = 0.9. The window sizes for the
LBP-like operations are configured to 5, 3. The training was
conducted on 4 NVIDIA A40 GPUs using the AdamW opti-
mizer with a one-cycle learning rate schedule. During train-
ing, the DepthAnything V2 module remains frozen. Specifi-
cally, we first train the model without the global fusion mod-
ule on the SceneFlow dataset, using a maximum learning
rate of 0.0002, a batch size of 8, and for 100k steps, main-
taining the consistency of matching parts with the total data
used in RAFT-Stereo. Then, we train the monocular regis-
tration of the global fusion module while keeping the other
modules frozen, using a maximum learning rate of 0.0005
and a batch size of 32 for 100k steps on the SceneFlow
dataset. Finally, we train the entire global fusion module
while keeping the other modules frozen, using a maximum
learning rate of 0.0005, a batch size of 32, and 100k steps
on the SceneFlow dataset. Our results are not sensible to the
hyper-parameters of the training process. With the training
and testing codes provided in the supplementary materials,
all the evaluation results can simply be reproduced.

4.2. Evaluation
Datasets. Domain generalized stereo matching is typically
trained on the SceneFlow dataset [25] and evaluated on
the training sets of various real-world datasets. We select
five real-world datasets, each containing different ill-posed
regions, to evaluate the in-the-wild generalization ability
of the models, including KITTI 2012 [11], KITTI 2015
[26, 27], Middlebury [36], ETH3D [37], and Booster [31].
Metrics. (1) We use two metrics: EPE, which measures the
mean absolute disparity error in pixels, and Bad x, which
represents the percentage of pixels where the predicted dis-
parity deviates from the ground truth by at least x pixels.
(2) It is important to note that many recent methods report



Method Year Additional
Data/Aug

KITTI 2015 KITTI 2012 Middlebury (H) ETH3D

EPE bad 3.0 EPE bad 3.0
All NonOcc Occ

EPE bad 1.0EPE bad 2.0 EPE bad 2.0 EPE bad 2.0
FC-PSMNet [54] 2022 1.58 7.50 1.42 7 4.14 18.3 - - - - 1.25 12.8
ITSA-PSMNet [9] 2022 1.39 5.80 1.09 5.2 3.25 12.7 - - - - 0.94 9.8
Graft-PSMNet [22] 2022 1.32 5.30 1.09 5 2.34 10.9 - - - - 1.16 10.7
Mask-CFNet [33] 2023 - 5.80 - 4.8 - 13.7 - - - - - 5.7

STTR* [20] 2021 2.14 9.5 2.51 9.62 9.13 21.76 5.03 13.49 35.98 78.84 - -
PCWNet [38] 2022 - 5.60 - 4.2 - 15.8 - 15.8 - - 3.8 14.4

RAFTStereo* [21] 2021 1.13 5.69 0.9 4.35 1.92 12.6 1.09 8.65 3.31 26.39 0.36 3.3
IGEV* [47] 2023 1.21 6.03 1.03 5.13 2.63 11.93 2.27 9.49 5.02 26.04 0.33 4

ELFNet* [23] 2023 2.31 7.68 1.36 5.85 5.16 17.5 2.16 10.14 - - - -
Mocha-Stereo* [7] 2024 1.29 5.97 1.02 4.83 2.66 10.18 2.49 7.96 3.84 24.16 0.28 3.47

NMRF* [12] 2024 1.17 5.31 0.92 4.63 2.91 13.36 2.73 10.90 - - 0.31 3.8
Selective-RAFT* [43] 2024 1.27 6.68 1.08 5.19 2.34 12.04 2.05 9.45 4.17 27.4 0.34 4.36
Selective-IGEV* [43] 2024 1.25 6.06 1.08 5.64 2.59 11.79 2.31 9.22 4.35 28.10 0.33 4.05

HVT-RAFT [5] 2023 ✓ 1.12 5.20 0.87 3.7 1.37 10.40 - - - - 0.29 3.00
NerfStereo* [41] 2023 ✓ 1.14 5.41 0.84 3.6 1.42 9.67 0.91 6.39 4.09 29.89 0.29 2.94

RAFT-Stereo + ME 1.18 6.18 0.87 4.19 1.42 9.73 1.11 7.00 3.06 26.50 0.26 2.31
Ours 1.12 5.60 0.87 4.10 1.15 8.39 0.85 5.67 2.89 26.50 0.25 1.88

Table 1. Generalization from SceneFlow dataset to KITTI2015, KITTI 2012, Middlebury (H), and ETH3D dataset. ’ME’ represents
our monocular encoder module. * represents the results evaluated in our metrics and settings using official models and weights. ’All’,
’NonOcc’, and ’Occ’ represent all regions, non-occluded regions, and occluded regions, respectively.

Method Additional
Data/Aug

Booster (Q)
ALL Trans NonTrans

EPE bad 2.0 bad 3.0 bad 5.0 EPE bad 2.0 bad 3.0 bad 5.0 EPE bad 2.0 bad 3.0 bad 5.0
Mocha-Stereo [7] 3.88 16.82 14.31 11.84 9.45 66.44 57.96 45.73 2.89 12.31 10.19 8.38

ELFNet [23] 6.05 24.51 20.43 16.40 9.03 72.07 62.73 49.82 5.33 20.85 17.18 13.84
Selective-RAFT [43] 4.14 19.52 16.69 13.63 10.34 69.84 61.64 49.55 2.99 14.99 12.44 10.00
Selective-IGEV [43] 4.62 19.28 16.58 13.92 9.50 66.85 58.9 47.15 3.60 14.74 12.34 10.27

IGEV [47] 4.26 17.58 15.21 12.89 10.00 68.96 61.14 49.51 3.25 12.99 10.94 9.24
NMRF [12] 5.05 26.22 21.31 16.58 10.36 70.92 60.93 47.16 4.00 22.43 17.77 13.50

NerfStereo [41] ✓ 3.48 13.40 11.13 9.22 8.88 62.67 53.35 41.79 2.49 9.06 7.19 5.89
RAFTstereo [21] 4.18 17.64 14.92 12.23 9.79 67.69 59.31 47.40 3.23 13.13 10.75 8.70

RAFT-Stereo + ME 2.40 11.44 9.17 7.30 8.97 64.84 56.05 43.95 1.45 6.96 5.08 3.89
Ours 2.26 11.02 8.59 6.6 7.93 59.83 50.36 38.44 1.52 6.98 4.97 3.64

Table 2. Generalization from SceneFlow dataset to Booster dataset in quarter resolution and balanced set. ’ME’ represents our monocular
encoder module. ’All’, ’Trans’, and ’NonTrans’ represent all regions, transparent regions, and nontransparent regions, respectively.

Method Additional
Data/Aug

DrivingStereo
Sunny Cloudy Rainy Foggy

RAFTStereo 1.01 0.97 1.8 0.95
IGEV 1.11 1.11 2.32 1.14

MoCha-Stereo 1.01 0.99 1.35 0.98
Selective-IGEV 1.18 1.13 2.22 1.12

NerfStereo ✓ 0.90 0.91 1.46 1.01
Ours 0.93 0.92 1.29 0.93

Table 3. Generalization from SceneFlow to DrivingStereo. EPE is
used as the evaluation metric.

their results with some implicit assumptions, such as evalu-
ating only pixels with ground truth disparity less than 192 or
only evaluating non-occluded regions. In our experiments,
unless otherwise specified, both ours and compared meth-
ods consider all regions as the classical metric does with-
out limitations. For the Middlebury dataset, we evaluate

Method All NonOcc Occ
EPE ↓ bad 2.0 ↓ EPE ↓ bad 2.0 ↓ EPE ↓ bad 2.0 ↓

DA V2 - M 205.04 99.99 207.51 99.99 196.96 99.98
DA V2 - GA 5.83 69.28 5.61 69.16 6.95 69.34

Metric3D 33.14 97.18 33.05 97.06 34.54 98.09
Ours 1.15 8.39 0.85 5.67 2.89 26.50

(a) Metric disparity space

Method All NonOcc Occ
δ1 ↑ RMS ↓ δ1 ↑ RMS ↓ δ1 ↑ RMS ↓

DA V2 - M 0.022 6.356 0.024 6.171 0.008 7.189
DA V2 - GA 0.923 1.487 0.934 1.342 0.852 2.022

Metric3D 0.288 4.097 0.298 4.014 0.223 4.588
Ours 0.985 0.677 0.991 0.492 0.948 1.282

(b) Metric depth space
Table 4. Comparison to DepthAnything V2 and Metric3D on Mid-
dlebury. ’M’: the fine-tuned metric version. ’GA’: alignment using
the same registration parameters from GT for all pixels.

both all regions and non-occluded regions. For the Booster
dataset, we evaluate all regions, as well as transparent and



Exp
Middlebury

epe bad 2.0
Baseline 2.11±0.16 14.12±0.64

Baseline w/o mono feature 1.83±0.11 12.45±0.86
Baseline + ME 1.42±0.01 9.81±0.18

Baseline + ME + IDF 1.41±0.04 10.34±0.19
Baseline + ME + PF 1.41±0.00 9.71±0.00
Baseline + ME + ILF 1.20±0.08 9.06±0.70

Baseline + ME + ILF + GF 1.15±0.01 8.35±0.04

Table 5. The effectiveness of each module. The baseline is RAFT-
Stereo, while ME is our monocular encoder, DF is iterative direct
fusion, ILF is iterative local fusion, PF is post-fusion, and GF is
global fusion. w/o mono feature means removing the context fea-
tures from RAFT-Stereo.

t=1 t=2

t=4 t=7 t=12

Monocular

Figure 3. The visualization of local ordering map. The monocular
represents the results from monocular depth. t = x represents the
results from binocular disparity.

non-transparent regions. (3) Additionally, we observe fluc-
tuations in model performance when trained with different
numbers of steps. To fully analyze the improvement con-
tributed by each model component, we calculate the mean
and standard deviation (std) of results from the last 100k,
90k, and 80k training steps. We use mean±std to measure
the accuracy and robustness of our model.

4.3. In-the-wild Generalization Ability

As shown in Table 1, our method achieves state-of-the-
art results across all datasets, with particularly strong per-
formance on Middlebury and ETH3D. Compared to other
methods that do not use additional data or augmentation,
we almost double their performance. Even when com-
pared to methods incorporating additional data or augmen-
tation, our approach leverages limited stereo data to achieve
superior results. Furthermore, as presented in Table 2,
our method demonstrates substantial improvements in the
Booster dataset. Compared to methods without additional
data or augmentation, we nearly double the improvement
on EPE and Bad 5.0 across all regions, achieve more than
a 10-point improvement on Bad x.0 in transparent regions,
and show double or even triple the improvement in non-
transparent regions. For more detailed quantitative results
and analysis, please refer to our supplementary materials.

Exp
LBP

Kernel S OP r
Middlebury

epe bad 2.0
L(1) 1 L 1 1.38±0.06 10.20±0.53
L(2) 3 L 1 1.36±0.04 10.10±0.25
L(3) 3 ✓ L 1 1.44±0.06 9.65±0.26
L(4) 5,3 ✓ L 1 1.20±0.08 9.06±0.70
L(5) 9,7,5,3 ✓ L 1 1.32±0.07 9.57±0.62
L(6) ✓ C 1 1.32±0.14 9.53±1.03
L(7) ✓ DC 1 1.39±0.03 9.71±0.29
L(8) 13,11,9,7,5,3 ✓ L 1 1.31±0.02 9.89±0.04
L(9) 5,3, ✓ L 2 1.32±0.03 9.45±0.14
L(10) 5,3 ✓ L 3 1.26±0.09 9.42±0.42

Table 6. Ablation study on iterative local fusion. ’S’ is sigmoid
function in LBP-like operation. ’OP’ represents the type opera-
tion, ’L’ is the LBP-like operation, ’C’ is the convolution, ’DC’ is
the deeper convolution, and ’r’ is the amplitude parameter.

Exp Reg Confidence
Middlebury

epe bad 2.0
G(1) Cost 1.23±0.03 9.69±0.38

MonoDepth ✓ 1.19±0.02 8.72±0.20
G(2) ✓ Cost 1.18±0.02 8.77±0.07
G(3) ✓ Hybrid 1.15±0.01 8.35±0.04

Table 7. Ablation study on the global fusion. ’Reg’ means regis-
tration for monocular depth. ’Cost’ means we estimate the confi-
dence from the sampled cost volume. ’Hybrid’ means we estimate
the confidence from the concatenation of sampled cost volume,
hidden state, and guidance from the last iteration. ’MonoDepth’
means evaluation of the registered monocular depth.

We also provide visualization results on the Booster
dataset to show the zero-shot generalization ability of our
method in the wild world. As illustrated in Figure 1, our
method significantly improves performance in various chal-
lenging regions, such as areas with occlusion, textureless
surfaces, reflections, and transparent regions. Due to space
limitations, additional visualization results are available in
the supplementary materials.

4.4. Ablation Study and Analysis
We conduct comprehensive ablation studies to analyze the
impact of each module and illustrate the construction pro-
cess of our model. It is important to note that each ablation
study involves training the model from scratch rather than
removing a component from an already well-trained model.
The Effectiveness of Each Module. As shown in Table
5, the baseline model performs better without context fea-
tures, indicating that monocular priors are susceptible to
domain bias when data is limited. By incorporating less-
biased monocular priors from a pre-trained large monoc-
ular network in the monocular encoder (ME), generaliza-
tion performance is significantly improved, highlighting the
importance of robust monocular priors in the wild world.
Comparing the Baseline + ME with Baseline in Table 1,
its performance becomes worse than Raft-Stereo, showing
that it is easy to suffer over-confidence when simply fusing
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Figure 4. The visualization of registration parameters, scale a and shift b.

monocular features with disparities during iterative dispar-
ity update. The iterative direct fusion method (IDF) fuses
monocular depth and binocular disparity through direct
concatenation and convolution at each iteration. Compared
to this approach, our iterative local fusion (ILF) is more
robust to noise in binocular disparity, resulting in superior
performance. The post-fusion method (PF) fuses monoc-
ular depth with the optimized binocular disparity from the
previous iteration without registration. Compared to this ap-
proach, our global fusion (GF) achieves better compatibil-
ity between monocular depth and binocular disparity, mit-
igating the noise caused by scale ambiguity during fusion.
Our iterative local fusion and global fusion modules further
enhance performance and improve model robustness when
combined with the monocular encoder. It is also noted that
the time cost of the Baseline is 0.32s while our model is
0.4s. Even though it involves a VTF model, benefiting from
the elegant and controllable design, our model barely raises
the time cost.

The Analysis of Iterative Local Fusion. We also ana-
lyze the specific configurations of iterative local fusion. As
shown in Table 6, the fixed weights in the LBP-like op-
eration have a slight impact on performance, with a ker-
nel size of 3, 5 providing optimal results. We also try to
use convolutions with learnable weights to replace LBP-
like convolutions. Comparing L(4), L(9-10) with L(6-
7), we find that fixed-weight convolutions are more robust
than learnable convolutions, and deeper learnable convolu-
tions produce worse results. This is because limited data
makes monocular-related learning unreliable for generaliza-
tion, whereas manually designed convolutions incorporate
prior knowledge and are less affected by data bias. Using
a sigmoid function after LBP-like convolutions further im-
proves overall performance. The amplitude parameter does
not show a significant influence. We also visualize the lo-
cal ordering map in Figure 3. The local ordering maps of
predicted disparity gradually become similar to the result of

monocular depth as the iteration increases. For more visu-
alizations, please refer to our supplemental materials.
The Analysis of Components in Global Fusion. We ana-
lyze the specific configurations of global fusion, as shown
in Table 7. Comparing G(1) with G(2), global fusion
achieves nearly a 1-point improvement in the Bad 2.0 met-
ric after registration. Comparing G(2) with G(3), learning
confidence with more information enhances overall perfor-
mance. Comparing MonoDepth and G(3), the fused results
are more robust to monocular depth. We also visualize
the registration parameters {a, b} in Figure 4. {a, b} are
changed in different areas but remain inconsistent for every
pixel. Due to page limitations, please refer to our supple-
mentary materials for additional failure case analysis and
future work discussion.

5. Conclusion
In this paper, we dived into the fusion of monocular pri-
ors from VTF stereo matching and found three main prob-
lems limiting the fusion process. We proposed a binary lo-
cal ordering map to unify the relative monocular depth and
absolute disparity map. It also guided the fusion between
monocular and binocular depth information in an explicit
and controllable manner. Besides, we formulated the op-
timization of the disparity map as a registration process to
monocular depth, which can adaptively and globally align
the two kinds of depth maps. We designed a network to
extract the unbiased monocular priors from the VFM and
and leveraged the above two modules to fully exploit the
unbiased monocular prior to the stereo matching pipeline to
improve generalization in the ill-posed regions. Benefiting
from the explicit design, our method barely increased the
computation cost. Experimental results demonstrated the
effectiveness of our method, with a significant improvement
of 10 points on Booster and an error reduction of more than
half on Middlebury and ETH3D, without using additional
stereo data or data augmentation.
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Figure 5. The visualization of results. We use two kinds of col-
ormap to visualize the disparity map.

A. Intuition behind Monocular Depth Model

We choose DepthAnything v2 [49] over Marigold [16] be-
cause of the superior continuity of its depth maps. As shown
in Figure 5, DepthAnything v2 provides depth maps with
better continuity than Marigold, especially in fine-grained
regions. The depth maps from Marigold contain consider-
able noise, while those from DepthAnything v2 are much
cleaner.

B. More Results on Booster

We provide additional results on the Booster dataset across
various material types. From class 0 to 3, the materials be-
come increasingly transparent and/or specular. As shown in
Tables 8 and 9, our method outperforms state-of-the-art ap-
proaches on transparent and/or specular objects (classes 1
to 3), while achieving comparable results in normal regions
(class 0). The normal regions of the Booster dataset mainly
consist of regular objects, flat surfaces, or highly textured
areas. Consequently, NerfStereo, which incorporates ad-
ditional stereo data, performs particularly well in these re-
gions. This indicates that stereo matching effectively cap-
tures fine-grained details, whereas monocular depth estima-
tion excels in perceiving coarse shapes. As illustrated in
Figures 6 and 7, binocular disparity provides greater detail
compared to monocular depth. Our method disentangles
monocular depth and binocular disparity, allowing model to

leverage both monocular and stereo data, and explore the
fusion of monocular priors effectively.

C. More Analysis about Memory

We also compare our model to state-of-the-art methods in
terms of memory consumption across different resolutions.
To ensure a fair comparison of backbones during inference,
we exclude the feature encoder module when evaluating
each model’s memory consumption. Notably, the memory
consumption of IGEV becomes extremely high on the A40
GPU as the maximum disparity range increases. We sus-
pect this may be a bug; therefore, we used a borrowed 4090
GPU for evaluations under the first four resolutions, while
the evaluation under the last resolution was conducted on
the A40 GPU.

As shown in Table 10, our method, along with RAFT-
Stereo [21], maintains a slower growth rate in memory con-
sumption compared to IGEV [47], Selective IGEV [43], and
Mocha [7]. Compared to RAFTStereo, our method exhibits
a similar memory consumption increase across resolutions
due to the resizing operation required by DepthAnything v2.

D. More Visualization for Generalized Stereo
Matching

We provide additional visualizations of generalized stereo
matching in Figures 8, 9, 10, 11, and 12. The visualizations
span a variety of environments, ranging from open out-
door scenes (e.g., driving scenarios), to semi-open outdoor
scenes (e.g., playgrounds), and to enclosed indoor scenes
(e.g., rooms, tables). The results demonstrate that our
method generalizes effectively to the wild world, achiev-
ing strong performance even when trained only on a limited
amount of synthetic stereo data.

E. Ablation Study

E.1. More Analysis of Backbone

In addition to replacing the context network with the pre-
trained DepthAnything v2 [49], we also experimented with
replacing the feature extractor for cost volume construc-
tion using DepthAnything v2 [49] and MASt3R [? ? ].
As shown in Table 11, the results become worse after re-
placing the feature extractor for cost volume construction
with DepthAnything v2 or MASt3R. Moreover, there is a
bug with the A40 GPU that causes memory issues when
converting the alternate correlation function from dot prod-
uct to Euclidean distance during training. Therefore, the
model with MASt3R was trained using the original corre-
lation function with dot product, where additional learnable
convolution layers are further used after MASt3R for fea-
ture extraction.



Method
Additional
Data/Aug

Booster
Class 0 Class 1

EPE bad 2.0 bad 3.0 bad 5.0 EPE bad 2.0 bad 3.0 bad 5.0
Mocha-Stereo 192[7] 1.30 6.93 5.54 4.18 2.91 23.05 17.67 13.45
Mocha-Stereo 320[7] 1.20 6.18 4.84 3.53 2.88 22.83 17.34 12.98

ELFNet [23] 2.97 14.08 11.38 8.80 5.67 24.68 19.00 14.42
Selective-RAFT [43] 1.35 8.06 6.01 4.01 3.37 27.37 21.87 17.19

Selective-IGEV 192[43] 1.46 8.03 6.19 4.66 3.61 25.57 20.05 15.93
Selective-IGEV 320[43] 1.31 7.27 5.39 3.81 3.51 25.05 19.39 15.18

IGEV 192[47] 1.17 6.67 4.84 3.46 3.76 25.46 20.26 16.39
IGEV 320[47] 1.00 6.07 4.37 2.82 3.60 24.69 19.46 15.70

NMRF [12] 2.76 17.43 13.21 9.51 4.60 32.81 26.08 19.84
NerfStereo [41] ✓ 0.73 4.07 2.55 1.47 2.41 18.67 13.92 10.56

RAFTstereo [21] 1.14 5.84 4.39 3.08 3.66 25.34 19.35 14.37
RAFT-Stereo + ME 0.96 6.57 5.24 3.93 1.81 13.68 8.77 5.98

Ours 0.79 5.90 4.57 3.17 1.53 12.67 7.80 4.88

Table 8. Generalization from SceneFlow dataset to Booster dataset in quarter resolution and balanced set. ME represents our monocular
encoder module. All results are evaluated in the same metrics and settings. The 192 and 320 represent the maximum disparity range used
in each model.

Method
Additional
Data/Aug

Booster
Class 2 Class 3

EPE bad 2.0 bad 3.0 bad 5.0 EPE bad 2.0 bad 3.0 bad 5.0
Mocha-Stereo 192[7] 15.68 53.56 46.23 37.77 9.45 66.44 57.96 45.73
Mocha-Stereo 320[7] 15.05 53.88 46.63 37.62 9.21 65.88 57.30 44.65

ELFNet [23] 22.74 78.89 74.81 69.70 9.03 72.07 62.73 49.82
Selective-RAFT [43] 16.12 55.66 49.87 43.04 10.34 69.84 61.64 49.55

Selective-IGEV 192[43] 20.41 57.55 49.78 42.86 9.50 66.85 58.9 47.15
Selective-IGEV 320[43] 19.81 57.35 49.27 42.10 9.29 66.02 57.91 45.86

IGEV 192[47] 18.55 54.64 46.45 37.79 10.00 68.96 61.14 49.51
IGEV 320[47] 18.00 54.50 46.05 37.72 9.74 68.55 60.49 48.22

NMRF [12] 17.36 56.34 48.33 38.18 10.36 70.92 60.93 47.16
NerfStereo [41] ✓ 17.92 45.67 40.39 35.19 8.88 62.67 53.35 41.79

RAFTstereo [21] 18.58 54.00 47.52 40.44 9.79 67.69 59.31 47.40
RAFT-Stereo + ME 5.16 24.38 19.01 14.58 8.97 64.84 56.05 43.95

Ours 5.32 23.34 17.62 13.50 7.93 59.83 50.36 38.44

Table 9. Generalization from SceneFlow dataset to Booster dataset in quarter resolution and balanced set. ME represents our monocular
encoder module. All results are evaluated in the same metrics and settings. The 192 and 320 represent the maximum disparity range used
in each model.

E.2. More Analysis of Iterative Local Fusion

We provide additional visualizations of the intermediate re-
sults from the iterative local fusion process in Figures 13,
14, 15, 16, 17, 18, 19, and 20. As the iterations progress,
the ordering maps generated from binocular disparity grad-
ually become smoother. The convolution layers learn the
differences between ordering maps generated from binoc-

ular disparity and monocular depth, allowing the guidance
to focus more effectively on non-smooth regions, thereby
significantly affecting disparity update.

E.3. More Analysis of Components in Global Fusion
We present more visualization for the intermediate results
of global fusion in Figure 13, 14, 15, 16, 17, 18, 19, and 20.
The visualization shows that the registration of monocular



750×2484 1125×3726 1500×4968 1688×5589 1875×6210
RAFTStereo reg [21] 2268.35 6023.82 10795.02 14299.5 19666.78
RAFTStereo alt [21] 1715.8 4151.8 6466.7 8157.96 11177.66

IGEV 384 [47] 2816.46 7290.82 14484.61 18810.14 -
IGEV 640 [47] 3167.46 8475.43 17366.83 - -

Selective IGEV 384 [43] 2960.34 7608.44 15035.55 19505.5 -
Selective IGEV 640 [43] 3311.84 8793.07 18701.57 - -

Mocha-Stereo 384 [7] 5525.56 12986.73 24665.95 - -
Mocha-Stereo 640 [7] 6136.18 15056.66 29476.45 - -

ours reg 5031.07 8609.63 14088.98 17782.53 22279.12
ours alt 3452.42 6745.23 9761.22 11641.82 13790.82

Table 10. Memory comparison. We evaluate the memory consumption of each model, excluding the feature encoder module, to ensure a
fair comparison of backbones during inference. The evaluation is performed across different resolutions. ’reg’ denotes pre-computation of
the entire cost volume, allowing for look-up operations at each iteration, while ’alt’ refers to dynamically computing a thin cost volume at
each iteration. The 384 and 640 represent the maximum disparity range used for the resolution of 750×2484. ’-’ indicates that the GPU
does not support the model at the given resolution.

Exp
Middlebury (H)

epe bad 2.0
Baseline + FE-DepthAnything 3.26±0.03 28.73±0.28

Baseline + FE-MASt3R 4.41±0.40 26.83±0.57
Baseline + ME + ILF + GF 1.15±0.01 8.35±0.04

Table 11. The effectiveness of each module. Baseline is RAFT-
Stereo, while ME is our monocular encoder, ILF is our iterative lo-
cal fusion, and GF is our global fusion. FE-DepthAnything means
using DepthANything v2 to replace the original feature extractor.
FE-MASt3R means using MASt3R to replace the original feature
extractor.

depth is different for each pixel, particularly on different
objects. Since the monocular depth from DepthAnything
is scale ambiguity but not absolute depth before registra-
tion, the visualization of it is not alinged to the ground truth
range, other wise its visualization is almost a single color.
The implicit learned confidence also filters out the noise of
monocular depth, especially in Figure 7.

We provide additional visualizations of the intermediate
results from global fusion in Figures 13, 14, 15, 16, 17, 18,
19, and 20. These visualizations illustrate the varying reg-
istration of monocular depth across individual pixels, par-
ticularly across different objects. Given that the monocular
depth obtained from DepthAnything is scale ambiguous and
does not represent absolute depth before registration, we do
not align it with the ground truth range in visualization; oth-
erwise, it would appear almost uniformly as a single color.
The implicitly learned confidence also effectively filters out
noise in the monocular depth as demonstrated in Figure 7.

F. Future Work Discussion
We present failure cases in Figures 21 and 22. In the first
failure case, our method is confused by the glass door and
glass window, where both the transparent surfaces and the
behind scene are significant. Unlike simple transparent ob-
jects (e.g., a glass bottle), transparent scenes raise a new
challenge for robotics, as they need to perceive both the
transparent surface and the scene behind it. Failure to do
so may cause robots to get stuck, for instance, when try-
ing to reach an apple behind a glass window. If the robot
perceives only the glass window, it will miss the apple en-
tirely, while perceiving only the apple means the glass acts
as an unrecognized and insurmountable barrier. Therefore,
a novel representation for depth estimation is necessary to
allow for multiple depths at a single pixel.

In the second failure case, our method is confused by the
very close black screen and the very dark tunnel. In these
scenes, registering monocular depth with binocular dispar-
ity is highly challenging due to excessive and concentrated
noise in the disparity, along with pixel-wise differences in
monocular depth registration, particularly across different
objects. Consequently, information from video streams and
segmentation becomes essential, like video stereo matching
or simultaneously learning segmentation.



Figure 6. The visualization of binocular disparity and monocular depth. The regions highlighted with gray boxes demonstrate that stereo
matching excels at capturing fine-grained details, whereas monocular depth estimation performs better in perceiving overall shapes. The
mono depth from DepthAnything is scale ambiguity but not absolute depth before registration.



Figure 7. The visualization of binocular disparity and monocular depth. The regions highlighted with gray boxes demonstrate that stereo
matching excels at capturing fine-grained details, whereas monocular depth estimation performs better in perceiving overall shapes. The
mono depth from DepthAnything is scale ambiguity but not absolute depth before registration.



Figure 8. The visualization for generalized stereo matching.



Figure 9. The visualization for generalized stereo matching.



Figure 10. The visualization for generalized stereo matching.



Figure 11. The visualization for generalized stereo matching.



Figure 12. The visualization for generalized stereo matching.



Figure 13. The visualization of intermediate results. itr: the current iteration. cz, cr, cq: context used in GRU. scale: scale 0 ∼ 2
represents resolution from high to low.



Figure 14. The visualization of intermediate results. itr: the current iteration. cz, cr, cq: context used in GRU. scale: scale 0 ∼ 2
represents resolution from high to low.



Figure 15. The visualization of intermediate results. itr: the current iteration. cz, cr, cq: context used in GRU. scale: scale 0 ∼ 2
represents resolution from high to low.



Figure 16. The visualization of intermediate results. itr: the current iteration. cz, cr, cq: context used in GRU. scale: scale 0 ∼ 2
represents resolution from high to low.



Figure 17. The visualization of intermediate results. itr: the current iteration. cz, cr, cq: context used in GRU. scale: scale 0 ∼ 2
represents resolution from high to low.



Figure 18. The visualization of intermediate results. itr: the current iteration. cz, cr, cq: context used in GRU. scale: scale 0 ∼ 2
represents resolution from high to low.



Figure 19. The visualization of intermediate results. itr: the current iteration. cz, cr, cq: context used in GRU. scale: scale 0 ∼ 2
represents resolution from high to low.

Figure 20. The visualization of intermediate results. itr: the current iteration. cz, cr, cq: context used in GRU. scale: scale 0 ∼ 2
represents resolution from high to low.



Figure 21. The visualization for failure case analysis.



Figure 22. The visualization for failure case analysis.
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