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Abstract. Compositional generalization has received much attention in
vision-and-language and visual reasoning recently. Substitutivity, the ca-
pability to generalize to novel compositions with synonymous primitives
such as words and visual entities, is an essential factor in evaluating the
compositional generalization ability but remains largely unexplored. In
this paper, we explore the compositional substitutivity of visual reason-
ing in the context of visual question answering (VQA). We propose a
training framework for VQA models to maintain compositional substitu-
tivity. The basic idea is to learn invariant representations for synonymous
primitives via support-sets. Specifically, for each question-image pair,
we construct a support question set and a support image set, and both
sets contain questions/images that share synonymous primitives with the
original question/image. By enforcing a VQA model to reconstruct the
original question/image with the sets, the model is able to identify which
primitives are synonymous. To quantitatively evaluate the substitutivity
of VQA models, we introduce two datasets: GQA-SPS and VQA-SPS
v2, by performing three types of substitutions using synonymous primi-
tives including words, visual entities, and referents. Experimental results
demonstrate the effectiveness of our framework. We release GQA-SPS
and VQA-SPS v2 at https://github.com/NeverMoreLCH/CG-SPS.

1 Introduction

Compositionality is one of the fundamental properties of human cognition ar-
gued by Fodor and Pylyshyn [20]. Compositional generalization, the ability of
models to generalize to novel compositions, is critical to simulate the compo-
sitional properties of human cognition. Recently, compositional generalization
has received much attention in vision-and-language (V&L) and visual reason-
ing. An essential factor in evaluating the compositional generalization ability is
* equal contribution; � corresponding author: Chenchen Jing and Yuwei Wu.
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(b)

Q: What is the monitor to the 
left of the notebook on?
(GT: desk)

(a)

Q: What is the monitor to the 
left of the laptop on? 
(GT: desk)

(c)

Q: What is the monitor to the 
left of the laptop on?
(GT: desk)

(d)

Q: What is the display behind 
of the keyboard to the left of 
the laptop on? (GT: desk)

Fig. 1: Illustration of three types of synonymous primitive substitutions for VQA. (a)
A sample from GQA [2]. (b) Synonymous word substitution. (c) Synonymous visual
entity substitution. (d) Synonymous referent substitution.

substitutivity , which refers to the ability to generalize to novel compositions
generated via synonymous primitive substitutions. A model with substitutiv-
ity can better generalize to novel compositions, because they are able to take
advantage of the interchangeability of synonyms to understand the novel compo-
sition [8]. Nonetheless, most existing work [21–24] focuses on novel compositions
systematically combined by known primitives (systematicity), while substitu-
tivity remains largely unexplored.

In this paper, we explore the compositional substitutivity of visual reason-
ing in the context of visual question answering (VQA). Considering that VQA
involves primitives from two modalities, words and visual entities, and there
are referential relationships between the two modalities, we divide synonymous
primitive substitutions (SPS) in VQA into three types: synonymous word substi-
tutions, synonymous visual entity substitutions, and synonymous referent substi-
tutions, as shown in Fig. 1. Synonymous word substitutions and synonymous vi-
sual entity substitutions can be generated by using semantic synonymous words
and visual entities to replace corresponding primitives in the original sample,
respectively. Synonymous referent substitutions can be generated by using the
referential relationships in images to describe the referent in the question.

We present a model-agnostic training framework to maintain the substitutiv-
ity of VQA models. The basic idea of the framework is to encourage the model
to identify which primitives are synonymous via support-sets. Specifically, the
framework mainly consists of two parts: support-set construction and sample re-
construction. For support-set construction, we use back-translation and dataset
image retrieval to obtain several support questions and images that share synony-
mous primitives with the original training sample. For sample reconstruction, we
encourage the model to learn the feature representation that the question/image
in each training sample can be reconstructed as a weighted combination of its
support questions/images at the feature level. In doing so, the model learns to
push the feature representation of synonymous primitives together rather than
over-fitting individual samples.

To quantitatively evaluate the substitutivity of VQA models, we build two
new datasets, i.e., GQA-SPS and VQA-SPS v2, based on the GQA dataset [2]
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and the VQA v2 dataset [42], respectively. We automatically generate synony-
mous words, visual entities and referential expressions for the primitives in orig-
inal validation samples to construct semantic synonymous samples. Moreover, a
consistency metric is introduced to measure whether a VQA model consistently
makes correct answers for both the original and constructed sample. Experimen-
tal results on GQA, GQA-SPS, VQA v2, VQA-SPS v2, VQA-CP v2 [63] and
VQA-Rephrasings [39] demonstrate that our framework not only improves the
compositional substitutivity, but also the capability of independent and identi-
cally distributed (IID) generalization.

In summary, our contributions are as follows:

– We are the first to explore the compositional substitutivity under multiple
types of synonymous primitive substitutions including words, visual entities
and referents in the context of VQA, which is critical for evaluating the
compositional generalization capability.

– We propose a model-agnostic training framework that improves the substi-
tutivity of VQA models by encouraging the model to identify synonymous
primitives.

– We present a GQA-SPS dataset to evaluate the substitutivity of VQA models
with different types of synonymous primitive substitutions.

2 Related Work

2.1 Compositional Generalization

There is a substantial amount of research [14, 31, 32, 34, 51–53] exploring the
compositional abilities of neural networks. The compositionality can be viewed
from multiple perspectives, including systematicity [31,32,53], substitutivity [8,
14], productivity [8, 31], localism [33] and overgeneralisation [34]. In this paper,
we focus on the substitutivity of visual reasoning, which remains unexplored.

2.2 Compositional Substitutivity

Compositional substitutivity is one of the essential factors in evaluating the com-
positionality of neural networks [8]. Several works in NLP have demonstrated
that existing models exhibit poor capability of compositional substitutivity. For
instance, Ren et al. [10] generated adversarial examples by word substitution,
which successfully attack text classification models. Dankers et al. [13] found
that machine translation models are hard to maintain consistent outputs after
synonym substitution. In V&L, several works [17–19] evaluate models of dif-
ferent V&L tasks including image captioning, VQA in compositional settings,
and find that all models struggle for complex tests involving substitutivity. The
studies above in both NLP and V&L evaluate the compositional substitutivity of
models in language modality, especially at the word level. Different from them,
we explore the compositional substitutivity of visual reasoning in both language
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and vision modalities, and introduce three types of synonymous primitive sub-
stitutions rather than only the synonymous word substitutions.

There are several works [9, 11, 12, 15, 16] for improving the compositional
substitutivity. In NLP, Li et al. [9] introduced two different representations to
improve compositional substitutivity. Zhou et al. [11] enhanced the robustness
against word substitution-based perturbations using synonyms. Yang et al. [12]
presented a triplet metric learning strategy to pull words closer to their synonyms
and push away to their non-synonyms in the embedding space. In V&L, White-
head et al. [15] presented the VQA P2 dataset to measure the robustness of VQA
models under linguistic perturbations, and enhanced the robustness by enforcing
consistency in intermediate representations and answers. Gou et al. [16] proposed
a synonymous sentences-aware attack to deceive natural language video local-
ization models, and defensed the attack using adversarial training. The methods
above focus on improving the compositional substitutivity under synonymous
word substitutions in language modality. By contrast, we propose to improve
the compositional substitutivity under three types of synonymous substitutions
in both language and vision modalities, by learning invariant representations for
synonymous primitives.

2.3 Consistency in VQA

Consistency in VQA can be defined as the ability of a model to generate un-
contradicted answers. There are several works that evaluate the consistency
of VQA models. For instance, some works [40, 41, 43] are proposed to evalu-
ate the implication consistency, which requires VQA models to produce non-
contradictory answers to a series of questions entailed in the same visual fact.
Other works [28, 44, 45] measured the perception consistency, i.e., the capabil-
ity to correctly answer both low-level perception questions and high-level rea-
soning questions simultaneously. By contrast, our GQA-SPS dataset evaluates
synonymous consistency—whether a VQA model correctly answers both a sam-
ple and its synonymous samples simultaneously. Shah et al. [39] proposed to
evaluate the synonymous consistency under sentence-level synonymous rephras-
ing. Differently, we focus on the consistency under primitive-level synonymous
substitutions to evaluate the compositional substitutivity.

3 Framework

3.1 Overview

VQA aims to provide an answer A for a natural language question Q about an
image V . For a given training sample (Q,V ) with the ground-truth answer A,
the question can be denoted as a set of words Q = {qi}

Nq

i=1, where qi is the i-th
word in the question and Nq is the number of words in the question. The image
can be represented by a set of detected objects V = {vi}Nv

i=1, where vi is the i-th
object and Nv is the total number of objects in the image.
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(a) Support-set Construction

Q: Are there any 
boys on the sidewalk?

(GT: no)

Multilingual 
Back-Translation

Q1: Is there a boy on the 
pavement?

Q2: Are there any guys on 
the sidewalk?

QMq: Any boys on the street?
…

Question Support-set Sq 

Dataset
Retrieval

Image Support-set Sv 

Q1: Are there any guys on 
the sidewalk?

QKq: Any boys on the street?

…

Questions Sampled from Sq 

(b) Training with Support-sets

Images Sampled from Sv 

VQA ModelQ: Are there any boys on 
the sidewalk? 

Original Sample
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Fig. 2: Overview of the proposed training framework. (a) We construct a question
support-set and an image-support set for each question and image in the training
set by multilingual back-translation and dataset retrieval, respectively. (b) We use
support-sets to reconstruct training samples for learning invariant representations of
synonymous primitives during training.

The overview of the proposed framework is shown in Fig. 2. Specifically, for
a training sample (Q,V ), we first construct two support sets: Sq = {Qi}

Mq

i=1

and Sv = {Vi}Mv
i=1, where Qi and Vi represent the i-th support question and

image having synonymous primitives with Q and V , respectively. Mq and Mv

denote the element number in Sq and Sv, respectively. Then we reconstruct Q
and V using a weighted combination of the elements in Sq and Sv at the feature
level, respectively. The question/image obtained by the weighted combination is
denoted as Qr/Vr. By encouraging the VQA model to make the same predictions
for (Q,V ), (Qr, V ) and (Q,Vr), and learn similar features for Q/V and Qr/Vr,
the model learns to push the feature representation of synonymous primitives
together, thus improving compositional substitutivity.

3.2 Support-Set Construction

Question Support-Set. To ensure that the support questions and the origi-
nal question share synonymous primitives, i.e., synonyms, we use a pretrained
multilingual neural machine translation model mBART [4] to generate sup-
port questions that are semantically synonymous to the original sample by the
back-translation mechanism [5]. We use 24 different intermediate languages, i.e.,
Mq = 24, and use mBART to translate the original English question into each
intermediate language, and then translate it back to English to obtain support
questions. To improve the quality of support questions, we filter out questions
with issues automatically by several rules summarized from empirical experi-
ments. The questions will be filtered out if they (1) differ significantly in length
from the original questions. (2) contain repeated substrings. (3) have simple syn-
tax and punctuation errors. Furthermore, we randomly replicate questions in the
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support-set until the question number of the support-set reaches Mq, to ensure
that each question has the same number of support questions.
Image Support-Set. For each image, we retrieve similar images in the training
set to generate support images. We use the pretrained CLIP model [6] to compute
the similarity of each image to all training images except itself, and select top-
Mv images with the highest similarities as its image support-set. We empirically
set Mv = 128 for all experiments.

3.3 Sample Reconstruction

After pre-processing the question/image support-sets and image support-sets for
all training samples, we train a VQA model using them. For each sample (Q,V )
during training, we sample a sub-set Tq/Tv from its Sq/Sv, where Tq and Tv

contain Kq and Kv elements respectively. We firstly use the feature extractors
fq(·) and fv(·) in the training VQA model to obtain deep features for words and
objects by

hq = fq(Q), hv = fv(V ), (1)

where hq denotes the word-level feature of Q, and hv denotes the object-level
feature of V . Then we measure the similarities between Q/V and the elements
in Tq/Tv by

uq = softmax({g(hq, fq(e))|e ∈ Tq}),uv = softmax({g(hv, fv(e))|e ∈ Tv}), (2)

where g(·, ·) is a function that measures the similarities of input vectors by

g(x,y) =
x⊤ · y

||x|| · ||y||
. (3)

The obtained similarities are used as the weights to reconstruct a ques-
tion/image using the sampled support-sets at the feature level by

hqr =

Kq∑
i=1

ui
q × fq(T

i
q), hvr =

Kv∑
i=1

ui
v × fv(T

i
v), (4)

where ui
q/ui

v represents i-th similarity value in uq/uv, and T i
q/T i

v denotes i-th
support question/image in Tq/Tv. For simplicity, we use Qr and Vr to represent
the reconstructed question and image respectively, as hqr and hvr can be viewed
as the deep features extracted by the VQA model for them.

3.4 Optimization

We use two different losses to supervise the training process, including a method-
specific loss Lm and a contrastive learning loss Lc.
Method-Specific Loss. The Lm is determined by the selected method, since
different methods use different training losses. For a training sample (Q,V ) with
ground-truth A, the Lm is computed by

Lm = loss(P (Q,V ), A), (5)
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where P (Q,V ) represents the output of the VQA model (e.g., distribution vector
with size of the number of categories), and loss(·, ·) denotes the loss function used
in the selected method, such as the cross-entropy loss used in UpDn [25].

As the reconstructed sample (Qr, V )/(Q,Vr) maintains the same semantics
as (Q,V ), we use the same loss and ground-truth to train (Q,V )/(Qr, V ). Thus,
the loss Lm is reformulated as

Lm = loss(P (Q,V ), A) + λqloss(P (Qr, V ), A) + λvloss(P (Q,Vr), A), (6)

where λq and λv are hyper-parameters to balance different types of samples.

(a)

Features of Support Set

…

Negative Feature

Original
Feature

Primitive BPrimitive A 

Primitives Synonymous with A

Push Away Pull Close

(b)
Features of Support Set

…

Negative Feature

Original
Feature

Reconstructed Feature

Fig. 3: (a) Contrastive learning with-
out reconstruction. (b) Contrastive
learning with reconstruction.

Contrastive Learning Loss. To enforce
the model to learn invariant representa-
tions for synonymous primitives, we en-
courage the VQA model to learn the fea-
ture representation for which the Q/V is
similar to Qr/Vr rather than other ques-
tions/images. Compared to Qi/Vi (the i-
th support question/image), Qr/Vr has
a more stable similarity with Q/V as
it avoids wrong primitive feature align-
ment via weighted sum, as shown in
Fig. 3. If the support question/image is di-
rectly used as the positive sample for con-
trastive learning, the wrong primitive fea-
ture alignment may lead to reduced dis-
criminability of the learned primitive fea-
tures. As a result, we use a contrastive
learning loss to pull the features of Q/V
and Qr/Vr close, while pushing the fea-
tures of Q/V and other questions/images away. The loss is computed by

Lc = −log
(

eg(hq,hqr ) + eg(hv,hvr )

eg(hq,hqr ) + eg(hv,hvr ) + eg(hq,hq− ) + eg(hv,hv− )

)
, (7)

where hq− and hv− denote a question feature and an image feature sampled
from the current training batch, respectively.

In summary, the total loss for training the VQA model can be viewed as

L = Lm + λcLc, (8)

where λc is a hyper-parameter that balances the loss term.

4 GQA-SPS Dataset

In this section, we introduce the GQA-SPS dataset, which enables the quan-
titative evaluation of the compositional substitutivity of VQA models. For the
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construction of the VQA-SPS v2 dataset, please refers to the supplementary
material. We construct three pairs of validation splits by performing synony-
mous substitutions on three types of primitives, words, visual entities and ref-
erents. Each pair contains a val-A and a val-B split, the samples in the val-A
split are derived from the val-all split of the GQA dataset [2], and the samples in
the val-B split are obtained by performing synonymous primitive substitutions
on the samples in the val-A split. The above three pairs of validation splits are
called Word SPS, Visual Entity SPS and Referent SPS, respectively.

4.1 Sample Generation Pipeline

In the following, we illustrate how we generate samples for the three pairs of
validation splits. We first build a word vocabulary D based on the train-balanced
and val-balanced splits of GQA, because most reasoning models [1, 28, 29] use
them for training and validation, respectively. To ensure the applicability of the
GQA-SPS dataset to these methods, we first collect all samples from the val-all
split of GQA, which do not contain words outside D, as the initial sample set I.
Word SPS. For each word in the vocabulary, we use WordNet [30] to obtain all
the word sets it belongs to, and each word set represents a unique semantic of
the word in a specific context, then we get the synonyms of the word under each
semantic. For example, the word “plane” belongs to different word sets. In a word
set, the definition of “plane” is “an aircraft that has a fixed wing and is powered
by propellers or jets”, and has a synonym “airplane”. While in another word set,
“plane” represents “an unbounded two-dimensional shape”, and has a different
synonym “sheet”. To ensure the rationality of synonymous word substitutions,
we collect words that satisfy both conditions: (1) The word belongs to only one
word set. (2) The word has at least one synonym that is not in the vocabulary.
We collect samples containing words that meet the above conditions from I as
val-A, and replace these words with synonyms to form val-B.
Visual Entity SPS. We construct Visual Entity SPS based on the initial sample
set I. For an image V , we first collect its objects that are related with at least
a question in I, and remove the larger one if two objects overlap. We denote
the objects as a set JV = {vi}NV

i=1, where vi is the i-th object and NV is the
object number. For each object, we use GLIGEN [35], a large-scale text-to-image
generation method, to redraw an object synonymous with its attributes and
name provided by GQA. By repeatedly using GLIGEN, we obtain a new image
synonymous with V , in which NV objects are redrawn. We discard new images
of poor quality based on manual review, and use the remaining new images and
their associated questions to form val-B, Val-A is derived by substituting the
new images in val-B with their corresponding original images.
Referent SPS. For each sample (Q,V ) in I, GQA provides a scene graph
G = {(Si, Oi, Ri)}MR

i=1, where (Si, Oi, Ri) represents the i-th relational triple in
V . Si, Oi and Ri denote the subject, object and relationship, respectively. To
generate the referential expressions with unique referentiality, we devise three
rules to filter samples in I: (1) There is at least a subject Su that is unique in
V , and the subject name appears in Q. (2) There is an object Ou that only has
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a relationship Ru that is unique with Su. (3) The object Ou is unique in V . We
screen out the samples that meet the above three rules at the same time, as the
val-A split. To construct the val-B split, we substitute the subject name Su in
questions with the referential expression “Hu + Ru + the Ou” for each sample
in val-A, where Hu is the hypernym of Su obtained through manual annotation.
For example, for the question “What is the apple on?” with a relational triple
(apple,plate, to the left of) that meets the above three rules simultaneously, and
“fruit” is the hypernym of “apple”. We substitute the word “apple” with the
synonymous referential expression “fruit to the left of the plate” to generate a
new question “What is the fruit to the left of the plate on?”.

4.2 Dataset Analysis

Compared to the 132062 samples in the validation split of the GQA dataset, we
obtain 150074, 23410 and 123147 samples for Word SPS, Visual Entity SPS and
Referent SPS, respectively. The sample numbers of Word SPS and Referent SPS
are on the same order of magnitude as the validation split of GQA. The reason
why Visual Entity SPS has a smaller sample number is that we are strict about
the quality of the images generated by GLIGEN.

4.3 Consistency Score

An ideal VQA model should generate correct answers for not only the sample
from val-A but also its paired sample from val-B. To this end, we devise a
consistency metric Cons, which measures the consistency of VQA models to
correctly answer paired synonymous samples. Cons is computed by

Cons =

(∑
(sa,sb)∈(DA,DB)

E (P (sa), P (sb))

)
/|DA|, (9)

where (DA, DB) denotes a pair of val-A and val-B in GQA-SPS, (sa, sb) denotes
a pair of samples from DA and DB respectively, E(·, ·) is an indicator function
that outputs 1 when the two inputs are both correct and outputs 0 otherwise,
P (·) represents the output of the VQA model for the input question-image pair,
and | · | is the sample number of the input dataset.

5 Experiments

5.1 Experimental Settings

Baselines. We incorporate the proposed framework into five VQA models in-
cluding MAC [1], LXMERT [3], ViLT [46], mPLUG [54] and BEiT-3 [55]. MAC is
a popular foundational model used in compositional generalization. LXMERT is
a two-stage representative transformer-based pre-trained model for vision-and-
language reasoning, which inputs object-level visual features. ViLT, mPLUG
and BEiT-3 are typical one-stage pre-trained models that inputs raw images
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without processing. As our framework is based on SUPport Set (SUPS), the
trained five models are called MAC+SUPS, LXMERT+SUPS, ViLT+SUPS,
mPLUG+SUPS, BEiT-3+SUPS respectively.
Datasets. We evaluate the proposed framework on GQA [2], VQA-Rephrasings
[39] and our GQA-SPS. GQA-SPS is proposed for testing the compositional
substitutivity, while GQA is used for testing the IID generalization. The reason
for choosing GQA is to evaluate the compatibility of compositional generalization
and IID generalization. VQA-Rephrasings is an extension of the VQA v2 dataset
[42] and is used for evaluating the consistency of VQA models to synonymous
rephrasing of questions. To validate the generalizability of our framework across
datasets, we also perform experiments on VQA v2 [42], VQA-CP v2 [63] and
our VQA-SPS v2, which are provided in the supplementary material.
Implementation Details. For evaluation on GQA and GQA-SPS, we train
or finetune the models using the train split of GQA, and select a checkpoint
that performs best on the validation split of GQA. Based on the checkpoint, we
report the experimental results on the test-dev split of GQA and all validation
splits of GQA-SPS. For evaluation on VQA-Rephrasings, we use the train split
and a subset of the validation split of VQA v2 for training and finetuning and
checkpoint selection respectively, note that the subset does not contain any test
samples from VQA-Rephrasings. In addition, more implementation details are
provided in the supplementary material.

5.2 Evaluation of Compositional Substitutivity

We evaluate the compositional substitutivity on the proposed GQA-SPS dataset.
In addition to the above five baselines, we test 11 representative VQA mod-
els including large vision-language models varies in parameters (4B to 17B),
VL-T5 [38], OpenFlamingo-4B [36], BLIP-2-FlanT5XL [37], QWen-VL-7B [57],
CogVLM-17B [58], LLaVa-v1.5-7B-Xtuner [60], mPLUG-Owl2-LLaMA2-7b [59],
MMAlaya [61], XComposer2-7B [56] and Gemini 1.0 Pro [64]. For VL-T5, we
finetune it on the train split of GQA, and select a checkpoint for evaluation in
the same way as the five baselines. For other models, i.e., large vision-language
models, we implement them based on the VLMEvalKit toolkit [62], and evaluate
them at a zero-shot paradigm.

The results on the GQA-SPS dataset are listed in Tab. 1, from which we
can observe that: (1) Our framework consistently improves the performance of
five baselines. (2) Our framework improves the answer accuracy and consistency
simultaneously under all three types of SPS by a large margin (e.g., 6.1% and
8.1% absolute accuracy and consistency gains for MAC, respectively, under word
SPS). (3) Large vision-language models achieve dissatisfactory compositional
substitutivity although they’ve been trained on a large amount of visual question
answering samples. These observations show that the proposed support-set based
training framework is effective in improving the compositional substitutivity of
VQA models for different baselines.
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Table 1: Accuracy (%) and Consistency (%) of the state-of-the-arts on GQA-SPS,
where “Acc1 ” and “Acc2 ” represent the accuracy on val-A (samples sampled from the
validation split of GQA) and val-B (samples by performing SPS on the samples in val-
A), respectively, “Cons” is the consistency score mentioned in Section 4.3, and “HM ”
is the harmonic mean of consistency scores on different test pairs of GQA-SPS.

Visual Method
Word SPS Vis. Entity SPS Referent SPS HM

Input Acc1 Acc2 Cons Acc1 Acc2 Cons Acc1 Acc2 Cons Cons

R
aw

Im
ag

es

OpenFlamingo [36] 47.8 48.0 37.4 70.8 71.0 64.3 51.0 49.6 42.7 45.7
BLIP-2 [37] 62.8 62.1 57.7 50.5 55.5 44.6 55.2 51.3 43.2 47.7
QWen-VL [57] 62.6 58.2 56.3 56.2 45.7 42.9 42.8 37.0 34.1 42.6
CogVLM [58] 69.2 65.0 62.2 78.2 78.4 75.3 57.1 48.1 44.1 57.7
LLaVa-v1.5 [60] 66.0 62.4 59.3 75.7 76.6 72.8 56.0 50.1 45.1 56.8
mPLUG-Owl2 [59] 61.5 59.1 55.6 75.3 75.5 71.8 51.8 45.9 41.7 53.7
MMAlaya [61] 58.8 56.9 52.4 64.8 63.7 60.0 47.0 41.6 35.0 46.6
XComposer2 [56] 54.3 50.2 46.5 72.0 72.5 67.6 47.0 40.8 36.4 47.0
Gemini 1.0 Pro [64] 59.6 57.8 51.8 70.2 71.8 65.2 59.8 54.0 44.8 52.7

ViLT [46] 70.0 64.2 58.1 75.0 75.5 68.6 70.3 56.2 47.9 57.0
+ SUPS 72.5 68.0 63.3 75.9 76.3 69.5 71.6 60.8 53.7 61.5

mPLUG [54] 71.7 67.6 62.6 77.1 77.6 71.0 67.9 60.7 52.5 61.1
+ SUPS 73.0 68.9 64.6 78.4 79.4 72.9 69.5 62.1 55.5 63.6

BEiT-3 [55] 78.3 72.5 68.9 78.9 80.1 73.0 76.9 62.3 56.4 65.3
+ SUPS 79.2 73.0 69.2 79.8 81.1 73.9 78.2 63.8 57.8 66.2

O
bj

ec
t

Fe
at

ur
es VL-T5 [38] 78.0 71.4 67.6 79.5 79.8 72.9 77.0 59.8 52.9 63.3

MAC [1] 63.7 56.3 47.5 65.2 66.5 57.7 62.7 49.5 36.9 45.8
+ SUPS 68.6 62.4 55.6 68.2 69.9 61.5 66.1 54.5 44.1 52.7

LXMERT [3] 79.8 73.5 69.1 81.0 79.6 73.3 79.9 63.1 56.6 65.5
+ SUPS 80.7 74.7 70.9 82.1 80.6 74.8 80.5 64.1 58.4 67.3

5.3 Evaluation of Synonymous Rephrasing

Unlike our GQA-SPS dataset that focuses on primitive-level synonymous sub-
stitutions to evaluate the compositional substitutivity, the VQA-Rephrasings
dataset is used to evaluate the consistency of VQA models under sentence-level
synonymous rephrasing. In VQA-Rephrasings, the question of test samples is
generated by human rephrasing, which is significantly different in style from
the questions generated by back-translation used in our framework. Even so, we
observe that our framework improves LXMERT with 0.56% and 0.9% absolute
gains in the mean accuracy and the strictest consistency of rephrased questions
(i.e., REP and CS(4)), respectively, as the experimental results listed in Tab. 2.
The observations demonstrate that our framework can effectively improve VQA
models not only under primitive-level synonymous substitutions, but also under
sentence-level synonymous rephrasing.
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Table 2: Accuracy (%) of the state-of-the-arts on VQA-Rephrasings [39].

Method
CS(k) VQA Acc

k=1 k=2 k=3 k=4 ORI REP

BAN [47] 64.88 53.08 47.45 39.87 64.97 55.87
BAN+CC [39] 65.77 56.94 51.76 48.18 65.87 56.59
MANGOVB [49] 72.78 65.97 61.70 58.59 - -
ConClaT [48] 68.62 61.42 57.08 53.99 - -
BLIP-2 OPT6.7B [37] 50.23 43.86 40.64 38.59 46.07 44.31
BLIP-2 FlanT5XL [37] 56.50 50.77 47.64 45.50 53.68 51.09
mPLUG [54] 72.66 67.05 62.68 60.14 71.71 65.32

LXMERT [3] 73.82 67.42 63.08 60.03 72.32 65.10
+ SUPS (Ours) 74.46 67.98 63.89 60.93 72.51 65.66

5.4 Evaluation of IID Generalization

Table 3: Accuracy (%) of state-of-the-arts on
the test-dev split of GQA [2]. (a) Methods that
use raw images as visual input. (b) Methods
that use object features as visual input.

Method Acc

BLIP-2 [37] 44.7
MiniGPT-4 [50] 43.5
ViLT [46] 56.8
+ SUPS 57.1
mPLUG [54] 59.7
+ SUPS 60.3
BEiT-3 [55] 60.8
+ SUPS 61.8

(a)

Method Acc

LCGN [29] 55.8
MMN [26] 60.4
VL-T5 [38] 58.4
MDETR [27] 63.0
MAC [1] 53.1
+ SUPS 53.5
LXMERT [3] 59.7
+ SUPS 60.1

(b)

The experimental results on the
GQA dataset are listed in Tab. 3.
We observe from the table that
our framework improves the accu-
racy of all five baselines. The rea-
son why the performance gains of
the proposed framework on GQA
are limited is that we mainly fo-
cus on the compositional substitu-
tivity of VQA models, which can
be viewed as a capability of out-of-
distribution (OOD) generalization,
while the GQA dataset is more
suitable to evaluate IID general-
ization. The experimental results
demonstrate that the improve-
ments of our framework are com-
patible with compositional general-
ization and IID generalization.

5.5 Ablation Studies

The results of ablation studies on GQA-SPS are shown in Tab. 4, in which we
use LXMERT [3] as the baseline method. Firstly, we investigate whether using
the support set to construct samples to perform data augmentation can improve
the compositional substitutivity. We observe that the performance drops, which
maybe caused by the uncontrolled sample quality. Then, we study the influences
of constructing support sets using our multilingual back-translation and dataset
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Table 4: Ablation studies on GQA-SPS, where “DA” means data augmentation, “OSB”
means constructing support sets using Others questions/images in the Same Batch [7].

Method SUPS(Q) SUPS(V)
Consistency

Word Visual Entity Referent

LXMERT [3] 69.06 73.30 56.63

+ DA
✓ 70.27 69.83 55.62

✓ 60.90 70.51 49.21
✓ ✓ 64.40 71.04 51.55

+ OSB [7]
✓ 69.57 73.48 58.21

✓ 69.96 73.58 57.37
✓ ✓ 69.53 73.56 57.27

+ SUPS ✓ 71.43 73.26 58.26

(Ours) ✓ 69.89 74.78 57.35
✓ ✓ 70.92 74.81 58.39

retrieval. We use a different method that uses samples in a same training batch
to build support sets [7], and observe worse performance than our framework.
One possible explanation is that there are large differences between different
samples in VQA, and samples in the same batch do not necessarily share syn-
onymous primitives. Moreover, we observe that the performance improvement on
a single modality is significant when only using the question/image support-set.
These observations suggest that all components of our framework are effective in
improving baseline methods, and components are complementary to each other.

5.6 Parameter Analysis

65.5

66.5

67.5

2 6 10 14

HM Consistency (%)

SUPS (Q) SUPS (V)

𝑲𝒒/𝑲𝒗

Fig. 4: Parameter analysis. For
SUPS (Q), the x-coordinate vari-
able is Kq. For SUPS (V), the x-
coordinate variable is Kv.

We analyze the influences of Kq and Kv on
the consistency of our framework, which de-
note the sampled numbers of support ques-
tions and support images for each train-
ing sample, respectively. The consistency of
the LXMERT+SUPS with different Kq and
Kv on GQA-SPS are shown in Fig. 4,
which demonstrates that the performance of
LXMERT+SUPS grows as the sampled num-
ber of support questions/images grows. How-
ever, the performance drops when the sam-
pled number exceeds 10, possibly due to the
fact that it becomes increasingly difficult to
learn which primitives are synonymous as the
sampled number increases. As a result, we set
both Kq and Kv as 10 for LXMERT+SUPS.
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Q: Is there a kid or a woman in 

this photo? (GT: yes)

Prediction (LXMERT): yes

Prediction (Ours): yes 

Word SPS 

Q: Is there a child or an adult female 

in this picture?

Prediction (LXMERT): no✘

Prediction (Ours): yes 

Referent SPS 

Q: Is there a kid or a female talking 

on the phone in this photo?

Prediction (LXMERT): no✘

Prediction (Ours): yes 

Q: How big is the dog? 

 (GT: small) 

Prediction (LXMERT): small

Prediction (Ours): small 

Word SPS 

Q: How big is the puppy?

Prediction (LXMERT): large✘

Prediction (Ours): small 

Referent SPS 

Q: How big is the animal to the 

left of the toy?

Prediction (LXMERT): large✘

Prediction (Ours): small 
Prediction (LXMERT): glove✘

Prediction (Ours): sweater 

Q: How is the yellow clothing item 

called? (GT: sweater) 

Prediction (LXMERT): sweater

Prediction (Ours): sweater 

Visual Entity SPS 

Prediction (LXMERT): carrot✘

Prediction (Ours): plant 

Q: What do you think is in the vase?   

 (GT: plant) 

Prediction (LXMERT): plant

Prediction (Ours): plant 

Visual Entity SPS 

Fig. 5: Qualitative comparisons between LXMERT+SUPS (Ours) and LXMERT. The
red words in questions and the red boxes in images denote synonymous primitives.

5.7 Qualitative Analysis

Fig. 5 depicts several qualitative examples from the GQA-SPS dataset between
LXMERT and LXMERT+SUPS. We observe that LXMERT cannot make cor-
rect predictions when the primitives in the sample are replaced with synony-
mous primitives, while LXMERT+SUPS can make predictions accurately. For
instance, in the first example, LXMERT can correctly answer the question
“How big is the dog?”, but fails when simply replacing the “dog” with its syn-
onym “puppy”, indicating that LXMERT does not learn that “dog” is synony-
mous to “puppy”. These qualitative examples show that our framework can help
LXMERT maintain consistent answers for a sample and its synonymous sam-
ples, which proves that the framework is effective for learning the synonymous
relationships between primitives. More qualitative examples are given in the
supplementary material.

6 Conclusion

In this paper, we explored the compositional substitutivity of visual reasoning
in the context of VQA. We have presented a model-agnostic training framework
to encourage VQA models to identify synonymous primitives by learning invari-
ant representations via support-sets. The proposed framework can be seamlessly
incorporated into existing VQA models to improve their compositional substi-
tutivity. We constructed a GQA-SPS dataset and a VQA-SPS v2 dataset, which
enable the quantitative evaluation of the substitutivity for VQA models. Exper-
imental results demonstrate that our framework can improve not only the OOD
generalization capability of synonymous substitutions and rephrasing, but also
the IID generalization capability.
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