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Abstract

3D lane detection usually builds a dense correspondence
between the front-view space and the BEV space to estimate
lane points in the 3D space. 3D lanes only occupy a small
ratio of the dense correspondence, while most correspon-
dence belongs to the redundant background. This sparsity
phenomenon bottlenecks valuable computation and raises
the computation cost of building a high-resolution corre-
spondence for accurate results. In this paper, we propose a
sparse point-guided 3D lane detection, focusing on points
related to 3D lanes. Our method runs in a coarse-to-fine
manner, including coarse-level lane detection and iterative
fine-level sparse point refinements. In coarse-level lane de-
tection, we build a dense but efficient correspondence be-
tween the front view and BEV space at a very low resolution
to compute coarse lanes. Then in fine-level sparse point
refinement, we sample sparse points around coarse lanes
to extract local features from the high-resolution front-view
feature map. The high-resolution local information brought
by sparse points refines 3D lanes in the BEV space hierar-
chically from low resolution to high resolution. The sparse
point guides a more effective information flow and greatly
promotes the SOTA result by 3 points on the overall F1-
score and 6 points on several hard situations while reducing
almost half memory cost and speeding up 2 times.

1. Introduction
3D lane detection is an indispensable part of the ad-

vanced driver assistance system, supporting functionali-
ties such as automated lane centering and lane departure
warning. It relies on building a dense correspondence be-
tween the front view space and BEV space to localize lane
points in 3D space. Previous methods build a dense corre-
spondence by directly projecting the 2D image or 2D fea-
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Figure 1: The visualization of dense correspondence (a) and
sparse correspondence (b) between font view and BEV. The
green grids represent areas near lanes, while blue grids are
redundant areas far from lanes.

ture map into 3D space using Inverse Perspective Mapping
(IPM) [18, 38], but this kind of correspondence is hard to
handle the complex road conditions (e.g., uphill and down-
hill). Recently, some methods [3, 21] build a dense cor-
respondence using a learnable transformer to resolve this
problem. The transformer-based correspondence builds a
more effective information flow from the front view space
to the BEV space, which results in better performance in
extreme scenes.

Building such dense correspondence is actually redun-
dant for 3D lane detection. As shown in Figure 1, even
among a local window near the lane, only 2/5 correspon-
dences are beneficial for 3D lane detection, while the oth-
ers are redundant. Among the dense correspondence, 3D
lanes only occupy a small ratio, while most correspon-
dences are built for the background. This redundant prob-
lem becomes more severe at high resolution, where both
the high-resolution front-view and BEV feature maps are
necessary for high-quality lane detection in most methods
[6, 7, 18, 10, 38, 15]. To this end, we propose to construct
a sparse correspondence only focusing on a limited num-
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ber of points around 3D lanes. The sparse correspondence
builds an effective yet efficient information flow from the
front-view space to the BEV space. It directly brings the
high-resolution lane information from the front-view space,
ensuring fine-grained details in high-resolution BEV space.
Without redundant correspondence, the information flow
learns to focus more on features beneficial for 3D lane re-
sults. Meanwhile, it has a naturally efficient performance
by only allocating computation to points related to lanes.

In this paper, we present a sparse-point-guided 3D lane
detection method that decomposes the 3D lane detection
into coarse-level lane detection and fine-level sparse point
refinement. In coarse-level lane detection, we extract multi-
scale feature maps from the front-view image. An efficient
but dense BEV feature map is built from the front-view fea-
ture map at the lowest resolution to detect coarse 3D lanes.
Then the fine-level sparse point refinement refines coarse re-
sults hierarchically from low resolution to high resolution.
In each refinement, we first sample sparse points around
coarse 3D lanes within a specific window. And then, we
project sampled points onto the front-view plane to extract
local features from the high-resolution front-view feature
map. The local feature provides fine-grained information
to refine the local structure of 3D lanes. At the same time,
we compress the front-view feature map into a single vec-
tor as the global features to ensure the global smoothness
of 3D lanes. We fuse the global feature, the local features,
and the sparse point coordinates to predict the location and
category of each lane. The fusion of the local and global
features refers to the point coordinates, which ensures both
the global smoothness and local discrimination of lanes.

We validate our method on two anchor-based approaches
and a widely used segmentation-based approach. The
demonstrations are conducted on two real-world datasets
(OpenLane [3] and ONCE [18]), including different weath-
ers, lane structures, and road conditions. Our method out-
performs the two anchor-based approaches, showing our
feasibility to be seamlessly integrated with different proto-
typical methods to offer consistent improvement. Besides,
our method simply outperforms the SOTA anchor-based ap-
proach by 2 points on the overall F1-score and more than 6
points on the F1-score in several extreme conditions while
reducing half memory cost and speeding up 2 times. As
for the segmentation-based approach, our method achieves
comparable performance and reduces the memory cost of
the 3D lane head by 80% and speeds up 2 times.

2. Related Work

2.1. Lane Detection

According to the lane representation, there are mainly
three kinds of approaches for lanes detection, including
segmentation-based [14, 26, 37, 42], anchor-based [33, 43,

17, 16, 29], and parameter-based methods[5, 35, 32, 19]. In
order to estimate the lane representation in the 3D space,
some methods first conduct the estimation in the front-view
space and then use inverse perspective mapping (IPM) to
bridge the front-view space to BEV space for 3D results.
The IPM correspondence is based on the planar road as-
sumption, which is hard to handle road undulates, like a
hilly road. To tackle this issue, some methods estimate the
3D lanes in the BEV space to resolve complex road condi-
tions [6, 7, 18, 10, 38, 15, 3, 1, 9, 21]. They usually build
a dense correspondence by transforming the front-view fea-
ture to the BEV feature map. The dense correspondence
builds an effective information flow for the BEV feature to
improve the quality of the 3D lane.

To enhance the BEV feature, some methods introduce
auxiliary tasks for the joint learning[6, 7, 18, 38, 15]. The
others focus on designing a more effective transformation
[10, 3, 15]. RobustLane [10] uses an attention mechanism
to aggregate better global information and thus provides a
better global smoothness. RTVLane [15] introduces a ge-
ometry consistency between 2D and 3D space to guide the
learning of BEV features. Recently, PersFormer [3] uses
a transformer to build the dense correspondence between
the multi-scale front-view features and BEV feature through
cross-attention, which achieves SOTA performance. Build-
ing a proper correspondence between the front-view space
and the BEV space is the key to improving the 3D lane
performance, but a dense correspondence is actually redun-
dant. We observe that lanes only occupy a very small ratio
of the dense correspondence. Thus, we build a sparse corre-
spondence that only focuses on the points mostly belonging
to a lane. The sparse correspondence efficiently brings the
high-resolution lane information from the front-view space,
ensuring fine-grained details in high-resolution BEV space.
Besides, it also guides the information flow to learn better
features beneficial for 3D lane results.

2.2. Coarse-to-Fine Methods

The coarse-to-fine design is widely adopted in many
methods to hierarchically improve results [43, 42, 13, 39,
30, 24, 28, 40, 11, 22, 2, 36, 25]. The general design con-
sists of a coarse result estimation using low-frequency infor-
mation and a hierarchical refinement using high-frequency
information at high resolution. Due to the sparsity of high-
frequency information, many methods [13, 39, 30, 24] pro-
pose to only focus on the valuable regions and operate on
sparse point sets rather than regular grids to keep the bal-
ance between efficiency and accuracy. They mainly focus
on common objects and use local features to recover fine-
grained structures, like corners and boundaries. Different
from common objects, 3D lanes have a uniquely long and
thin structure, requiring a globally smooth and locally accu-
rate estimation. In this paper, we fuse the local and global
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Figure 2: The overall structure of our model is shown in (a). We decompose the 3D lane detection into the coarse-level lane
detection shown in (b) and the fine-level sparse point refinement shown in (c).

information referring to the coordinates of sparse points and
jointly refine the global and local structures of lanes.

3. Method

As 3D lanes only occupy a small ratio among the dense
correspondence between the front-view space and BEV
space, we propose only focusing on sparse points related to
lanes in the high-resolution space. As shown in Figure 2a,
we decompose the 3D lane detection into a coarse-level lane
detection in the lowest resolution and a series of fine-level
sparse point refinement. We extract multi-scale front-view
features from a front-view image. The lowest-resolution
features are fed into coarse-level lane detection to acquire
a rough structure of 3D lanes. The other high-resolution
features are used to refine the structure of 3D lanes hierar-
chically from low resolution to high resolution in fine-level
sparse point refinement. As shown in Figure 2b, in coarse-
level lane detection, we first build a dense but efficient cor-
respondence between the low-resolution front-view feature
and the BEV feature. The low-resolution BEV feature is
extracted to estimate the anchor representation of 3D lanes
*. As for the fine-level sparse point refinement shown in

*We select the anchor-based approach, i.e., Persformer[3], as the base-
line in the main paper. The realization of sparse-point guided lane detec-

Figure 2c, candidate points are first sampled around the an-
chor points of a lane. The candidate point coordinates are
then used as indexes to fetch local features from front-view
features. We also compress the front-view features into a
single vector as global features, which are fused with local
features to refine the location and category of lanes.

3.1. Lane Representation

Given an image, 3D lane detection aims to detect the lo-
cation l and category p of lanes L = {li, pi}i=N−1

i=0 where
N is the number of lanes. The location of lane li is repre-
sented by an ordered point sequence:

li = {(xi
j , y

i
j , z

i
j)}

j=Mi−1
j=0 . (1)

Mi is the number of points.
In anchor-based representation [3, 6, 7], 3D lanes are

initialized by a set of anchor lanes with predefined x-
coordinates {x̄i}i=N−1

i=0 , where N is the number of lanes.
The anchor lanes are further defined by a series of anchor
points with predefined y-coordinates {ȳj}j=M

j=0 , where M is
the anchor point count for each anchor lane. In the anchor-
based representation, the location of the 3D lane is formu-

tion for the segmentation-based approach is shown in the Supplementary
Material with modification on Persformer backbone.

8365



lated as
l
′

i = {(∆xi
j
, zij , v

i
j)}

j=M
j=0 , (2)

where ∆xi
j

is the offset along the x-axis, zij is the absolute
height along the z-axis and vij is the visibility for each an-
chor point. The anchor-based representation can be easily
converted into the ordered point sequence representation by

li = {(x̄i +∆xi
j
, ȳj , z

i
j}

j=M−1
j=0 . (3)

3.2. Coarse-level Lane Detection

In coarse-level lane detection, we aim to efficiently ac-
quire the coarse location and category of lanes. We first
extract the multi-scale features from the front-view image.
Then we transform the feature map from the front view to
the BEV at the lowest resolution and compute the coarse
location and category of 3D lanes, as shown in Figure 2b.
Specifically, we build a dense correspondence between the
BEV and front view space at the lowest resolution. We then
use the front-view points as the index to fetch front-view
features for BEV feature extraction. The details of trans-
formation follow the realization of the Persformer [3] and
are discussed in Section 4.2. With the dense BEV feature
map, we use a standard anchor-based approach [3, 6, 7] to
estimate the anchor-based lane representation.

3.3. Fine-level Sparse Point Refinement

As aforementioned, 3D lanes occupy very little 3D
space, which means a large number of 3D points are re-
dundant. Based on the observation, we design a fine-level
sparse point refinement, which only deals with sparse points
related to lanes instead of the entire BEV space to improve
the coarse results. The refinement is carried out hierarchi-
cally from the low resolution to the high resolution. We
take coarse 3D lanes estimated from the previous lower
resolution as reference lanes and sample candidate sparse
points around them, as shown in Figure 2c. The sam-
pled sparse points are then used as indexes to extract the
high-resolution front-view features. The fine-grained de-
tails from the high-resolution space gradually refine the lo-
cal structure of coarse results.

3.3.1 Candidate Point Sampling

Intuitively, points can be sampled along all three dimen-
sions, i.e., x, y, z, but the number of candidate points will
become too large to take. In the anchor-based represen-
tation, anchor points are predefined and have fixed values
on the y-axis. Thus, we sample points only around the
anchor points and only on the x-z plane, as shown in Fig-
ure 2c. Specifically, we deem coarse points computed from
the previous resolution as reference points. The candidate
points are uniformly sampled from the neighbors of refer-
ence points within a window W , which has a predefined
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Figure 3: The pipeline of local feature extraction. We
project the 3D point (x, y, z) onto image plane (u, v). A
local patch around the point (u, v) is fetched to compute lo-
cal features using interpolation and multi-layer perception
(MLP).

size and sampling step. The above sampling process can be
indicated as

S(xi
j , y

i
j , z

i
j) = {(xt, y

i
j , zt) | (xt, zt) ∈ W(xi

j ,z
i
j)
}. (4)

It is worth noting that the sampling process has a dif-
ferent requirement for training and inference. During the
training stage, we require as much information as possible
to supervise the learning of anchors. So, we keep all of
the candidate points. In contrast, in the inference stage, we
need to reduce as many redundant anchor lanes as possible
to save time and memory costs. Thus, we filter redundant
anchor lanes in the inference stage before sampling. The
filtering is designed by three rules. First, the detected cat-
egories of lanes are not backgrounds. Second, there are at
least two visible points on a lane. Third, the distance of
different lanes is far enough, where we define the distance
between two lines as the sum of the distance between an-
chor points with the same ȳj .

3.3.2 Refinement

Anchor-based lane representation consists of two kinds of
properties, including the location of each anchor point and
the category of each anchor lane.

Point Location Refinement Lane has a globally smooth
and locally complex structure due to its long and thin shape.
To this end, we propose to use both local features of candi-
date points and global features of the whole image to refine
the coarse results. As shown in Figure 3, we project candi-
date points (x, y, z) onto image plane (u, v) for local feature
extraction. This process can be written asu

v
1

 =
1

z
·K · E ·


x
y
z
1

 , (5)

where K is intrinsic matrix, E is extrinsic matrix. As the
projected point coordinate is a real value and the feature
map only consists of regular grids, we use a local area
around the projected point (u, v) to approximate the coordi-
nates. We then use the local area to compute local features
Fl through bilinear interpolation and multi-layer perception
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Figure 4: The pipeline of aggregation. Without loss of generality, we take the aggregation on candidate point features as an
example to visualize the pipeline of aggregation.

(MLP). The extracted local feature for sparse points is in-
dicated as Fl ∈ RC×N×M×||S||, where C is the feature
size, N is the number of anchor lanes, M is the number
of anchor points and ||S|| is the sampling size. To guide
the fusion of local and global information, we also encode
coordinates of sampled sparse points into a high-dimension
feature Fp ∈ RC×N×M×||S|| through a single MLP.

The point embedding Fp and local features Fl are
then concatenated as candidate point features Fc ∈
RC×N×M×||S||. In order to compute anchor point features
Fa ∈ RC×N×M from Fc, we propose to aggregate can-
didate point features belonging to the same anchor point.
As shown in Figure 4, we gradually compress the candidate
point dimension from ||S|| to 1. During the compression,
we use convolution with the kernel size of 3×1 and padding
of (1, 0) to propagate context information along the anchor
point dimension. This operation constrains the context in-
formation to only flow among the anchor points in the same
lane. Meanwhile, we use convolution with the kernel size
of 1 × 3 and padding of (0, 0) to compress local informa-
tion along the candidate point dimension. This operation
fuses the local information from the sampled sparse points
to the corresponding anchor. These two operations are al-
ternately repeated to propagate and compress information
progressively.

As for the global feature, we compress the entire front-
view features into a single feature vector Fg ∈ RC through
pooling operation, following previous methods [24, 27, 4,
20, 8, 41]. We then concatenate the global feature vector
Fg to each anchor feature vector Fa and fuse them together
to balance the global and local information. The fused
features are then used to update the anchor point location
{(∆xi

j
, zij , v

i
j)}

j=M
j=0 through 3 convolution layers.

Lane Category Refinement In order to detect the lane
categories, we extract lane features by aggregating the fea-
ture of anchor points belonging to the same lane. Similar
to the above aggregation operation for the anchor point fea-
tures, we first concatenate the global feature Fg with anchor
features Fa and then gradually propagate the information
along the anchor point dimension. The aggregated lane fea-
tures Fl ∈ RC×N are then used to update the lane category
pi through several convolution layers.

3.4. Loss

The predicted anchor-based lane representation consists
of category p̃i and location l̃i = {(∆̃xi

j
, z̃ij , ṽ

i
j)}

j=M
j=0 . We

use the cross entropy to supervise the predicted category p̃:

Lp = − 1

N

i=N−1∑
i=0

pilog(p̃i). (6)

As for the location, we supervise the learning of visibility ṽ
by l1 loss and use the visibility as weights to compute the l1
loss for ∆̃x and z̃:

L∆ =
1

M ·N

i=N−1∑
i=0

j=M−1∑
j=0

vij ||∆xi
j
− ∆̃xi

j
||1, (7)

Lz =
1

M ·N

i=N−1∑
i=0

j=M−1∑
j=0

vij ||zij − z̃ij ||1, (8)

Lv =
1

M ·N

i=N−1∑
i=0

j=M−1∑
j=0

||vij − ṽij ||1. (9)

The joint loss can be indicated as

L = Lp + L∆ + Lz + Lv. (10)

During the hierarchical refinement from the low resolution
to the high resolution, we separately compute the above loss
for each resolution and sum up the losses as the final loss to
train the network.

4. Experiments
In the main paper, we present the sparse-point guided

3D lane detection method on the anchor-based approach.
We mainly use Persformer [3] as the baseline, while
Gen-LaneNet [7] is taken as an optional baseline to
verify the feasibility of our method. We validate our
method on the real-world datasets OpenLane [3] and
ONCE-3DLanes [18] to demonstrate our priority to handle
complex environments and variable scenes. As for our
method on the segmentation-based approach, we present
the results obtained on the synthetic dataset Apollo 3D
Lane [7] in the Supplementary Material. The code is avail-
able at https://github.com/YaoChengTang/
Sparse-Point-Guided-3D-Lane-Detection
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Method All ↑ Up &
Down ↑ Curve ↑ Extreme

Weather ↑ Night ↑ Intersection ↑ Merge &
Split ↑

3D-LaneNe [6] 44.1 40.8 46.5 47.5 41.5 32.1 41.7
Gen-LaneNet [7] 32.3 25.4 33.5 28.1 18.7 21.4 31
PersFormer [3] 50.5 42.4 55.6 48.6 46.6 40 50.7

Ours + PersFormer 53.7 (3.2↑) 46.2 (3.8↑) 59.2 (3.6↑) 54.8 (6.2↑) 49.8 (3.2↑) 41.9 (1.9↑) 52.1 (1.4↑)

Table 1: Performance comparison with state-of-the-art methods on OpenLane benchmark in different scenarios, where the
evaluation metric is F1-score. ↑ means that the larger the value, the better the result.

Method F-score (%) ↑ X error near (m) ↓ X error far (m) ↓ Z error near (m) ↓ Z error far (m) ↓
3D-LaneNe [6] 44.1 0.479 0.572 0.367 0.443

Gen-LaneNet [7] 32.3 0.591 0.684 0.411 0.521
Cond-IPM [3] 36.6 0.563 1.080 0.421 0.892
PersFormer [3] 50.5 0.485 0.553 0.364 0.431

Gen-LaneNet* [7] 42.8 0.488 0.632 0.374 0.481
Ours + Gen-LaneNet* 46.6 0.475 0.577 0.371 0.445

Ours + PersFormer 52.3 0.468 0.514 0.371 0.418

Table 2: Performance comparison with state-of-the-art methods using different evaluation metrics on the validation set of
OpenLane benchmark. * means that we re-implement the method on the OpenLane benchmark. ↑ means that the larger the
value, the better the result. ↓ means that the smaller the value, the better the result.

4.1. Datasets

OpneLane Dataset OpneLane [3] is a challenging real-
world 3D lane dataset constructed on Waymo Open dataset
[31]. It consists of 200K frames with 14 kinds of categories,
complex lane structures, and five kinds of weather. 50%
frames have an altitude change of more than 1m, and 25%
frames have more than six lanes. Currently, it is the most
challenging lane detection dataset, so we choose it as the
main dataset to conduct ablation studies and demonstrate
the performance promotion of our method.

ONCE-3DLanes Dataset ONCE-3DLanes [18] is a
real-world 3D lane dataset constructed on ONCE [23]. It
consists of various scenes, such as highways, bridges, tun-
nels, suburbs, and downtown, with different weather condi-
tions (sunny/rainy) and lighting conditions (day/night).

4.2. Implementation Details

We select the PersFormer [3] as the baseline of the
anchor-based approach to leverage the sparse point. Effi-
cientNet [34] is used as the backbone for the front-view
feature extraction. Perspective Transformer [3] and 3D-
GeoNet [7] are used in coarse-level lane detection to ex-
tract the dense BEV features and detect coarse 3D lanes
at the lowest resolution. Following PersFormer, we set
the highest resolution of BEV space as 208 × 128 with
the range of [−10, 10] meters along the x-axis and [3, 101]
meters along the y-axis, respectively. We set the count
of anchor lanes as N = 182 and anchor points for
each lane as M = 10, where the fixed {yi} is set as
{5, 10, 15, 20, 30, 40, 50, 60, 80, 100} for each lane. In fine-
level sparse point refinement, we set the size of sampling
window W as 3 × 3 with (1, 0.5) sampling step along the
x-axis and the z-axis separately.

Method
Training

Memory (G)
Inference

Speed (FPS)
3D-LaneNe [6] 6.6 103

Gen-LaneNet [7] 4.7 67
PersFormer [3] 19.6 27

Ours + PersFormer 12.5 45

Table 3: Training memory cost and inference speed com-
parison with state-of-the-art approaches. We acquire the
memory cost on a single A30 GPU with a batch size of 8.
We obtain the inference speed on a single A30 GPU with a
batch size of 1.

In the training stage, we pre-train the coarse-level lane
detection for 100 epochs and then finetune our fine-level
sparse point refinement for another 100 epochs. For both
pertaining and finetuning, we use Adam optimizer [12] with
a base learning rate of 2×10−4 and a weight decay of 10−3.
The cosine learning rate policy is applied to optimization
with a maximum iteration of 8 and a minimum learning rate
of 10−5. We also use gradient norm clipping during the
optimization with a maximum norm weight of 35. In the
Inference stage, we use the number of valid anchor points
in each lane as the threshold to filter anchor lanes that are
too close. For more details about training and inference,
please refer to the code and our supplemental materials.

4.3. Evaluation Metrics

Following OpenLane, we use bipartite matching to eval-
uate the predicted and ground-truth lanes. The matching
is true positive when the distance error of 75% lane points
is less than 1.5m. The percentage of matched ground-truth
lanes is deemed as the recall, and the percentage of matched
predicted lanes is deemed as the precision. The average of
recall and precision is F-score. The lane points are also di-
vided into near points (3−40m) and far points (40−101m).
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Figure 5: The visualization results of PersFormer and our method on the OpneLane dataset.

The point-wise distance error along the x-axis and z-axis
is used to evaluate the location accuracy for near and far
points. In ONCE, we also use the unilateral Chamfer Dis-
tance (CD) metric that computes the chamfer distance be-
tween the predicted and ground truth lane.

4.4. Benchmark Performance

OpenLane Following the setting in OpenLane, we eval-
uate the performance in different scenarios. As shown in
Table 1, we achieve the best results in all scenarios. It is
worth noting that our method achieves more than 6 points
promotion in extreme weather scenarios. This promotion
shows that our method greatly resists the feature noise and
extracts valuable information by only focusing on sparse
points around 3D lanes. In Table 2, we further compare
our method with state-of-the-art approaches using different
evaluation metrics. Our method outperforms all state-of-
the-art approaches in almost every evaluation metric. Spe-
cially, we improve the location on the x-axis in both near
and far distances and thus improve the overall F1-score.
What’s more, our method effectively helps Gen-LaneNet
outperform both the original result of Gen-LaneNet pub-
lished by OpenLane and our reproduced Gen-LaneNet* on
all metrics. These results prove that our method is flexi-
ble and can seamlessly integrate with different prototypical
methods to offer consistent improvement.

We also compare our method with state-of-the-art ap-
proaches from the training memory cost and the inference

speed. As shown in Table 3, our method achieves the lowest
memory cost and the fasted inference speed. Compared to
the baseline, we greatly reduce the memory cost, which en-
ables the front-view images to have higher resolution. Fur-
thermore, the sparse point guides the network to achieve
a better result in most cases with a much faster inference
speed. It should be noted that the speed and memory cost re-
ported in this paper is computed based on a pure Python re-
alization of sparse-point sampling and aggregation without
any unfair engineering optimization like the custom CUDA
kernel that significantly reduces the running time.

Besides the quantitive analysis, we also compare visu-
alization results of the PersFormer and our method in dif-
ferent scenarios for qualitative analysis. As shown in Fig-
ure 5, our method obviously outperforms the PersFormer in
cloudy, rainy, night, and different road conditions. This fur-
ther demonstrates that the sparse point guides the BEV fea-
ture to extract more meaningful information from the front-
view image and thus improve the recall and accuracy of the
detected lanes.

ONCE-3DLanes As illustrated in Table 4, we follow
the PersFormer using the validation set of ONCE-3DLanes
to evaluate the results of our methods. Considering scenes
are easier in the ONCE benchmark, the quantity results are
already very high. The sparse point slightly promotes the
baseline in the F1-score, Precision, and CD error with a
much more efficient performance, which only costs half the
memory and inference time.
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Method F1-score (%) ↑ Precision (%) ↑ Recall (%) ↑ CD error (m) ↓
3D-LaneNe [6] 44.73 61.46 35.16 0.127

Gen-LaneNet [7] 45.59 63.95 35.42 0.121
SALAD [3] 64.07 75.90 55.42 0.098

PersFormer [3] 74.33 80.30 69.18 0.074
Ours + PersFormer 74.79 81.85 68.86 0.070

Table 4: Performance comparison with state-of-the-art methods on ONCE benchmark. ↑ means that the larger the value, the
better the result. ↓ means that the smaller the value, the better the result.

Front-view
Feature Extraction

Coarse
level

Fine
level 1

Fine
level 2

Fine
level 3

4.8ms 6.1ms 3.8ms 3.1ms 3.4ms

Table 5: Inference time cost of each step in our method.

Coarse
level

Fine
level 1

Fine
level 2

Fine
level 3

F1-score
(%)

X error
near (m)

✓ 51.3 0.484
✓ ✓ 52.1 0.475
✓ ✓ ✓ 53.6 0.470
✓ ✓ ✓ ✓ 53.7 0.468

Table 6: The performance of coarse-level lane detection and
fine-level sparse point refinement.

4.5. Ablation Study and Discussion

Complexity Analysis We evaluate the time cost of each
step in our method to show the efficiency of our sparse re-
finement. As shown in Table 5, it is more efficient to use
sparse points for feature fetching and 3d lane refinement,
even compared to the coarse-level lane detection conducted
in the lowest resolution.

Effectiveness of Refinement In order to validate the ef-
fectiveness of our fine-level sparse point refinement, we
compare results from the coarse level and from the different
fine levels. As shown in Table 6, the fine-level sparse point
refinement greatly improves the results of coarse-level lane
detection in both F1-score and X error near.

Effectiveness of Features To ensure globally smooth
and locally discriminative performance, we leverage both
the global and local features to refine the lanes. We demon-
strate the advantage of balancing the global and local in-
formation by comparing three kinds of feature conditions,
including only using global features, only using local fea-
tures, and using both local and global features. As shown
in Table 7, the first condition results in a very low F1 score
of 46.8%, and the second one is already comparable to the
baseline, while the last one fusing with sparse points gives
the best result.

Effectiveness of Point Sampling As aforementioned,
we sample candidate points around the anchor point on the
x-z plane. Here, we analyze the effectiveness of point sam-
pling using different sampling steps.

As illustrated in Table 8, the result gets better when the
value of the sampling step is smaller along the z-axis and
larger along the x-axis. This phenomenon shows that the
local features fetched along the x-axis are more valuable

Global Features Local Features F1-score (%)
✓ 46.8

✓ 51.8
✓ ✓ 53.7

Table 7: The performance of our method with/without
global features and local features.

x-axis z-axis F1-score
1 1 53.61
1 0.5 53.65

0.5 1 53.34
0.5 0.5 53.46
1 0.25 53.67

Table 8: The performance of our method with different sam-
pling steps along x-axis and z-axis.

than the features fetched along the z-axis, where the sam-
pling along the x-axis actually gives us more valid sample
points on the front-view image.

4.6. Limitations and Discussion

As shown in the above experiments, we have achieved
great progress in both accuracy and efficiency. However,
our method still has some limitations, e.g., assuming all
3D lane instances could be detected on BEV features in the
lowest resolution. This assumption becomes less powerful
when meeting extremely complex and crowded road condi-
tions. A slow-fast update strategy for refinement at different
scales might give better results, but it requires much more
engineering tricks on feature manipulation. In this paper,
we mainly focus on proving the priority and possibility of
simply using sparse correspondence instead of dense corre-
spondence for 3D lane detection.

5. Conclusion
In this paper, we have proved that using sparse points is

more efficient and adequate for high-quality 3D lane detec-
tion than building a dense correspondence between the HR
front-view space and BEV space. We presented a sparse
point-guided 3D lane detection method, including coarse-
level lane detection and fine-level sparse point refinement.
Experiments proved that our method could achieve much
better results with less memory and time cost.
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