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Abstract

Learning multiple pretext tasks is a popular approach
to tackle the nonalignment problem in unsupervised video
anomaly detection. However, the conventional learning
method of simultaneously learning multiple pretext tasks,
is prone to sub-optimal solutions, incurring sharp perfor-
mance drops. In this paper, we propose to sequentially learn
multiple pretext tasks according to their difficulties in an as-
cending manner to improve the performance of anomaly de-
tection. The core idea is to relax the learning objective by
starting with easy pretext tasks in the early stage and grad-
ually refine it by involving more challenging pretext tasks
later on. In this way, our method is able to reduce the diffi-
culties of learning and avoid converging to sub-optimal so-
lutions. Specifically, we design a tailored sequential learn-
ing order for three widely-used pretext tasks. It starts with
frame prediction task, then moves on to frame reconstruc-
tion task and last ends with frame-order classification task.
We further introduce a new contrastive loss which makes the
learned representations of normality more discriminative by
pushing normal and pseudo-abnormal samples apart. Ex-
tensive experiments on three datasets demonstrate the effec-
tiveness of our method.

1. Introduction
Existing unsupervised video anomaly detection methods

train models to perform a single pretext task such as frame
reconstruction [14] or frame prediction [21], and they can
discriminate anomalies when videos are significantly de-
viant from model expectations. These methods often render
sub-optimal performances due to the nonalignment [17] be-
tween the single pretext task and video anomaly detection.

Recent methods [9, 17] resort to multiple pretext tasks to
tackle the nonalignment problem, as multiple pretext tasks

*Corresponding author: Che Sun

1 2 3
Number of Tasks

70

75

80

85

90

95

AU
C

89.61 90.57 90.8589.61

83.24 82.4083.39

79.82
78.22

89.61

79.87
78.58

Avenue

Ours
Sequential-1
Sequential-2
Simultaneous

(a)

1 2 3
Number of Tasks

70

75

80

85

90

95

100

AU
C

91.32

95.17
97.57

91.32
93.44

95.66

73.12

88.34
92.0291.32

86.46

93.51

Ped2

Ours
Sequential-1
Sequential-2
Simultaneous

(b)

Figure 1. AUC (%) performances of anomaly detection
when learning multiple pretext tasks simultaneously and se-
quentially. The dotted line denotes simultaneously learning
multiple pretext tasks. The solid lines denote sequentially
learning multiple pretext tasks. The learning order of our
method is “prediction (Pre) - reconstruction (Rec) - clas-
sification (Cls)”. The learning orders of Sequential-1 and
Sequential-2 are “Pre-Rec-Cls” and “Rec-Cls-Pre” respec-
tively. AUC performances on Avenue [24] and Ped2 [28]
datasets show that the learning methods and the learning
orders of multiple pretext tasks significantly influences the
trained model’s ability for video anomaly detection.

can provide more comprehensive and informative guidance
than one single pretext task. The learning method of multi-
ple pretext tasks is significant, yet under-explored. Conven-
tional learning method, i.e., simultaneously learning multi-
ple pretext tasks, could not bring about the expected perfor-
mance gains and even cause sharp performance drops. An
example is shown in Fig. 1. The performance curves (the
dotted lines in blue) plummet or fluctuate with more pre-
text tasks, and neither of the performance curves reaches
the summit when leveraging all pretext tasks. The main
reason is that models tend to get stuck in pareto-optimal
points when simultaneously learning multiple pretext tasks.
The pareto-optimal points [7, 34, 12] are such points that
we could not further optimize any of the pretext task ob-
jectives without compromising the rest, striking a trade-
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off among them. Pareto-optimal points are not necessarily
good solutions for video anomaly detection. Converging to
such points brings the learning process to an early stop and
impedes models from bringing about the expected perfor-
mance gains of multiple pretext tasks.

In this paper, we propose to sequentially learn multiple
pretext tasks for video anomaly detection, and our method
is able to provide continual optimization directions, which
avoids converging to pareto-optimal points. We arrange the
sequential learning order of multiple pretext tasks accord-
ing to their difficulties in an ascending manner. The diffi-
culty of a task refers to the difficulty of transferring knowl-
edge learned from this task to improve the performance of
anomaly detection. Easy tasks usually bring about more
performance gains while difficult tasks not. Essentially,
our method first relaxes the learning objective of anomaly
detection to that of an easy pretext task, and then gradu-
ally refines it with more challenging pretext tasks along the
learning process. In this way, our model is able to gradu-
ally transfer knowledge learned from pretext tasks to model
anomalies from coarse to fine, which encourages our model
to explore better solutions for video anomaly detection. As
shown in Fig. 1, our learning method displays superiority
over other sequential learning orders, because they do not
consider the difficulties of pretext tasks.

We select three widely-used tasks to model temporal and
spatial normality in our learning method. Our method starts
with the frame reconstruction task (Rec), then goes on to
learn the frame prediction task (Pre) and at last learns the
frame order classification task (Cls). We introduce a con-
trastive loss to push in-order (i.e., positive samples) and out-
of-order (i.e., negative samples) inputs apart, which con-
strains the latent encoding space to achieve better discrimi-
nation for models to classify them. We evaluate our meth-
ods on three datasets, Avenue [24], ShanghaiTech [27] and
UCSD Ped2 [28]. Extensive experiments demonstrate the
effectiveness of our method.

In summary, our contributions are two-fold.

• As far as we know, our method is the first attempt
to sequentially learn multiple pretext tasks according
to their difficulties in an ascending manner, which
brings about the expected performance gains in video
anomaly detection.

• We introduce a new contrastive loss to constrain the
latent space, which grants the trained model with better
discrimination for classifying anomalies.

2. Related Work
2.1. Video Anomaly Detection

We review related deep unsupervised anomaly detec-
tion methods and divide them into two categories, sin-

gle pretext task and multiple pretext tasks. Specifically,
the term “unsupervised” refers to methods that use only
normal data during training. Most unsupervised methods
train models to perform a single pretext task with nor-
mal samples and assume that the trained models could
not perform the pretext task well with abnormal samples.
Some works [14, 26, 11, 35, 30, 37, 16] trained models
to reconstruct input frames as the pretext task while other
works [21, 1] trained models to predict future frames. Al-
though these methods achieved good results, the nonalign-
ment between training tasks (e.g., frame reconstruction,
frame prediction) and the testing task (i.e., anomaly detec-
tion) still causes a high false alarm rate. Therefore, recent
methods[22, 38, 9, 17, 8] began to train models with mul-
tiple pretext tasks instead of one single pretext task. Liu et
al. [22] combined frame prediction and optical-flow image
reconstruction as learning objectives. They concatenated
two auto-encoders to perform these two tasks. Some other
works [9, 17, 8] designed one encoder model with multi-
ple task heads to learn multiple pretext tasks at the same
time. Georgescu et al. [9] included four tasks (arrow of
time, motion irregularity, middle box prediction and model
distillation) as pretext tasks. Huang et al. [17] introduced
contrastive learning methods into anomaly detection and
augmented the raw input by shuffling, reversing, rotating
and accelerating frames. However, learning multiple pre-
text tasks to improve the performance of anomaly detection
is not fully explored in these works. The reason is that,
these methods learn multiple pretext tasks simultaneously,
which could easily converge to sub-optimal solutions. Dif-
ferently, our method designs a tailored sequential learning
order, which gradually involves more pretext tasks and se-
quentially learns them to avoid sub-optimal solutions and
achieves better performances.

2.2. Multi-Task Learning

Multi-task learning [39, 45, 40, 42, 5] is adding its appeal
to more and more researchers in deep learning. Some meth-
ods simultaneously learn multiple tasks by designing com-
plicated network architectures [15] and optimization strate-
gies [7, 34, 41, 12]. These methods are conducted under
supervisions and aim to achieve overall performance im-
provements for multiple tasks. Our goal differs significantly
from these methods. We aim to transfer knowledge learned
from multiple pretext tasks for modeling normality, so that
the performance of anomaly detection is improved. To this
end, we propose to sequentially learn multiple pretext tasks
according to their difficulties in an ascending manner. Our
learning method prevents converging to sub-optimal solu-
tions and ensure the expected performance gains of learning
multiple pretext tasks.

Previous work of Pentina et al. [32] also proposed to
learn multiple tasks sequentially. They arranged the learn-
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ing order of multiple tasks according to their relatedness
so that learning new tasks did not undermine models’ per-
formances on previously learned tasks. In this way, they
aimed to improve the performances on all tasks. Differently,
multiple pretext tasks in our method are arranged according
to their difficulties so that knowledge learned from these
tasks could better facilitate our model to detect anomalies.
The trained model’s ability to perform these pretext tasks in
[32], however, does not fall into the scope of our concerns.
Our sequential learning method would inspire improving
the performance of a specific downstream task when learn-
ing multiple pretext tasks.

3. Method
3.1. Overview

Video anomaly detection aims to automatically detect
anomalous events, which do not conform to human expec-
tations and deviate significantly from normal behavior pat-
terns in videos. Due to the unbounded and rare nature of
video anomalies, most works have been directed at unsu-
pervised methods. Unsupervised video anomaly detection
can be stated as follows. Given a training set V consist-
ing of n frames {F1,F2, . . . ,Fi, . . . ,Fn} from videos of
normal events, the goal is to learn normal patterns and an
anomaly scoring function f : Fi → R during training. Dur-
ing testing, the learned anomaly scoring function assigns
large scores to anomaly frames for discrimination.

As is shown in Fig. 2, our method consists of one shared
encoder for encoding input snippets as latent codes, a pro-
jection block for projecting latent codes and three task heads
for learning multiple pretext tasks. We adopt an object
detector to construct object-level clips X ∈ RW×H×C

from each frame Fi and concatenate T consecutive clips
in frames [Fi,Fi+1, . . . ,Fi+T ] to obtain the snippet S ∈
RT×W×H×C as the input of our method. During testing,
the maximum prediction error of all objects in each frame
indicates the frame-level anomaly score, due to the assump-
tion that anomalies are usually unpredictable [21].

3.2. Model Architecture

Our model includes one shared encoder and three task
heads for learning multiple pretext tasks. Our encoder E(·)
is similar to the one in UNet [23], but does not have any skip
connections. The task heads are the reconstruction head
Hrec(·), the prediction head Hpre(·) and the classification
head Hcls(·). The reconstruction head and the prediction
head consist of consecutive deconvolution blocks and they
take the latent code, i.e., the output of the shared encoder,
as input. The latent code is projected to a new latent space
by the projection block Bpro(·) and then fed to the classifi-
cation head. Both the classification head and the projection
block consist of several fully-connected layers.

Input Snippet
S

Latent code
E(S)	

E(·)

Prediction 
Task

Reconstruction 
Task

B"#$(·)

Embedding
B"#$(E S )	

Classification 
Task

H%&'(·)H#(%(·)H"#((·)

E(·) Encoder
B!"#(·)

H$%&(·)
H"'$(·)
H!"'(·)

Projection Block
Prediction Head

Reconstruction Head
Classification Head

Figure 2. Overview of our method.

3.3. Multiple Pretext Tasks

We select three widely used pretext tasks in our method.
These tasks are the frame prediction task, the frame recon-
struction task and the frame order classification task. They
can be broadly classified into two categories, namely the
generative pretext tasks and the discriminative pretext tasks.
Generative tasks are the prediction task and reconstruction
task. The motivation for choosing these tasks is that most
anomalies are visually deviant from normal events, thus less
easily to be reconstructed or predicted. The discriminative
task is the frame order classification task. The motivation
for choosing it is that most anomalies are temporally in-
consistent, thus classifying out-of-order frames could help
to detect anomalies. We also introduce a contrastive loss
to make the representations of learned normality more dis-
criminative. This is helpful to prevent over-generalizing the
trained model’s ability for some visually indistinct anoma-
lies.
Frame Prediction. Learning the frame prediction task is
effective in modeling temporal normality [21, 1]. Most
anomalies do not conform to human expectations and are
usually deviant from model predictions. Therefore, we be-
lieve that the frame prediction task is able to reveal a global
picture of optimal solutions for video anomaly detection.
We train our model to predict future frames based on a
snippet S consisting of four consecutive frames. We draw
inspiration from previous tasks of “middle frame predic-
tion”, and propose to perform bi-directional frame predic-
tion. We train our model to predict future frames in both
directions, forward and backward. We construct a forward
snippet

→
S = [X1,X2, . . . ,XT ] and a backward snippet

←
S = [X2T+1,X2T−1, . . . ,XT+2] as the raw inputs. The
object-level XT+1 in the middle frame is the prediction tar-
get. We use the shared encoder to first encode these two
snippets, and use the prediction head to predict XT+1, yield-
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ing Hpre(E(
→
S)) and Hpre(E(

←
S)) respectively. The final

prediction result X̂ of our model is given by

X̂ =
Hpre(E(

→
S)) +Hpre(E(

←
S))

2
. (1)

We use L2-norm to evaluate the differences between the
prediction result and the ground truth, XT+1. The predic-
tion loss Lpre is given by

Lpre = ||X̂− XT+1||2. (2)

In order to generate smooth prediction frames, we also
implement a gradient loss. The gradient loss Lgrd is given
by

Lgrd = ||∇X̂−∇XT+1||1, (3)

where ∇ denotes calculating the gradients. The objective of
this task is to minimize both Lpre and Lgrd.
Frame Reconstruction. Learning the frame reconstruction
task is effective in modeling spatial normality [14, 26, 11,
30, 16]. This task encourages our model to encode more
concrete information about normality, which helps to dis-
criminate against anomalies. We use the shared encoder
E(·) to first encode S into the latent space and then recon-
struct the input snippet as Hrec(E(S)) from the latent code
E(S). We use L2-norm to evaluate the differences between
the reconstructed snippet Hrec(E(S )) and the input snippet
S. The objective of this task is to minimize the reconstruc-
tion loss Lrec, given by

Lrec = ||Hrec(E(S))− S||2. (4)

Frame Order Classification. Learning the frame order
classification task is effective in modeling temporal con-
sistency of normality [8]. This task is to classify in-order
and out-of-order snippets. It encourages our model to learn
more discriminative information about normality, which
could not be captured by the reconstruction task and the pre-
diction task. As indicated in the work of Chen et al. [4], a
projection block is able to improve the latent code’s qual-
ity. We also adopt a projection block, noted as Bpro(·), be-
fore the classification head. We generate out-of-order sam-
ples by shuffling and accelerating in-order snippets, because
they simulate temporal anomalous events in the real world.
The shuffled snippet is noted as Sshu. The accelerated snip-
pet is noted as Sacc. We also generate in-order samples by
reversing the original snippets, because they preserve the
continuity of normal events. The reversed snippet is noted
as Srev. We assign pseudo label 0 to out-of-order snippets
and 1 to in-order snippets. The learning objective of the
classification head is to correctly classify the original and
augmented snippets under the supervision of pseudo labels.
The classification loss Lcls takes the form of binary cross

entropy, given by

Lcls = log(1− g(S)) + log(1− g(Sacc))
−log(g(Srev))− log(g(Sshu))

, (5)

where,
g(·) = Hcls

(
Bpro

(
E(·)

))
. (6)

We further introduce a contrastive loss for making the
learned latent codes more discriminative. Contrastive learn-
ing leverages the similarities between input samples and
augmented ones to learn discriminative representations.
Positive samples are encouraged to be crowded together
and negative samples pushed apart. By imposing the con-
trastive learning constraints, the projected latent codes of
normal and anomalous events become more distinctive and
far apart. Cosine-similarity sim(·, ·) is used to evaluate the
similarities between the latent codes of positive samples and
negative samples, given by

sim(a, b) =
aTb

||a||2||b||2
, (7)

where a and b denote the latent codes. We use τ to denote
the temperature parameter. The raw snippets and reversed
snippets are treated as positive samples and the shuffled
snippets and the accelerated snippets as negative samples.
The similarity score spos between positive samples is given
by

spos =
∑

exp(
sim(E(S), E(Srev))

τ
). (8)

The similarity score sneg between negative and positive
samples is given by

sneg =
∑

exp(
sim(E(S), E(Sshu))

τ
)

+
∑

exp(
sim(E(S), E(Sacc))

τ
).

(9)

The contrastive learning loss Lcon is given by

Lcon = − log
spos

spos + sneg
. (10)

The objective of this task is to minimize the classification
loss Lcls and the contrastive loss Lcon.

3.4. Sequential Learning Order

We observe that the conventional learning method, i.e.,
simultaneously learning multiple pretext tasks, is prone to
sub-optimal solutions for video anomaly detection. Some
previous works [8, 17] tried to alleviate this problem by as-
signing different weights to multiple pretext tasks. How-
ever, models still risk converging to pareto-optimal points,
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Tasks\Phase Phase1 Phase2 Phase3
Prediction

Task ✓ ✓ ✓

Reconstruction
Task ✓ ✓

Classification
Task ✓

Table 1. The sequential learning order of our method.

rendering less satisfying performances. The possible reason
is that these tasks could have potentially conflicting objec-
tives and simultaneous learning encourages an early stop of
model optimization. Inspired by the learning process of hu-
man, we propose to sequentially learn multiple pretext tasks
according to their difficulties from easy to hard. In this way,
the proposed learning method is able to provide our model
with constantly evolving learning objectives and prevent our
model from converging to sub-optimal solutions.
Task Difficulty Measurement. The difficulty of a task
refers to the difficulty of transferring knowledge learned
from this task to improve the performance of anomaly de-
tection. And it is measured by the objective AUC perfor-
mance. The frame prediction task is easier because it tar-
gets unpredictable anomalies, which usually deviate from
model expectations and are the most frequent and common
anomalies. And learning this task alone from scratch ren-
ders a better performance in detecting anomalies. The clas-
sification task is more difficult because it targets anomalies
in the latent space, which are less frequent and indistinc-
tive anomalies. And learning this task alone from scratch
renders a worse performance in detecting anomalies. Easy
pretext tasks and difficult pretext tasks are complimentary,
because each pretext task is designed to model some char-
acteristics of anomalies by transferring knowledge learned
from this task. Easy pretext tasks model more general and
common characteristics (i.e., anomalies in coarse-scale) and
difficult pretext tasks model more specific and rare charac-
teristics (i.e., anomalies in fine-scale). Therefore, we design
a new learning method which sequentially learns all these
tasks.
Sequential Learning Order Design. The sequential learn-
ing order is shown in Tab. 1 and the difficulties of these
tasks are used as a criterion for deciding the learning order.
The optimal order refers to arranging multiple pretext tasks
according to their difficulties in an ascending manner. It
consists of three phases. (1) In phase one, our model learns
to perform the frame prediction task. This task is relatively
easy for models to start with and models could learn a better
starting point for other more challenging tasks. (2) In phase
two, our model learns to perform the frame prediction task
and the frame reconstruction task together. The prediction
head and the reconstruction head share the same encoder

from phase one. In this way, the reconstruction head is able
to leverage knowledge learned from the previous task. (3)
In phase three, we train the classification head to classify
the time order of input snippets. The classification head
is trained to discriminate latent codes of in-order (consecu-
tive) and out-of-order (shuffled/accelerated) input snippets.
The criterion for deciding the learning order is objective so
that more pretext tasks can be easily inserted into the current
learning order according to their difficulties.

3.5. Anomaly Detection

During testing, we first calculate the prediction error
L(S) of every snippets S per frame, given by

L(S) = ||Hpre(E(S))− XT+1||2. (11)

We then assign 0 as anomaly score to any frame without de-
tected salient objects. For a frame Fi with m salient objects,
the maximum anomaly score Lmax among these objects is
given by

Lmax = max{L(S1),L(S2), . . . ,L(Sm)}. (12)

The learned anomaly scoring function is given by

f =

{
0 Fi has 0 objects
Lmax Fi has m objects . (13)

The frame-level score is further smoothed by a median filter
whose window size is 17 to ensure the temporal consistency
of videos.

4. Experiments
4.1. Experimental Setting

Datasets. We evaluate our method on three challeng-
ing datasets, namely Avenue [24], ShanghaiTech [27] and
UCSD Ped2 [28]. Each dataset can be divided into train-
ing sets and testing sets. Only normal frames are included
in the training sets. (1) Avenue [24]: A total of 16 train-
ing videos and 21 testing videos are included in the Av-
enue dataset. The anomalous events in the testing sets in-
clude anomalous pedestrian movements, wrong directions,
and anomalous objects. (2) ShanghaiTech [27]: A total of
13 different surveillance scenes are included in the Shang-
haiTech dataset. It is one of the most challenging video
anomaly detection datasets. The testing sets contain over
130 anomalous events. (3) UCSD Ped2 [28]: A total of
36 training videos and 12 testing videos are included in the
Ped2 dataset. The Ped2 dataset uses video footage captured
by cameras fixed at high elevations overlooking the side-
walk. Anomalies in the dataset are mainly caused by the
presence of non-human entities (cars, wheelchairs, skate-
boards, bicycles, etc.) as well as some abnormal behavior
patterns of pedestrians.
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Lpre Lgrd Lrec Lsps Lcls Lcon Avenue Ped2
✓ ✓ ✓ ✓ ✓ ✓ 76.51 83.85
✓ ✓ ✓ ✓ ✓ - 81.84 76.50
- - ✓ ✓ ✓ ✓ 84.47 63.76
✓ ✓ - - ✓ ✓ 78.58 88.40
- - ✓ ✓ - - 73.32 82.69
✓ ✓ - - - - 82.10 72.04
✓ - - - - - 79.15 92.29

Table 2. AUC (%) performances of models trained with dif-
ferent loss combinations in Avenue and Ped2 datasets. We
take six losses into consideration, namely prediction loss
Lpre, gradient loss Lgrd, reconstruction loss Lrec, sparsity
loss Lsps, classification loss Lcls and contrastive loss Lcon.

Evaluation Metric. We evaluate our method on a frame-
level metric. Following previous popular works [14, 11, 25,
36], we adopt the area under the receiver operating char-
acteristic curve (AUC) as the evaluation metric. A higher
AUC indicates a better video anomaly detection perfor-
mance.
Compared Methods. For single pretext task based meth-
ods, we compare our method with reconstruction based
methods like Conv-AE [14], ConvLSTM-AE [26], MNAD-
R [30] and prediction based methods like Frame-Pred [25],
MNAD-P [30] and VEC [44]. For multiple pretext tasks
based methods, we compare our method with MemAE [11],
ST-AE [46], AMC [29], GMFC-VAE [6], AnoPCN [43],
HF2VAD [22], AD-Con [17] and object-centric [8].

4.2. Implementation Details

The encoder consists of a convolution layer and three
convolution blocks. The prediction head and the reconstruc-
tion head are symmetrical to the encoder, consisting of three
de-convolution blocks and a convolution layer at the end.
The prediction head and the reconstruction head have the
same network architecture for the first three blocks. The
difference lies in the last convolution layer. For smaller
datasets like Avenue and Ped2, we make a minor revision
to the auto-encoder and remove the last block to make the
network smaller. The detailed architectures can be found
in supplementary materials. We train our model on salient
objects extracted from video frames. Following the work
of Liu et al. [22], we first preprocess the three datasets by
applying an object detector. We use pretrained fast RCNN
[10] as the object detector in our method. The objects of
interest are uniformly scaled to 32 × 32. We stack four
consecutive clips to form a snippet, which is the raw in-
put snippet S of our model. During testing, we treat the
maximum score of all objects in one frame as the frame-
level anomaly score. We use PyTorch [31] to implement our
method and adopt Adam optimizer [20] to optimize it. The
training process follows the sequential learning order de-

scribed in Tab. 1. The batchsize is fixed at 256. We conduct
experiments on an NVIDIA GeForce GTX 1080 Ti and an
Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz. The train-
ing time of each phase for ShanghaiTech, Avenue and Ped2
is roughly 48 hours, 12 hours and 2 hours.

4.3. Experiments on Multi-Task Learning

We conduct the following experiments to show that si-
multaneously optimizing multiple objectives could con-
verge to sub-optimal solutions. We adopt an auto-encoder
architecture but slightly modify it by adding extra memory
modules in the work of Gong et al. [11]. We use the mem-
ory modules to constrain the auto-encoder’s generalization
ability to prevent the auto-encoder from wrongly recon-
structing anomalies. To this end, we use six loss functions
for optimization, including the Lpre,Lgrd,Lrec,Lcls,Lcon

in Eqs. (2) to (5) and (10), as well as a memory sparsity
loss Lsps. The sparsity loss constrains the memory address-
ing variable to be sparse enough, thus using as few memory
items as possible for reconstruction. Please refer to [11] for
the details of the sparsity loss function Lsps. We use mem-
ory modules in this experiment, but not in the final experi-
ment. The reason is that the memory modules are effective
in more complex auto-encoders, i.e., auto-encoders with
skip connections, while the architecture of our auto-encoder
is fairly simple. This means that adding memory modules
poses such a strict constraints that our auto-encoder could
no longer faithfully reconstruct normal snippets.

We train seven models with sum of different loss func-
tions for 80 epochs in two datasets, Avenue and Ped2, and
record the best performance for comparison. The complete
results are reported in Tab. 2. Results further demonstrate
that training models simultaneously with multiple objec-
tives fails to bring about the expected performance gains
and could cause severe performance drops. For example,
we achieve the best AUC performance in Ped2 with only
Lpre, surpassing the model trained with all losses. The rea-
son is that models could get stuck in a trade-off solution
among all objectives, where optimizing any of them under-
mines the rest of the objectives. Such solutions are not al-
ways good solutions for video anomaly detection.

4.4. Comparisons with State-of-the-art Methods

Qualitative Results. In Fig. 3, we visualize some frame
prediction results compared to the state-of-the-art method
[22]. It shows that our method causes larger prediction er-
rors even in the smooth background, which means that our
method is more discriminative against video anomalies.

In Fig. 4, we visualize the predicted anomaly scores from
each phase and the anomaly ground truth duration in several
videos. It shows that the predicted anomaly scores match
better with the ground truth after every phase.
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(a) (b) (c) (d) (e) (f)

Figure 3. Comparisons of frame prediction results between
HF2VAD [22] and our method. From left to right, we show
the ground truth clips in column (a) and (d), difference maps
of our method in column (b) and (e), difference maps of
HF2VAD in column (c) and (f). From top to bottom, we
show three different kinds of anomalies, namely riding bi-
cycles, irregular motions and vehicles.

Model Task AUC
Ped2 Avenue ShTech

Conv-AE [14] single 90.0 70.2 -
ConvLSTM-AE [26] single 88.1 77.0 -
CONV-VRNN [25] single 96.1 85.8 -

ST-AE [46] single 91.2 80.9 -
MNAD-R [30] single 90.2 82.8 69.8
MNAD-P [30] single 97.0 88.5 70.5
MemAE [11] multiple 94.1 83.3 71.2
AD-Con [17] multiple 98.1 88.8 77.2

Ours multiple 97.6 90.9 78.8

Table 3. Comparisons of AUC (%) performances with state-
of-the-art methods that only use RGB images as inputs.

Quantitative Results. We compare our method with state-
of-the-art methods that only use RGB images as inputs in
Tab. 3. We do not compare our method with top-performing
methods that use extra data [33] or extra input features (e.g.,
optical-flow images) from pre-trained models [2] for fair
comparison. The performances of the compared methods
are taken from their original papers. From Tab. 3, it can
be seen that: (1) Our method outperforms all single-pretext
task based methods. This demonstrates that sequentially
learning more pretext tasks can alleviate the nonalignment
problem. (2) Our method achieves state-of-the-art perfor-
mances on both the Avenue and ShanghaiTech datasets,

Model Optical-flow AUC
Ped2 Avenue ShTech

AMC [29] ✓ 96.2 86.9 -
GMFC-VAE [6] ✓ 92.2 83.4 -

VEC [44] ✓ 97.3 90.2 74.8
AnoPCN [43] ✓ 96.8 86.2 73.6

Frame-Pred [21] ✓ 95.4 85.1 72.8
object-centric [19] ✓ 94.3 87.4 78.7

STCEN [13] ✓ 96.9 86.6 73.8
BDPN [3] ✓ 98.3 90.3 78.1

AMSRC [18] ✓ 99.3 93.8 76.3
MSTL [8] ✓ 97.6 91.5 82.4

HF2VAD [22] ✓ 99.3 91.1 76.2
Ours % 97.6 90.9 78.8

Table 4. Comparisons of AUC (%) performances with state-
of-the-art methods that use both RGB images and optical-
flow images as inputs.

gaining improvements of 2.1% and 1.6% respectively com-
pared with the state-of-the-art method [17]. The superior
results demonstrate the effectiveness of sequentially learn-
ing multiple pretext tasks. (3) On the Ped2 dataset, our
method performs slightly worse than the work of Huang et
al. [17]. The probable reason is that the object detector [10]
in our method fails to provide good object detection results
in crowded scenes from the Ped2 dataset. The method in
[17] uses frame-level inputs, which favor anomaly detection
in crowded scenes. We show some failure object detection
results on the supplementary materials. We will address
anomaly detection in crowded scenes by introducing new
scene-level pretext tasks in our future work.

We further compare our method with state-of-the-art
methods that use both RGB images and optical-flow im-
ages as inputs in Tab. 4. From Tab. 4, it can be seen
that: (1) Without using optical-flow images as inputs,
our method still achieves competitive performances on the
ShanghaiTech dataset. The work of [8] performed better
than ours. This could be attributed to the fact they use
optical-flow images as inputs and more pretext tasks (four in
theirs versus three in ours) (2) Our method performs worse
than the work [22] on the Ped2 dataset and the work [22] on
the Avenue dataset, due to the lack of using optical-flow im-
ages to help discriminate motion-relevant anomalies. The
improvements of our method with optical-flow images as
inputs are shown in supplementary materials.

4.5. Ablation Study

Ablation Study on Learning Orders. We conduct the fol-
lowing experiments to see the extent to which the perfor-
mance of a model is influenced by the learning order of pre-
text tasks. We retrain our model to learn three pretext tasks
in different orders and the results are reported in Tab. 5. The
abbreviations for the prediction task, the reconstruction task
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Frame numbers Frame numbers Frame numbers Frame numbers

Figure 4. Curves of predicted anomaly scores from each phase. Frames in white and colored windows are the ground truth
normal and anomaly frames, respectively. The anomaly score curves match better with the ground truth after sequentially
learning multiple pretext tasks.

Dataset
Sequential Simultaneous

Learning Order AUC AUCPhase1 Phase2 Phase3 Phase1 Phase2 Phase3

Ped2

Pre +Rec +Cls 91.34 95.17 97.57 87.97
+Cls +Rec 93.44 95.66 91.46

Rec +Pre +Cls 73.12 93.01 94.18 88.04
+Cls +Pre 88.34 92.02 90.85

Cls +Pre +Rec - 94.29 95.31 87.53
+Rec +Pre 59.73 93.41 91.41

Avenue

Pre +Rec +Cls 89.61 90.57 90.85 80.21
+Cls +Rec 83.24 82.40 76.11

Rec +Pre +Cls 83.34 87.47 86.71 75.70
+Cls +Pre 79.82 78.22 77.86

Cls +Pre +Rec - 76.53 75.53 74.89
+Rec +Pre 77.97 75.51 78.29

Table 5. AUC (%) performances of models trained sequentially with different learning orders, and models trained simultane-
ously with different weight assignments in Avenue and Ped2 datasets. The results show that our sequential learning method
is able to achieve the most performance gains when learning multiple pretext tasks.

and the classification task are Pre, Rec and Cls respectively.
The sequential learning order is divided into three differ-
ent phases, and in each new phase, a new task is added to
the learning objective. Switching the learning orders of pre-
text tasks renders sub-optimal solutions, e.g., from 97.57%
(“Pre-Rec-Cls”) to 92.02% (“Rec-Cls-Pre”) in Ped2 and
from 90.85% (“Pre-Rec-Cls”) to 75.51% (“Cls-Rec-Pre”)
in Avenue. Our proposed learning order, i.e., “Pre-Rec-
Cls”, brought consistent performance improvements in both
small (Ped2) and large (Avenue) datasets, while other learn-
ing orders not. It shows that learning multiple pretext tasks
sequentially, especially from easy to difficult, is better for
video anomaly detection.

Ablation Study on Re-weighting. We conduct the fol-
lowing experiments to validate that our sequential learning
method can not be replaced by re-weighting multiple pre-
text tasks. We convert each sequential learning order into its
simultaneous learning “equivalence” by re-weighting them
based on the length of training time. For example, the
learning order of “Pre-Rec-Cls” is converted to weights of
“3:2:1” for three pretext tasks respectively. The results are

reported in the last column of Tab. 5. Switching the se-
quential learning method to simultaneous learning method
incurred sharp performance drops, e.g., from 97.57% (“Cls-
Rec-Pre”) to 87.97% in Ped2 and from 86.71% (“Rec-
Pre-Cls”) to 75.70% in Avenue. Most sequential learning
method outperformed their simultaneously learning coun-
terpart, except from the reversed learning order in the last
row. The possible reason is that learning multiple pretext
tasks from difficult to easy is not ideal. Overall, the results
of this ablation study shows that simply assigning different
weights to different pretext tasks is suboptimal compared to
learning them sequentially.

Results of the aforementioned two experiments in
ShanghaiTech dataset can be found in the supplementary
materials .

5. Conclusion and Future Work
In this paper, we propose to sequentially learn multiple

pretext tasks for video anomaly detection. The sequential
learning order of multiple pretext tasks follows their diffi-
culties in an ascending manner. Our method gradually in-
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volves more challenging pretext tasks so that the learning
objective is constantly evolving. By doing so, our method
can avoid converging to sub-optimal solutions. Besides, we
introduce a new contrastive loss to the classification task.
The contrastive loss can make the learned representations
of normality more discriminative by posing constraints on
the latent space. The contrastive loss pushes normal sam-
ples and pseudo-abnormal samples apart. Experiment re-
sults on three datasets can demonstrate the effectiveness of
our method.

Our method ignores the scene information and solely
relies on object detectors to detect salient objects, which
fails to detect anomalies that are context-related in crowded
scenes (e.g., the scenes in Ped2). The scene information
plays an important role in defining video anomalies. For
example, car driving in the pedestrian is deemed as anoma-
lies, while a car on the road not. In future work, we will
design a frame-level pretext task to learn the scene infor-
mation. The pretext task measurement could be susceptible
to the influences of different models and datasets. In future
work, we will design a more systematic and better ways to
define the difficulty of each pretext tasks.
Acknowledgments This work was supported by the Natu-
ral Science Foundation of China (NSFC) under Grants No.
62172041 and No. 62176021.
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