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Abstract

Stereo matching becomes computationally challenging
when dealing with a large disparity range. Prior methods
mainly alleviate the computation through dynamic cost vol-
ume by focusing on a local disparity space, but it requires
many iterations to get close to the ground truth due to the
lack of a global view. We find that the dynamic cost volume
approximately encodes the disparity space as a single
Gaussian distribution with a fixed and small variance at
each iteration, which results in an inadequate global view
over disparity space and a small update step at every
iteration. In this paper, we propose a parameterized cost
volume to encode the entire disparity space using multi-
Gaussian distribution. The disparity distribution of each
pixel is parameterized by weights, means, and variances.
The means and variances are used to sample disparity
candidates for cost computation, while the weights and
means are used to calculate the disparity output. The above
parameters are computed through a JS-divergence-based
optimization, which is realized as a gradient descent update
in a feed-forward differential module. Experiments show
that our method speeds up the runtime of RAFT-Stereo
by 4 ∼ 15 times, achieving real-time performance and
comparable accuracy. The code is available at https:
//github.com/jiaxiZeng/Parameterized-
Cost-Volume-for-Stereo-Matching.

1. Introduction
Stereo matching aims to find the pixel-wise correspon-

dence between paired images within a predefined dispar-
ity range. The pixel-wise matching is efficiently real-
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(a) The illustration of End-Point-Error (EPE) changing with the in-
crease of iteration on the Sceneflow dataset (left) and the illustra-
tion of time cost changing with the increase in image width (right).
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(b) The visualization of the moving step at each iteration t.

Figure 1: (a) We analyze the EPE at different iterations
and time cost with the increase of image width. (b) The
moving steps are visualized on the right view image, start-
ing from a disparity value of 0 towards the ground truth.
Compared to RAFT-Stereo [13] and CREStereo [11], our
method achieves a rapid decrease in EPE and a large mov-
ing step from the first iteration, greatly reducing the number
of iterations.

ized by existing methods within a small predefined range
[1, 26, 30, 6, 5, 20, 27]. However, the matching becomes
time- and memory-consuming for a large predefined range,
as computational cost increases rapidly with the growing
range. This challenge limits the application of stereo match-
ing in the real world, e.g., in high-resolution images.

Prior methods relieve the challenge mainly relying on
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dynamic cost volume [3, 5, 2, 20, 13, 11]. The dynamic
cost volume samples disparity candidates in a local dispar-
ity space instead of the entire disparity space. It reduces
significant memory costs but requires many iterations to
get close to the ground truth, as illustrated in Figure 1a.
In this paper, we prove that the dynamic cost volume en-
codes the disparity space as a single Gaussian distribution
with a fixed and small variance. The fixed and small vari-
ance results in a limited view over the entire disparity space.
Thus, these methods are hard to produce a large update to
quickly converge to the ground truth when the initialized
disparity is far from the ground truth. Instead, a multi-
Gaussian distribution provides a global view after initial-
izing each Gaussian distribution uniformly in the dispar-
ity space. The global view allows fast convergence to the
vicinity of ground truth at the beginning of the iteration, as
shown in Figure 1. Meanwhile, the local view is kept for
subsequent fine-grained matching as the learnable parame-
ters (i.e., variances) of multi-Gaussian distribution become
small at the convergence stage.

To this end, we propose a parameterized cost volume that
encodes the entire disparity space using multi-Gaussian dis-
tribution. The disparity distribution of each pixel is parame-
terized by weights, means, and variances. The computation
of these parameters is formulated as a JS-divergence-based
optimization problem. We solve the problem through itera-
tive gradient descent updates in a feed-forward differential
module, including the following steps. (1) We use the ini-
tialized means and variances to sample disparity candidates.
(2) The sampled disparity candidates are used to compute
the matching cost, which is subsequently used to predict an
optimization step. (3) We use the predicted step to update
the three kinds of parameters. The updated parameters serve
as initialization for the next iteration, while the weighted
average of the mean values (i.e., the expectation of multi-
Gaussian distribution) is regarded as the disparity output at
the current iteration. The above feed-forward optimization
is prone to local oscillations at the final convergence stage.
Thus, we further design an uncertainty-aware refinement
module to localize and correct the incorrect results at the
last iteration. We compute uncertainty from weights and
variances to measure the reliability of predicted disparity.
We then use uncertainty as guidance to propagate disparity
from high-reliability areas to low-reliability areas.

We validate our method on both synthetic and real-world
datasets. Results show that our method simultaneously
achieves real-time performance and SOTA-comparable ac-
curacy on most datasets. We also compare our method with
SOTA methods in terms of time growth when the prede-
fined disparity range is enlarged. Experiments show that our
method maintains fixed memory costs and requires fewer it-
erations to achieve comparable or even better accuracy than
other methods.

2. Related Work

2.1. Deep Stereo Matching

Stereo matching has been studied for decades [8, 23, 7,
4, 32]. Recently, deep-learning-based methods have shown
promising results on all datasets [16, 17, 19]. These meth-
ods rely on cost volume, which can be roughly classified as
dense volume methods and sparse volume methods.

As one of the dense volumes, the 4D volume [9, 1, 3,
20, 27] is constructed by concatenating the left and right
feature for every disparity in the predefined disparity range.
They achieve impressive accuracy but require an enormous
computational cost due to the heavy 3D convolutions on
4D volume. Some methods construct the 4D volume at a
very low-resolution [10, 30] to reduce computation cost.
However, the computation grows at the fourth power with
the increase of the 4D volume’s size. In order to reduce
the growth rate, 3D volume is proposed as the base of a
lightweight network [16, 14, 12, 29, 26, 24]. The 3D vol-
ume is built by computing the correlation between the left
and right features within a predefined disparity range. Al-
though they have reduced the computation cost by an order
of magnitude, their cost volumes are redundant due to the
sparsity of disparity space.

A lot of sparse volume methods are proposed to reduce
the computation from the perspective of sparsity [3, 5, 2,
20, 15, 13, 11, 31]. Among them, the dynamic cost volume
is accepted by most researchers. The dynamic cost volume
reduces huge redundancy in disparity space, thus resulting
in low memory cost. However, they are still either time- or
memory-consuming when dealing with high-resolution im-
ages. Instead, our parameterized cost volume uses a limited
number of parameters to encode the entire disparity space
achieving both low memory cost and real-time speed.

2.2. Dynamic Cost Volume based Stereo Matching

The methods based on dynamic cost volume [3, 5, 2, 20,
15, 13, 11] only sample a small number of disparity can-
didates to construct the cost volume, including partially-
dense methods and pure-sparse methods. The partially-
dense methods [5, 2, 20, 15] first conduct dense matching
at the lowest resolution to obtain the initial disparity map.
They then use the initial disparity map to predict the sam-
pling range at a higher resolution for dynamic cost volume
construction. Among them, CasNet [5] uses a hyperparam-
eter to control the sampling range. ATV-Net [2], CFNet
[20], and UASNet [15] propose to use the variance of cost
volume along the disparity/depth dimension to predict the
sampling range. The partially-dense methods take great ad-
vantage of stereo matching’s sparsity in disparity space but
still rely on dense cost volume for initialization. The com-
plexity of such an initialization grows rapidly with the in-
crease of the predefined disparity range. Later, pure-sparse
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Figure 2: The pipeline of our method. We first extract the multi-level features from the left and right images. The features and
the initial parameterized cost volume are input into a feed-forward differential module to update multi-Gaussian parameters
iteratively (means µ, variances σ, weights α). The multi-Gaussian distribution (MGD) gradually converges to the ground
truth (symbolized as µgt) as the iteration goes on. The expectation of MGD (i.e., the weighted sum of means denoted as µ̄)
is regarded as the disparity output. The disparity map is further refined through an uncertainty-aware refinement module.

methods [25, 13, 11] are proposed to initialize the disparity
as the value of zero without dense matching at a low resolu-
tion. These methods update the disparity map in an iteration
fashion to gradually converge to the ground truth. At each
iteration, an offset is predicted from a dynamic cost volume
where disparity candidates are sampled from the existing
disparity map with a fixed range. RAFT-Stereo [25, 13]
introduce a multi-level GRU to collect context information
for fast convergency. CREStereo [11] further introduce a
cascade architecture that estimates the disparity map from
coarse to fine. The pure-sparse methods significantly re-
duce the memory cost but at the sacrifice of time speed as
they require many iterations to get close to the ground truth
when the initialized disparity is far from the ground truth.

Different from the above methods, our parameterized
cost volume encodes the entire disparity space using multi-
Gaussian distribution. After initializing multi-Gaussian dis-
tribution uniformly in the disparity space, a large global
view is obtained for quick convergence to get close to the
ground truth. At the convergence stage, multi-Gaussian
variances become small, allowing for a fine-grained match-
ing in a local view. Thus, our method is able to reduce the
number of iterations and speed up the running time without
sacrificing the matching accuracy.

3. Method

In this section, we first introduce the parameterized cost
volume from the perspective of formulation and optimiza-
tion. We then present the detailed architecture of our feed-
forward differential module and uncertainty-aware refine-
ment module. The whole pipeline is shown in Figure 2.

3.1. Parameterized Cost Volume

Formulation Cost volume C(x) = cdx represents the
matching cost cdx between pixel x on the left image and
pixel x − d on the right image, where d is the disparity.
Prior methods densely enumerate the disparity candidates
d from a discrete disparity distribution {0, 1, ..., D − 1},
which is memory-consuming and redundant. Alternatively,
dynamic-cost-volume-based methods only sample from the
neighbors of an initialized disparity d ∈ Nd̃, where N de-
notes neighbors and d̃ is the initialized disparity. In this
paper, we propose a parameterized cost volume that uses
multi-Gaussian distribution to encode the entire disparity
space:

C(x, θ) = {cd(θ)x },

d(θ) ∼
i=M∑
i=1

αiN (µi, σ
2
i ).

(1)

θ = {αi, µi, σi}Mi=1 is the parameter set of multi-Gaussian
distributions, including weights α = {αi}Mi=1, means µ =
{µi}Mi=1, and standard deviations σ = {σi}Mi=1 (we col-
loquially use ’variance’ to refer to σ which is actually the
standard deviation). M is the number of Gaussian distri-
butions. ∼ represents the sampling from a distribution and
αi is constrained by

∑M
i=1 αi = 1. Through the param-

eterized representation of cost volume, we not only main-
tain the efficiency of dynamic cost volume by sparse sam-
pling from the multi-Gaussian distribution but also acquire
an adequate global view by uniformly initializing the multi-
Gaussian distribution in the entire disparity space.

Optimization In order to effectively learn the pa-
rameters θ of multi-Gaussian distribution, we take the
ground-truth disparity as a predefined Gaussian distribution
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Figure 3: The overview of the feed-forward differential module. The module takes multi-level features and parameterized
cost volume (means µ, variances σ, weights α) from the last iteration t as input. It first samples disparity candidates from
each Gaussian distribution. It then uses the candidates to compute cost. The cost is further input into GRU with multi-level
features to predict the optimization step. The optimization step is used to update parameterized cost volume through the
gradient of mean ∂µ, variance ∂σ, and weight ∂α.

N (µgt, σgt) and design a JS-divergence-based optimization
to force the multi-Gaussian distribution close to it. µgt is
the ground-truth disparity and σgt is a predefined parame-
ter. The objective function is presented as

min
1

2
(F (Ngt||

i=M∑
i=1

αiNi) + F (

i=M∑
i=1

αiNi||Ngt)),

s.t.

i=M∑
i=1

αi = 1,

(2)

where F (P ||Q) =
∑

d∈D P (d)log P (d)
Q(d) is KL divergence,

and Ni is a short form of N (µi, σ
2
i ).

We then derive the optimization into feed-forward gradi-
ent decent updates by defining a Lagrangian function L:

L =
1

2
(F (Ngt||

i=M∑
i=1

αiNi) + F (

i=M∑
i=1

αiNi||Ngt))

+ λ(

i=M∑
i=1

αi − 1),

(3)

where λ is a Lagrange multiplier. Before proceeding with
the derivation, we introduce two lemmas whose specific
proofs are provided in our supplementary materials.

Lemma 1 Given two Gaussian distribution Np and Nq , the
KL divergence F (Np||Nq) is

F (Np||Nq) = log
σq

σp
+

σ2
p + (µp − µq)

2

2σ2
q

− 1

2
. (4)

Lemma 2 Given two multi-Gaussian distribution P =∑i=M
i=1 αp

iN
p
i and Q =

∑i=M
i=1 αq

iN
q
i , the compact upper

bound of KL divergence F (P ||Q) is

F (P ||Q) ≤
i=M∑
i=1

F (αp
i ||α

q
i ) +

i=M∑
i=1

αp
iF (N p

i ||N
q
i ). (5)

Based on the lemma 2, we obtain the upper bound of L
through Eq 3 and 6:

L ≤ 1

2
(

i=M∑
i=1

F (
1

M
||αi) +

i=M∑
i=1

1

M
F (Ngt||Ni)

+

i=M∑
i=1

F (αi||
1

M
) +

i=M∑
i=1

αiF (Ni||Ngt))

+ λ(

i=M∑
i=1

αi − 1),

(6)

We then turn to minimize the upper bound of L. The gradi-
ent of parameters αi, µi, σi is derived from Eq 6 and 4 as
follows:

∂σi =
1

2
(
σ2
i − σ2

gt −∆2

Mσ3
i

− αi

σi
+

αiσi

σ2
gt

),

∂µi = −∆

2
(

1

Mσ2
i

+
αi

σ2
gt

),

∂αi = βi + λ,

βi =
1

2
(− 1

Mαi
+ log

σgtMαi

σi
+

σ2
i +∆2

2σ2
gt

+
1

2
),

λ = − 1

M

i=M∑
i=1

βi,

∆ = µgt − µi.

(7)

As µgt is not available during inference, we approximate
the optimization step ∆ through a network similar to RAFT-
Stereo [13]. The updates to αi, µi, σi at iteration t is then
set as

σt+1
i = σt

i − ∂σt
i ,

µt+1
i = µt

i − ∂µt
i,

αt+1
i = αt

i − ∂αt
i.

(8)
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Dynamic-cost-volume-based methods such as RAFT-
Stereo predict the step size to move towards the ground truth
at each iteration. The step size is added to the disparity from
the previous iteration to update the result. According to the
Eq. 7 and 8, these methods are equivalent to approximat-
ing a single Gaussian distribution with a fixed variance of
σ2 = σ2

gt/(2σ
2
gt − 1). Due to the limited view of a single

Gaussian distribution, such methods are difficult to capture
a global view in a large disparity range. In contrast, our
method employs multi-Gaussian distribution to enlarge the
view size and facilitate information interaction between the
different distributions during optimization, resulting in effi-
cient convergence to the ground truth.

3.2. Feed-forward Differential Module

We design a feed-forward differential module to imple-
ment the JS-based optimization. As shown in Figure 3, the
module first samples the disparity candidates from the cur-
rent multi-Gaussian distribution. Subsequently, matching
costs are computed based on these disparity candidates, and
the module utilizes multi-level GRUs [13] to predict the op-
timization step. Finally, the optimization step is used to cal-
culate the gradients for the parameters update.

Multiple Gaussian Sampling We sample the dispar-
ity candidates from the current multi-Gaussian distribu-
tion, with each Gaussian distribution independently sam-
pled. Specifically, for the i-th Gaussian distribution, the
candidates are uniformly sampled within the range [µi −
3σi, µi + 3σi].

Optimization Step Prediction We compute the
matching cost through correlation according to the dispar-
ity candidates. Firstly, the cost from different Gaussian dis-
tributions is independently encoded by several 2D convo-
lutional layers whose weights are shared among the distri-
butions. Subsequently, the encoded costs, along with the
means µ, variances σ, and weights α, are concatenated as
input to the multi-level GRUs [13]. The hidden state of the
highest-level GRU is used to predict the optimization step
∆ via a two-layer convolution.

Parameters Update We use the gradient descent al-
gorithm to update the parameters. Due to the numerical
instability of the gradients in Eq. 7, we apply gradient clip-
ping before the update. The clipped gradients are then em-
ployed for parameter updates, as specified in Eq. 8. To re-
strict the updated α between 0 and 1, we perform clipping
and normalization on α as follows:

α̂t+1
i =

min(max(αt+1
i , 0), 1)∑

i min(max(αt+1
i , 0), 1)

. (9)

The updated parameters are used for the next iteration.
Subsequently, we compute the expectation of the multi-
Gaussian distribution as the disparity output using the fol-

lowing equation:

µ̄t+1 =

M∑
i=1

α̂t+1
i µt+1

i . (10)

3.3. Uncertainty-aware Refinement Module

As the feed-forward optimization is prone to local oscil-
lations at the convergence stage, we design an uncertainty-
aware refinement module to improve the disparity of de-
tailed areas. We first input weights α, variances σ, and
means µ into a series of convolutions following a sigmoid
function to estimate an uncertainty map U . Afterward, we
concatenate the uncertainty map with the disparity map and
left features to predict a residual map R through convolu-
tions where a leaky-relu function is used at each layer ex-
cept the last one. Finally, we use the uncertainty map U to
guide the fusion of residual map R and disparity map µ̄ as
follows:

µ̂ = µ̄+R · U. (11)

For detailed architecture, please refer to our supplementary
materials.

3.4. Loss

We design a loss function to enforce the multi-Gaussian
distribution to be close to the ground truth distribution.
Given the ground truth disparity µgt, we use the L1 loss
function to minimize the differences between the mean of
each Gaussian distribution µt

i and ground truth µgt for each
iteration t:

Lt
m =

M∑
i=1

∥µt
i − µgt∥1, (12)

The L1 loss function is also applied to the output disparity
map µ̄t at each iteration t:

Lt
d = ∥µ̄t − µgt∥1. (13)

Besides, the refinement of disparity µ̂ is supervised as fol-
lows:

Lr = ∥µ̂− µgt∥1. (14)

The final loss is the weighted combination of Lt
m, Lt

d, and
Lr:

L =

T∑
t=1

γt(Lt
m + Lt

d) + λLr, (15)

where γt and λ are the balancing scalars.

4. Experiments
4.1. Datasets

SceneFlow SceneFlow [16] is a synthetic dataset con-
sisting of 35454 image pairs for training and 4370 for test-
ing. It contains three sub-datasets covering indoor and out-
door scenes. The resolution of the images is 540× 960.
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Model Multi-Gaussian
Adaptive
variance

Uncertainty-aware
refinement

EPE
(px)

1px-error rate
(%)

3px-error rate
(%)

SGFV 0.79 8.96 5.33
SGAV ✓ 0.82 10.29 6.05
MGFV ✓ 0.74 8.93 5.12
PCV ✓ ✓ 0.72 8.16 4.89

PCV +Refine ✓ ✓ ✓ 0.71 7.98 4.79

Table 1: Ablation study on SceneFlow dataset. We present the results of all methods at the fourth iteration. SGFV is a single
Gaussian distribution with a fixed variance. SGAV represents the single Gaussian distribution with the adaptive variance.
MGFV denotes multi-Gaussian with a fixed variance. PCV is our parameterized cost volume. Refine is our uncertainty-
aware refinement. All of the models in the ablation study are trained for 50k steps with a batch size of 48 on 8 NVIDIA A100
GPUs.

KITTI 2015 KITTI 2015 [17] is a real-world dataset
for autonomous driving scenes. It contains 200 training and
200 testing image pairs with a resolution of 376× 1240.

Middlebury Middlebury [19] is a real-world indoor
dataset including 33 high-resolution image pairs. The maxi-
mum image size is 1896×3000. It collects image pairs from
the same scene under different lighting, exposure, and cali-
bration conditions to evaluate the robustness of the methods.

Booster Booster [18] is a novel dataset with high-
resolution image pairs. Different from the Middlebury
dataset, the Booster dataset provides more (228 for training
and 191 for testing) labeled and higher-resolution (3008 ×
4112) image pairs. It also includes more challenging cases
in stereo matching, such as non-Lambertian surfaces.

4.2. Implementation Details

Our model is built based on RAFT-Stereo [13]. We use
M = 4 Gaussian distributions and initialize our parameter-
ized cost volume with µ ∈ {0, 64, 128, 192}, σ = 32, and
α = 0.25. We set iteration number T as 6 during training
and 4 during inference. As aforementioned in Section 3.1,
we transform the ground truth into a predefined Gaussian
distribution where µgt is the ground-truth disparity, and σgt

is set to 2. We then set γt = 0.2 + 0.2t and λ = 1.4 for
the loss function in Eq. 15. We use AdamW optimizer and
one-cycle learning rate schedule [22] where the maximum
learning rate is set to 0.0002.

We pre-train our model with a batch size of 16 for 200k
steps on the SceneFlow dataset. For the KITTI dataset, we
combine the KITTI2015 and KITTI2012 to fine-tune the
Sceneflow pre-trained model for 5k steps with a batch size
of 12. For the Middlebury dataset, we fine-tune the pre-
trained model for 4k steps with a batch size of 4. For the
Booster dataset, we employ the cascade inference strategy
proposed in CREStereo [11] to enlarge the receptive field
for high-resolution inputs. Specifically, we down-sample
the images by 0.25 and feed them to the model. After 4
iterations, we up-sample the parameterized cost volume to
initialize another 4 iterations at the original resolution. The
learning rate for fine-tuning is set to 0.00001.

We apply the data augmentation used in RAFT-Stereo
[13] to all experiments. The slow-fast GRU [13] is used in
our implementation. All of the experiments except for the
ablation study are conducted on 2 NVIDIA GeForce RTX
3090 GPUs.

4.3. Ablation Study and Analysis

Parametrized Cost Volume We illustrate the effec-
tiveness of our parameterized cost volume by comparing
it with three kinds of variants: a single Gaussian distribu-
tion with a fixed variance (SGFV ), a single Gaussian dis-
tribution with an adaptive variance (SGAV ), and a multi-
Gaussian distribution with a fixed variance (MGFV ). As
aforementioned in section 3.1, RAFT-Stereo is equal to an
approximation of single Gaussian distribution with a fixed
variance. We take RAFT-Stereo as the baseline method and
implement the other two kinds of methods on it. We inte-
grate thin volume [5, 20] with the baseline to realize the sec-
ond kind of method. The third kind of method is realized by
initializing the points uniformly within a pre-defined range
and then sampling their nearby disparities to update them-
selves independently. The weighted average at the last it-
eration is regarded as the final disparity. For more details
about the last two kinds of methods, please refer to our sup-
plemental materials.

As shown in Table 1, our parameterized cost volume
(PCV ) is superior to the above three kinds of methods,
which proves the effectiveness of the parameterized cost
volume. It is worth noting that SGAV is worse than
SGFV . This might be caused by the limited view of a sin-
gle Gaussian distribution, which tends to a rapid decrease in
variance, further resulting in fast convergence to a local op-
timum trap. MGFV shows a decrease in EPE but limited
improvement in 1-px accuracy compared to SGFV . This
might be because the multi-Gaussian distribution provides
a global view but the fixed variance prevents fine-grained
matching. Instead, our parameterized cost volume works
in a coarse-to-fine manner. At the beginning iteration, it
provides a global view by the uniformly initialized multi-
Gaussian distribution with large variances for fast conver-
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Occlusion Region

Edge Region

General Region

Figure 4: The visualization of the entire multi-Gaussian distribution (column two) and each weighted Gaussian distribution
(columns three to seven) the at each iteration. The distributions correspond to the red points on the left images which are
sampled from the general, edge, and occlusion regions, respectively.

Method D1-bg
(%)

D1-fg
(%)

D1-all
(%)

Time
(ms)

PCW-Net [21] 1.37 3.16 1.67 440
DeepPruner(best) [3] 1.87 3.56 2.15 180

CREStereo [11] 1.45 2.86 1.69 410
RAFT-Stereo [13] 1.58 3.05 1.82 380

AANet+ [29] 1.65 3.96 2.03 60
DeepPruner(fast) [3] 2.32 3.91 2.59 60

HITNet [24] 1.74 3.2 1.98 20
Dec-Net [31] 2.07 3.87 2.37 50

ACVNet-fast [27] - - 2.34 48
PCVNet (ours) 1.68 3.19 1.93 56

Table 2: Benchmark results on all pixel areas of the KITTI
2015 dataset, categorized into two groups based on the run-
time magnitude of the methods.

gence to the ground truth. As the iteration goes on, the
means of Gaussian distributions converge and their vari-
ances decrease, thus it becomes to focus on the local dis-
parity space for fine-grained matching.

Uncertainty-aware Refinement We compute uncer-
tainty from weights, variances, and means to guide the im-
provement of the disparity map at the last iteration. As
presented in Table 1, our refinement slightly promotes the
results in EPE error and achieves better improvement on
1px-error and 3px-error rates. These results show that our
refinement works in cases when optimization oscillates lo-
cally around the ground truth. We also visualize uncertainty
maps to illustrate the uncertainty-aware characteristics of

Method
Bad2.0

(%)
Bad4.0

(%)
avgerr
(px)

rms
(px)

A95
(px)

A99
(px)

time/MP
(s/MP)

time/GD
(s/Gdisp)

CFNet[20] 16.1 11.3 5.07 18.2 34.7 88.1 0.52 1.39
DeepPruner[3] 36.4 21.9 6.56 18.0 33.1 83.7 0.41 4.38
CREStereo[11] 8.13 5.05 2.10 10.5 5.48 49.7 0.77 2.22

RAFT-stereo[13] 9.37 6.42 2.71 12.6 8.89 64.4 2.19 5.76
HITNet[24] 12.8 8.66 3.29 14.5 11.4 77.7 0.11 0.29

HSM-Net[30] 16.5 9.68 3.44 13.4 17.6 63.8 0.10 0.22
PCVNet (ours) 13.6 7.77 2.71 11.9 8.83 58.9 0.14 0.37

Table 3: Benchmark results on all pixel areas of the Mid-
dlebury 2014 dataset, categorized into two groups based on
the time cost of the methods.

the module in the supplementary materials.
Large Disparity Range We analyzed the effect of the

disparity range growth on the time cost of various methods
by stretching the image width. We maintain the structure
of the models and increased the predefined disparity range
for each method based on the image stretching ratio, then
recorded the runtime. As shown in Figure 1a (right), our
method exhibits the slowest time cost increase rate com-
pared to other methods. Conversely, both RAFT-Stereo
and CREStereo experience significant increases in time cost
when dealing with the large disparity range. This result
proves that our method relieves the rapid increase of time
cost with the growing disparity range.

Convergence Speed We analyze the convergence
speed of our method in the following two aspects. (1) We
illustrate the average error changing with the increase of it-
eration in Figure 1a (left). Compared to RAFT-Stereo and

18353



HITNet

CREStereo RAFT-Stereo

DeepPruner

Ours

Left Image

HITNetDeepPrunerLeft Image

CREStereo RAFT-Stereo OursAANet++

HSM-Net

AANet++

HSM-Net

Figure 5: The visualization of results on the Middlebury 2014 dataset.

Setting FLOPS
(G)

Memory
(MB)

time
(ms)

EPE
(px)

RAFT-Stereo (T = 32) 3176.51 2761 205 0.69
RAFT-Stereo∗,† (T = 4) 678.45 2347 39 0.79

Ours∗,† (T = 4) 798.23 2503 41 0.71

Table 4: The ablation results of computation cost on Scene-
Flow. ∗ represents sharing the backbone for contextual and
matching features. † denotes using the slow-fast GRU. The
computation costs are measured on an NVIDIA A100 GPU.

CREStereo, our method achieves the smallest number of it-
erations with even better EPE. In practice, we only use 4
iterations for inference whereas RAFT-Stereo requires 32
iterations (and even up to 80 iterations for certain datasets),
and CREStereo requires 20 iterations. Our method reduces
the iteration of RAFT-Stereo by 8 ∼ 20 times and that
of CREStereo by 5 times, which proves the fast conver-
gence speed of our method. (2) We conduct a comprehen-
sive analysis of the multi-Gaussian distribution visualiza-
tion at each iteration. Figure 4 illustrates that, in general
regions, the distribution rapidly converges to the ground
truth in the initial iterations. The moving step and the vari-
ance of distribution progressively decrease as the iteration

progresses, which enables fine-grained matching and indi-
cates increasing confidence in the predictions. In the case of
edge regions, the distribution gradually converges towards
the ground truth, exemplifying the process of edge refine-
ment. The adaptive variance of PCV accelerates the process
of convergence, often requiring only a few iterations. For
ill-posed regions like occlusion, the means of distributions
diverge, and the variances exhibit relatively higher values,
consequently yielding a large variance for the overall distri-
bution. It reveals that the variance serves as a good indicator
of uncertainty, which is beneficial to improve the disparity
of ill-posed areas.

Efficiency Analysis Our method is compared with
RAFT-Stereo [13] in terms of FLOPS, memory consump-
tion, and speed, while considering the accuracy. The train-
ing strategy of the settings is the same as the ablation study.
As presented in Table 4, with the same 4 iterations, PCV
brings a slight cost increase (17.6% FLOPS, 6.6% mem-
ory, and 5.1% inference time) and a significant EPE im-
provement (10.1%) compared to the RAFT-Stereo. As for
the RAFT-Stereo with 32 iterations, PCV greatly reduces
the computation cost (74.8% FLOPS and 80.0% inference
time) with comparable performance (-2% EPE). The results
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Method Deeppruner (best) [3] ACVNet [27] RAFT-Stereo [13] IGEV-Stereo [28] Deeppruner (fast) [3] ACVNet (fast) [27] PCVNet (Ours)
EPE (px) 0.86 0.48 0.65 0.47 0.97 0.77 0.62

Runtime (ms) 130 201 254 370 62 48 62

Table 5: The results of Sceneflow dataset. The methods are categorized into two groups based on the runtime. All the
runtimes were measured on an NVIDIA 3090 GPU.

Method Bad 2 (%) Bad 4 (%) Bad 6 (%) Bad 8 (%) MAE (px) RMSE (px) time/MP (s/MP)
CFNet [20] 66.85 46.02 35.48 29.74 19.65 43.01 0.30

RAFT-Stereo [13] 38.66 23.32 17.65 14.55 7.56 17.39 1.01
PCVNet (ours) 27.41 14.91 11.06 9.03 6.21 15.42 0.14

Table 6: Benchmark results of the Booster dataset. The metric time/MP is measured on an NVIDIA 3090 GPU.

reveal that our method can significantly speed up the con-
vergence of dynamic cost volume at an affordable compu-
tation cost.

4.4. Benchmark Results

SceneFlow We compare our method with SOTA
methods on the Sceneflow dataset [16]. Table 5 illustrates
that our method gets better performance on the EPE metric
while speeding up the RAFT-Stereo by 4 times. Overall,
our method achieves the best trade-off between time and
accuracy.

KITTI 2015 We present a comprehensive compari-
son of our method with SOTA approaches on the KITTI
2015 dataset [17], showcasing the effectiveness of our ap-
proach in real-world outdoor scenes. The results on all
pixel areas are depicted in Figure 2, while supplementary
materials provide detailed results on non-occluded pixel ar-
eas. As observed in Table 2, our method achieves nearly
the highest accuracy among methods with runtimes smaller
than 100 ms. Compared to other approaches, our method
demonstrates comparable performance with significantly
improved computational speed. In particular, our method
outperforms DeepPruner (best) in both accuracy and run-
time metrics and achieves a 7 times acceleration of RAFT-
Stereo. As for CREStereo, we use no additional data but
only the SceneFlow dataset for pre-training and the KITTI
dataset for fine-tuning, attaining a 0.24% accuracy decrease
on D1-all while achieving a remarkable 7 ∼ 8 times
speedup.

Middlebury We also evaluate our method on the Mid-
dlebury dataset [19] to verify the effectiveness in real-world
indoor scenes. The results on all pixel areas are presented
in Figure 3. For the results on non-occluded pixel areas and
other evaluation metrics, please refer to our supplementary
materials. As shown in Table 3, the accuracy of our method
is comparable to the results of CREStereo, while our run-
ning speed is 5 ∼ 7 times faster than CREStereo’s. As
for RAFT-Stereo, we achieve comparable results on Bad4.0
and avgerr and better results on rms, A95, and A99. Fur-
thermore, our speed is almost 15 times faster than RAFT-
Stereo’s. Among the other approaches, our method is al-

most the best one. Besides the quantitative analysis, we also
provide the visualization of the disparity map in Figure 5.
The results of our method are comparable to CREStereo’s
disparity maps and are more accurate and smoother than the
others.

Booster We evaluate our method on the Booster
dataset [18]. The results in Table 6 demonstrate the supe-
riority of our approach, exhibiting significantly better per-
formance across all evaluation metrics compared to other
methods on the benchmark. Moreover, the time cost of
our method is merely 1/2 that of CFNet and 1/7 that of
RAFT-Stereo. Additional visualizations of this dataset can
be found in the supplementary materials.

4.5. Limitations and Discussion

As demonstrated in the aforementioned experiments, our
method achieves significant runtime acceleration without
compromising accuracy. Nevertheless, it is crucial to ac-
knowledge certain limitations that persist, such as the use of
naive gradient descent updates for JS-divergence-based op-
timization. This naive update scheme lacks robustness and
may lead to model collapse under certain circumstances.

5. Conclusion

In this paper, we have proposed a parameterized cost vol-
ume that efficiently encodes the entire disparity space utiliz-
ing multi-Gaussian distribution. We formulated the param-
eter computation of multiple Gaussian as a JS-divergence-
based optimization problem and solved it through a feed-
forward differential module. Our parameterized cost vol-
ume with the feed-forward differential module can enable a
global view for fast convergence at the beginning iteration
and provide a local view for fine-grained matching as the
iterations progress. The experimental results demonstrate
that our method can speed up the runtime by 4 ∼ 15 times
without sacrificing accuracy.
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