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Gradient vector flow (GVF) active contour model shows good performance at concavity convergence and
initialization insensitivity, yet it is susceptible to weak edges as well as deep and narrow concavity. This
paper proposes a novel external force, called adaptive diffusion flow (ADF), with adaptive diffusion strat-
egies according to the characteristics of an image region in the parametric active contour model frame-
work for image segmentation. We exploit a harmonic hypersurface minimal functional to substitute
smoothness energy term in GVF for alleviating the possible leakage. We make use of the p(x) harmonic
maps, in which p(x) ranges from 1 to 2, such that the diffusion process of the flow field can be adjusted
adaptively according to image characteristics. We also incorporate an infinity laplacian functional to ADF
active contour model to drive the active contours onto deep and narrow concave regions of objects. The
experimental results demonstrate that ADF active contour model possesses several good properties,
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including noise robustness, weak edge preserving and concavity convergence.
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1. Introduction

Active contour models, or snakes [1], have been proven to be
very effective tools for image segmentation, objects tracking
[2-4], shape recovery [5], etc. A traditional active contour model
is represented by a curve ((q) = (x(q), ¥(q)), q € [0, 1], and it moves
through the spatial domain of an image to minimize the energy
functional

1
E(C) = / B(“ 1Co(@)P + B+ [Caa(@)) +8(C(@)) | dg. (1)

The first term of the integral stands for the internal force that keeps
the contour continuous and smooth during deformation, the second
term is the external force that drives the contour toward an object
boundary or the other desired features within an image.
According to the representation and implementation, active
contour models are classified into two categories: the parametric
active contour models [6-9] and the geometric active contour
models [10-15]. In this paper, we focus on the parametric active
contour models, and our approach can be also integrated into geo-
metric active contour models. Since the external force plays a lead-
ing role in driving the active contours to approach objects
boundaries in the parametric active contour models, designing a
novel external force field has been extensively studied [6,8,16-
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19]. Among all these external forces, gradient vector flow (GVF)
proposed by Xu and Prince [8], has been one of the most successful
external forces, which is computed as a diffusion of the gradient
vectors of a gray-level or binary edge map derived from a given
image, and allowed to increase the capture range. Due to the out-
standing properties of GVF, a large number of modified versions
have been presented [20,16,18,21] to improve the performance of
active contour models. However, researchers found that the GVF
suffers from several challenges including narrow and deep concav-
ity convergence as well as weak edge leakage.

This paper aims to provide, in a rigorous mathematical frame-
work, a new method to establish an equivalent framework
between GVF diffusion process and image restoration process.
We develop a novel external force for active contour models called
adaptive diffusion flow (ADF), inspired by [22,23]. Our main contri-
butions are threefold.

(1) We adopt a hypersurface minimal functional to substitute
smoothness energy term in the original GVF. It tends to
degenerate to a uniformly elliptic equation having strong
regularizing properties in all directions at locations where
the variation of the intensity is weak. And, in a neighborhood
of an edge presenting a strong gradient, the hypersurface
minimal functional is preferable to diffuse along tangent
direction of an edge so as to preserve the weak edge
efficiently.

(2) We make use of the p(x) harmonic maps in which p(x)
ranges from 1 to 2, such that the diffusion process of the
flow field can be adjusted adaptively according to image
characteristics.
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(3) We also introduce an infinity laplace functional to guarantee
the ADF diffusion mainly along normal direction in the
homogeneous of an image so that it drives the active con-
tours onto deep and narrow concavity. The ADF is able to
efficiently suppress the influence of noise because the diffu-
sion along tangent direction is inclined to smooth the noise
while preserving edges.

2. Background
2.1. GVF active contour model

The traditional active contour model is limited to capture range
and poor convergence to boundary concavities. GVF was proposed
by Xu and Prince [8] as a new external force for active contour
model to overcome these issues. It is a dense vector field, gener-
ated by diffusing the gradient vectors of a gray-level or binary edge
map derived from an image. The GVF field is defined as a vector
field V(x, y) = [u(x, y), Ux, ¥)] that minimizes the following energy
functional:

E(u,v) = //,u(uﬁ +uw+ v+ vﬁ)dxdy—ir// IVf2V — Vf[2dxdy,

smoothness energy

edge energy
2)

where fis the edge map, |Vf] is high near the edges and nearly zero
in homogeneous regions and p is a positive weight to control the
balance between smoothness energy and edge energy. By the calcu-
lus of variation, the minimization of Eq. (2) reduces to solving the
following Euler-Lagrange equation:

Uv2V — (V—Vf)(f,f +fy2) —0. 3)

The Euler-Lagrange equations evolving Eq. (3), embedded into a
dynamic scheme by treating V(x, y) as the function of t, x and y, for-
mally are

w_ . Vi 7(uff,()(ﬁ+fy2):0
diffusion term =~ ———~———
data attraction term
. 4)
G Y --f(R+F)=0

| SO S

diffusion term -
data attraction term

where V7 is the Laplacian operator. The active contour model with
V(x, y) as external force is called GVF active contour model.

2.2. Analysis of GVF active contour model

GVF has successfully addressed the issues of building a satis-
factory capture range and approaching boundary concavities, e.g.
U-shape concavity convergence. However the GVF active contour
model still fails to converge to narrow and deep concavity and
would leak out around weak edges, especially neighbored by
strong ones.

(a) Narrow and deep concavity: GVF can be regarded as a vec-
tor field constructed by diffusing original gradient vectors
from near image edges to homogeneous regions, or from
areas of non-zero vectors to ones of zero-vectors. The
directions of vectors in the GVF field indicate the moving
directions of Snaxels. The magnitudes of vectors take lar-
ger values near the image edges, and they decrease to zero
as vectors goes away from image edges. This prevents the
active contours moving into the long, thin boundary
indentations. In addition, as claimed in [20], excessive

smoothing of the field near the boundaries governed by
the constant coefficient y, also results in the failure of nar-
row and deep concavities convergence.

This drawback of GVF can be seen from the example in Fig. 1a-
d. Fig. 1a shows the GVF active contour model initialization and
evolution of a synthetic image which is a concavity of 5-pixel
width and 80-pixel depth. If we take a close-up to the GVF vector
field in Fig. 1c, we can see the contradiction of forces from two
opposite directions. This contradiction makes the temporary
boundary stop moving. The segmentation result of GVF active con-
tour model is shown in Fig. 1d.

A number of methods have been proposed to address this prob-
lem. Xu and Prince [20] introduced the generalized GVF (GGVF) ac-
tive contour model to improve the original GVF by replacing the
constant weighting coefficient g with two spatially varying
weighting function. However, there is no essential difference be-
tween GGVF and GVF. The ability of entering into the concavity
of edge is also limited. The illustration can be found in Fig. 1e-h.
Yu et al.[24] presented the normalized gradient vector diffusion
by balancing the effect between weak vectors and strong vectors
to improve the performance of GVF active contour model in deep
concavity convergence. Hou et al. [25] proposed force field analysis
active contour model, based on analyzing force distribution rules
via Euclidean distance transformations. Similarly, Rodtook et al.
[26] extended GGVF by introducing an adaptive edge map derived
from continuous orientation force field analysis. Sum and Cheung
[27] proposed the boundary vector field external force, under
whcih the active contour evolves in two phases and moves into
semi-closed concave region. Decomposing diffusion term in Eq.
(4) as weighted sum of the two directional derivatives along nor-
mal and tangent direction, Ning et al. [28] exploited the normal
gradient vector flow (NGVF) to ameliorate the concavities conver-
gence by only adopting normal direction diffusion. However, it is
unreasonable due to the fact that diffusion in tangent direction is
inclined to smooth the noise while preserving edges. Wang et al.
[29] further elaborated the mechanism of GVF from the perspec-
tive of Helmholtz decomposition, and introduced harmonic gradi-
ent vector flow (HGVF) which could converge to narrow
concavities. Employing the measurement update energy term
and separate prior energy term, Mishra et al. [17] demonstrated
that the decoupled active contour model (DAC) can capture the re-
gions of very high curvature and is robust to noise.

(b) Weak edge leakage: In GVF active contour model, at the loca-
tion where a weak edge is very close to a strong one, the
active contour readily leads to boundaries leakage. This
can be explained by the inherent competition of the diffu-
sion process: It is well known that V2u and V2v are in the
nature of very strong isotropic smoothing properties and
cannot preserve edges in the diffusion term of Eq. (4), as t
increases, the isotropic smoothing effect will dominate the
diffusion. Moreover, the better force field highly depends
on u. However, if p is too large, the active contours will tend
to larger deviation from the original data and easily leak
from weak edges. If i is small enough, this over-smoothing
efficiency could be depressed, but, at the same time, the
force field preserves excessive noise. This is a dilemma for
GVF to suppress noise and preserve weak edge
simultaneously

In Fig. 2, we construct a particular image to show the perfor-
mance of GVF active contour model at weak edge preserving. In
this image, there is a gap neighbored by a strong line. Fig. 2b shows
that GVF force field, and the regions indicated by the dashed rect-
angle will be enlarged in Fig. 2c such that the vector field can be
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Fig. 1. GVF and GGVF performance of narrow and deep concavity convergence. (a) GVF active contour model initialization and evolution; (b) GVF force field; (c) local close-up
of (b); (d) GVF active contour model segmentation result; (e) GGVF active contour model initialization and evolution; (f) GGVF force field; (g) local close-up of (f); (h) GGVF

active contour model segmentation result.
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Fig. 2. Weak edge leakage of GVF active contour model. (a) initialization and evolution; (b) GVF Force field; (c) close-up of the vector field inside the dashed rectangle of (b);

(d) segmentation result.

more clearly displayed. The GVF active contour model is attached
incorrectly toward to strong line in Fig. 2a result from the GVF is
difficult to prevent the vectors near the boundary gap from being
significantly influenced by the nearby strong one (see Fig. 2c).
The segmentation result is shown in Fig. 2d.

Recently some modified GVF active contour model have been
developed to address this issue. Li et al. [30] proposed edge
preserving gradient vector flow (EPGVF), which makes V(x, y)
projection along object edges to be better for preserving edges.
Some improved results have been acquired by a robust region-
based segmentation method introduced by Xie and Mirmehdi
[12]. By generalizing the Laplacian operator from flat space to man-
ifold during diffusion, Lu et al. [21] presented gradient vector flow
over manifold (GVFOM) which outperforms GVF in terms of weak
edge preserving, concavities convergence. Tang [16] exploited the
multi-direction GVF active contour to trace the boundary of the
skin cancer even if there are other objects near the skin cancer re-
gion. By integrating the gradient vector flow and the prior direc-
tional information, Zhu et al. [31] introduced gradient and
direction vector flow, which is capable of addressing the issue of
weak edge leakage in some cases. Kovacs et al. [32] proposed harris
function based active contour external force for detecting complex
boundaries with weak contrast and high curvatures.

3. Adaptive diffusion flow field
3.1. Preliminary

The GVF field V(x, y) = [u(x, y), ®x, y)] can be simplified as

E(u, v) = // (- [VVPdxdy + // WV — Vf Pdxdy, 5)

smoothness energy

edge energy

where p is the same as in Eq. (2). From the perspective of image res-
toration, the GVF finds for a V that best fits the data |Vf] so that the
force filed is smooth. For convenience of theoretical analysis, Eq. (5)
is rewritten as

E(u, 0) ://,u-<1§(|VV\)dxdy+'//|V7Vf|2dxdy. (6)

Using variational calculus, minimization of Eq. (6) formally sat-
isfies the Euler-Lagrange equation

v (V)
ac M d”’( vV

In [33], the isotropic Laplacian operator are decomposed using the
local image structures, that is, V2V =Vyy+ Vir. Vip and Vyy are
the second derivatives of V in the tangent direction and normal
direction, respectively. Accordingly, 2/ can be written in an ex-
panded form by formally developing the divergence term given by

o _ <¢’(|VV|)

vv) — (V= V).

Vi + @”(\VVDVNN) - (V-Vf),

ot [VV]|

where
Vir = <l (v; Vi, + V2 Vi, — 2V, Vi, V,w)
VNN = W (Vfl Vx1x1 + Viz szxz + 2Vx1 vxz Vxlxz) .
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3.2. Harmonic hypersurface functional

In Eq. (2), ®(|]VV]) = |VV|? has an isotropic smoothing effect in
the field V(x, y), which is desired for homogeneous regions, but
not for edge regions. Compared with the diffusion term in Eq.
(2), @(]VV]) in Eq. (6) takes different forms. Since the GVF field
can be expressed as the image restoration model form, we can
establish an equivalent framework between GVF diffusion process
and image restoration model. Consequently, the question ad-
dressed in this section is how to modify ®(|VV]) which possesses
better diffusion properties while preserving weak edge?

To answer this question, the function @(|VV]) should satisfy the
following two conditions [33]. One is that at locations where the
image gradients are low, function &(|VV]) has isotropic smoothing
property, and may be achieved by imposing

#(0) =0
m, T (9D >0 "

The other is that in a neighborhood of an edge, the image pre-
sents a strong gradient. If we wish to better preserve this edge, it
is preferable to diffusion only in the direction parallel to edge,
i.e., in the tangent direction. &(|VV|) should be satisfied the follow-
ing requirement

lim @"(|]VV]|) =

[VV|=+o0 8)
i (V)

ml/l\glm v >0

Many functions @(|VV]) satisfying the conditions both (7) and

(8) can be found. In this paper, we adopt &(|VV|) = 1/1+ |[VV],
usually called the hypersurface minimal function. The diffusion
properties of this function can be further elucidated in Appendix
A. If we consider V as a surface defined on image domain, the cor-
responding diffusion term in Eq. (2) is given by

Eu.v) = // /141G, ® VI dxdy, 9)

where G, is the Gaussian kernel of standard deviation o which
could smooth the force field, VV denotes the gradient of V, ® pre-
sents convolution operation. The underlying idea of Eq. (9) is to take
V as a surface, then to minimize the area of the surface. As we will

see further, if [VV] — oo, then &(| VV |) = /1 + |G, ® VV|* — [VV|.

This is similar to the diffusion process of total variation (TV) model
[34] which works excellently in preserving edges as the diffusion is
along edges.

To obtain a better adaptive diffusion, we build a more effective
functional, in a departure from minimal surface and the p(x) har-
monic maps. Given an image function defined by
[:[0,W] x [0,H] — R, let 2 be a bounded open subset of R?, 90
its boundary, f an edge map of I. The harmonic hypersurface func-
tional is defined as

where p(-) is a monotonic decreasing function and ranging from 1 to
2,and we choose p(|Vf])=1+1/(1 +|VGs @ fx)|). In our case, when
IVGs @ fix)] — 0, p(-) - 2, Eq. (10) would behave like isotropic dif-
fusion within homogeneous regions. When |V G, ® f(x)| — oo,
p(-) — 1, therefore, on the boundaries Eq. (10) would behave like
TV model [34], and only diffusion in the direction parallel to edge
works. With this nature, the harmonic hypersurface functional
can preserve weak edges as well as yield a smooth force field.

3.3. Infinity Laplacian functional

GVF has another limitation of failing to converge to narrow and
deep concavity. Under the spatiotemporal varying local coordinate
system, the Laplacian operator can be expanded into the sum of
two directional derivatives along tangent and normal [33]. As dis-
cussed in [28], the diffusion in normal direction plays the key roles
on the diffusion of GVF, we would like to encourage the diffusion
along normal direction in image smoothing region so as to make
vectors downward into the boundary concavity rather than con-
verge from two opposite direction (see Fig. 1b), or disappear far
from image concavity edges (see Fig. 1f). Consequently, the second
question is how to construct a functional which possesses conver-
gence to narrow and deep concavity?

In this paper, we develop a functional associated with absolutely
minimizing Lipschitz extensions. Considering LP functional

E,(u, ) =%/|VV|" dx. (11)
By putting p — oo, the infinity Laplacian functional is given by

1
- '/Q|VV\LX(Q> do. (12)

A minimization of Eq. (12) is an absolutely minimizing Lipschitz
interpolant. The infinity Laplace equation is given in Appendix B.

Ev(u, v)

3.4. Adaptive diffusion flow

Both the harmonic hypersurface functional and the infinity func-
tional are the theoretical foundation of our method. In this study,
we present a unified diffusion framework, called adaptive diffusion
flow (ADF). This diffusion is anisotropic. The ADF is given by

E(u,v) //g < m- 0= (1—m)~m-(\/14—7@)m w0 > dxdy

smoothness energy
+//h‘(|V—Vf\2)dxdy, (13)

edge energy

where g, h, m are the weighting functions respectively, p(-) is a
monotonic decreasing function, and @ = |G, ® VV|°. A new active
contour model, is defined based on the traditional active contour
model in Eq. (1) by adopting ADF as the external force. Choosing
appropriate weighting functions is crucial in achieving the goal of
preserving weak edge and concavity convergence at the same time.
Both g and h are the same as GGVF [20], and

m_{[l —P2/5KYTif f2/5 < K (14)

0 otherwise.

Here, K is a parameter computed by K=1.4826 - E(||V fl — E(|V)])
[35], where E(-) denotes mean value. The parameter analysis can
be further elucidated in Section 4.1.

Next, we turn to the problem of finding the vector field that
minimizes Eq. (13). Using variational calculus, minimization of this
functional is given by

ov 1 . (D (|VV])
(‘)t:g[ (lVV A V>+(1m)-dw<m®ca(VV®Ga))]

—h-(V-Vf). (15)

Here, V(0)=
equation.
To compare the performance of GVF and ADF, we use the same
images as Figs. 1 and 2 to computer ADF field for active contour
model. In Fig. 3, each column represents initialization and

V(|IVGs®1]) and A4,V denotes infinity Laplacian
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evolution, segmentation result, close-up of the vector field inside
the green rectangle, respectively. The early work was introduced
in [19].

3.4.1. Analysis of concavities convergence

The weighting function m is easily to be chosen to divide an im-
age domain into three classes of regions including edge regions,
homogeneous regions and transition regions [30]. We see that if
/5> K?, then m — 0, namely, in the image edge regions and tran-
sition regions, the smoothness energy is dominated by harmonic
hypersurface functional, yielding a preserving weak edge effect. If
F£2|5 < K%, then m — 1, the infinite Laplacian functional dominates
the smoothness energy term in Eq. (13). In the extreme, i.e.
m=1, Eq. (15) is reduced to
aV—]AVhVV—V h-(V-V 16
E*g‘woo —h- (V-Vf)=g-Viw—h-(V-Vf). (16)
In this case, we can achieve a equivalent form of NGVF [28], and
thus our ADF model can enter into deep and narrow concavity.
Our model is different from NGVF [28], in which, it just contains
the diffusion along the normal direction and entirely ignores the
diffusion in tangent direction. In contrast, the smoothness energy
term in Eq. (13) has a positive impact on the preventing weak edge
leakage and efficiently suppressing the influence of noise in ADF ac-
tive contour model. For more details of Eq. (16), we refer the readers
to Appendix B.

3.4.2. Analysis of preserving weak edge
The diffusion properties of our ADF can be further elucidated by
the orthogonal decomposition of Eq. (15) as follows:

diy(%wv ® cﬂ>> -(vVize) vn+ ((p ~2.0.(vite)
+(\/1 +@)p72> -Viw, 17)

4

where @ =|G, ® VV|>. From hereinbefore analysis, in the image
edge regions and transition regions, P(x) harmonic hypersurface
functional occupies an leading position in the smoothness energy

term of Eq. (13). 4; = (V1 + @)pfz represents diffusion coefficient
in the tangent direction, in which the diffusion is encouraged be-
cause it smoothes noise while preserving edges. Also,
la=(p-2)-0 (V1+ @)p*4 + (V1+ @)p*2 is diffusion coefficient
in the local gradient direction which could smooth edges. For
GVF, if we rewrite AV with V7 and Vyy, then 4 =/, =2, conse-
quently, the gradient vector flow smoothes the data in the direction
of gradient as same as in the edge direction, this is undesired. In or-
der to preserve weak boundaries, we hope that there is no diffusion
or much less diffusion parallel to gradient, that is in the /, direction.
In fact, /, can be rewritten as

do = 1 (P-2)-6
Vire)”" (Vite)'?

Since 1 <p<2, thatis,0<1—p/2<1/2 and p — 2 <0, according to
the properties of exponential function, we get

1-p/2
) > 0.

1 B ( 1
(vite)y? \1+0
This means

1 p-2)-6

2-p + 4-p <
(V1+0) (V1+0)
Similarly, we have

1 (p-2)-0 :1+(p71)-@>0

Vire)? Wvite)'’ Wite) '’

Thus we have 0 < J, < 1 for ADF. As a result, the smooth effect of the
ADF is weaker than GVF, so the ADF possesses the property of pre-
serving weak edge.

4. Experimental results

In this section, we first discuss the parameters that are involved
in our method and their estimation. And then we describe compar-
ison results of our ADF model with the GVF [8], GGVF [20], normal

(c)

(d)

(f)

Fig. 3. Deep concavity convergence and preventing weak edge leakage of ADF active contour model. (a) and (d) initialization and evolution; (b) and (e) close-up of the vector
field inside the green rectangle; (c) and (f) segmentation results. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)
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GVF (NGVF) [28], harmonic GVF (HGVF) [29], vector field convolu-
tion (VFC) [9] and extrapolation of vector fields using the infinity
laplacian (ILGVF) [22], in terms of capture range and initialization
insensitivity, narrow and deep concavity convergence, noise
robustness, and edge preserving.

4.1. Parameters analysis

Our algorithm relies on several parameters that must be set. In
this section, we describe each parameter and how they may be
estimated directly from data. The parameters for the proposed
active contour model are o, f, g, k and time step 7. Although the
method contains many parameters, most of these parameters can
be set to fixed values (e.g. 2 =0.5, f=0.5and 7=1).

Parameter ¢ is the standard deviation of the Gaussian kernel G,
for controlling the smoothness of the external force filed. It has a
correlation with the noise level of the image. The higher the image
noise the larger ¢ should be. In Fig. 4, we consider the behavior of
our ADF active contour model varying settings of parameter ¢. For
the noise-free image, we can choose a small value of ¢ (see the top
row in Fig. 4). For images with noise level, we can use relatively lar-
ger g, as shown in the middle row of Fig. 4. However, our model
cannot handle extreme settings (see the right-most two images
of the bottom row in Fig. 4), and in these cases the results may
not be usable. As ¢ increases, the smoothing effect will dominate
the diffusion of Eq. (15) and the force filed easily leaks from the
weak edges. The results indicate that the parameter setting of

the proposed model is not critical. There is a wide range from
which one can select an appropriate ¢. In this experiment, we set
«=0.5, =05 k=005and t=1.

Parameter x is a constant that determines the contrast of the
edges to be preserved and should be tuned for a particular applica-
tion. If the edges are weak, x should be small and vice versa. We
tested a wide range of x and found that x bounded in the interval
[0.03, 0.1] can give us good results for the cardiac image, as shown
on the top of Fig. 5. In contrast, the “U-shape” image possessing
strong edge gives us a wider range of the parameter x to choose
from. We choose this parameter by trial and error according to
the mentioned reference [20]. In this experiment, we set « = 0.5,
Bp=05,d=1and t=1.

Given special steps Ax =1, Ay =1, the choice of the time step
must satisfy the Courant-Friedrichs-Lewy (CFL) condition [36] for
numerical stability. In our experiments, we set 7 = 1. As in [8], the
partial differential Eq. (15) can be implemented using an explicit fi-
nite difference scheme. Its major drawback is that the solution has
to be found using an often time-consuming iterative procedure.
Accordingly, choosing an appropriate iteration number in diffusion
process significantly influences the segmentation performance
[37]. We adopt decorrelation criterion [38] for the selection of the
optimal diffusion iteration number of our ADF model. By consider-
ing two components (u and v) of ADF, the decorrelation criterion is
given by Tapr=argmincorr(ug — u,, u,)+ corr(vg — v, v)|, where
covliy ) __ 4y — f and o =f,. Fig. 6 shows

+/ var(ug—ue)-var(ue) ’

the evolution of correlation with iteration number.

corr(up — U, U) =

Fig. 4. Parameter o sensitivity. Top row: the noise-free image segmentation results; middle row: the noise image segmentation results; bottom row: the cardiac MR image
segmentation results. Left-to-right: results for different values of 6: 6=0.5, 6=1, 6=1.5, 6 =2, 6 =2.5 and ¢ = 3. The yellow dashed, red solid line and yellow solid line
represent initialization, curve evolution and eventual result, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

Fig. 5. Parameter x sensitivity. Top row: the cardiac MR image segmentation results; bottom row: the noise-free image segmentation results. Left-to-right: results for
different values of k: k=0.01, k=0.03, k=0.1, k=1, k=2 and k = 5. The yellow dashed, red solid line and yellow solid line represent initialization, curve evolution and
eventual result, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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fields; (c) segmentation results. Note that the dashed red lines represent the initial curves, and the solid red lines represent the final active contours. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Initialization insensitivity of ADF active contour model. (a) test images; (b)-(d) initialization and evolution process of ADF active contour model on the room-shape

and U-shape images.
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Fig. 9. Deep concavity convergence. Top row: initialization and curve evolution process; middle row: zoom-in of corresponding force field; bottom row: segmentation
results.

(@) GVF (b)) GGVF (c) NGVF (d) HGVF (e)ILGVF (f) ADF

Fig. 10. Noise suppression performance. original image with various levels of impulse noise [0%, 5%, 15%, 25%, ..., 55%] from top to bottom row. (a) Results of GVF active
contour model with u = 0.2; (b) results of GGVF active contour model with x = 0.05; (c) results of NGVF active contour model with u = 0.2; (d) results of HGVF active contour
model with 2 = 0.4, p = 0.01; (e) results of ILGVF active contour model with u = 0.2, At = 0.5; (f) results of ADF active contour model with ¢ = 4, k = 0.05. The edge map used for

these active contour models is f{x, y) = G4(x, y) ® I(x, y), where ¢ = 2.5. And the parameters for active contour models in this experiment are o = 0.5, = 0.5, time step 7= 1.
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(a) GVF

(b) VEC

(c) ADF

Fig. 11. Different types of noise on the U-shape image. From top to bottom, original image with various types of noise created by MATLAB function imnoise(1,'salt&pepper’, 0.08),
imnoise(l,’speckle’, 0.08) and imnoise(l,’gaussian’, 0.0001), respectively. (a) results of GVF active contour model with x = 0.2; (b) results of VFC active contour model with y = 1.7;
(c) results of ADF active contour model with ¢ = 1.5, k = 0.03, respectively. The parameters for active contour models in this experiment are « = 0.5, = 0.5, time step 7= 1.

4.2. Capture range and initialization insensitivity

We use the U-shape image of 64 x 64 pixels to verify the perfor-
mance of the ADF active contour model in capture range enlarge-
ment (see Fig. 7) The parameters for active contour models in
this experiment are o = 0.5, $=0.5, and time step 7 = 1. Both GVF
(u=0.2) and ADF (o =1, k =0.01) active contour models after 20
iterations are capable of capturing the correct boundaries from a
far-off initialization. The force field vectors within the concave
region have downward component, so these two active contour
models move onto the concave area progressively (see Fig. 7b).
As seen in Fig. 7a, the ADF active contour model has better perfor-
mance of convergence than GVF active contour model due to the
fact that the infinite Laplacian functional of ADF is the principal
organizing in forcing an active contour into long, thin boundary
indentations within image homogeneous regions.

Furthermore, we increase the size of original U-shape and
room-shape images to 128 x 128 pixels without increasing the size
of objects in order to test the ADF active contour model. Fig. 8
shows the convergence results with the initial contour placed
across, inside and outside the boundaries, where red dashed lines
represent initialization curves. These experimental results show
that the ADF active contour model is insensitive to initialization.

4.3. Narrow and deep concavity convergence

In this experiment, we demonstrate the success of ADF active
contour model in narrow and deep concavity convergence. Fig. 9
is a comparison of ADF (¢ =0.1, k¥ =0.05), GVF (u=0.2), GGVF
(¢ =0.05), NGVF (u=0.2), ILGVF (u=0.2, At=0.3) and HGVF

RMSE (pixel)
(6]

5% 15% 25% 35% 45% 55%
Various levels of impulse noise varied from 5% to 55%

Fig. 12. The RMSE results of six active contour models corresponding to Fig. 10 with
various levels of impulse noise varied from 5% to 55%.

(2=0.4, p=0.0002). The parameters for active contour models
are o= 0.1, #=0.06 and time step 7= 1.

Fig. 9 shows experimental results on a synthetic image which is
a concavity of 3-pixel width and 150-pixel depth for testing the
convergence property of ADF active contour model. It is shown that
the ADF active contour model enters into the concave region suc-
cessfully and extracts the object correctly, since the ADF vectors
point straight downward the bottom of concavity, while the GVF,



1430 Y. Wu et al./ Computer Vision and Image Understanding 117 (2013) 1421-1435

—+—GVF

—B—VFC
—6— ADF

RMSE (pixel)
N

0.5

I\
L
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Fig. 13. The RMSE results of GVF, VFC and ADF active contour models correspond-
ing to Fig. 11 with various types of noise.

GGVF, NGVF and ILGVF active contour models all fail. The GVF and
ILGVF force field have upward vectors which block the way of the
active contours moving into the concave region (the middle row of
Fig. 9a and d). The properties of NGVF are confined in encountering
very thin and long boundary indentations because the vectors are
attracted by the side boundaries (see the bottom of Fig. 9¢). In

(a) Original image

Fig. 9b, the weighting functions g(|Vf]) and h(|V f]) of GGVF are
introduced for obtaining better convergence, but the vectors van-
ish far from concave region. It should be pointed out that HGVF ac-
tive contour model also achieves boundary concavity, as shown in
Fig. 9e, because of the different roles of the divergence and the curl
during the diffusion process [29].

4.4. Testing on noisy images

Following the experiment from Xie et al.[12], we compare the
accuracy of different active contour models using the simple har-
monic curves with different strengths of noise. The curve is gener-
ated by equation r=a+ bcos (p0+c), where a, b and ¢ remain
constant, and p can be used to produce different numbers of
star-shape grayscale images (p =4). Impulse noise was added to
the original image from 5% to 55%. The images superpose with ini-
tial active contours plotted in white dashed lines, and segmenta-
tion results are indicated by the white solid lines (see Fig. 10).

A simple subjective examination manifests the superior seg-
mentation quality of the ADF active contour model. It can be ob-
served that all the active contour models could converge the
exact location of the object boundary at low percentages of noise.
However, as increasing noise levels, incorrect convergence appears
one after another. In case that the noise level indicates more than
5%, errors first occurs in NGVF active contour model, since it aban-
dons the diffusion in tangent direction entirely. When the noise
levels reach a certain value (45%), the ADF active contour model
outperforms the other active contour models in noise resistance

(b) Edge map

(¢©)GVF  (d) GGVF  (e) NGVF

(f) HGVF

(2) ILGVF

(h) ADF

Fig. 14. Experiment on weak edge leakage. (a) original image; (b) corresponding edge map derived from f{x, y) = G4(x, ¥) ® I(x, y), where ¢ = 1; (c) results of GVF active contour
model with g = 0.05; (d) results of GGVF active contour model with x = 0.05; (e) results of NGVF active contour model with u = 0.05; (f) results of HGVF active contour model
with Z2=0.1, p =0.01; (g) results of ILGVF active contour model with y=0.1, At=0.5; and (h) results of ADF active contour model with ¢ =1, x = 0.03, respectively. The
parameters for active contour models in this experiment are « = 0.5, § = 0.5, time step 7=1.
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(a) Originalimage

(e) NGVF

(f) HGVF

(2) ILGVF (h) ADF

Fig. 15. Performance of weak edge leakage. (a) original image; (b) initialization. The parameters of (c)-(h) are the same as ones in Fig. 14.

(a) Original image  (b) Edge map

(e) NGVF (f) HGVF

(c) GVF (d) GGVF

(h) ADF

(2) ILGVF

Fig. 16. Performance of weak edge leakage. (a) original image; (b) corresponding edge map derived from f{x, y) = G5(x, y) ® I(x, y), where ¢ = 1. The parameters of (c)-(h) are

the same as ones in Fig. 14.

by setting larger standard deviation ¢ value which makes force
field be smoother in general. Yet, considered the convolution by
a Gaussian is isotropic, it does not mean the larger ¢ value could
produce the better results because the force field may be over
smoothed.

In Fig. 10, six active contour models are evaluated for different
strengths of the same noise type. In order to further demonstrate
the noise suppression ability of ADF active contour model, another
example is shown in Fig. 8. The noisy U-shape image is created by
different types of noise including salt and pepper, speckle noise
and Gaussian noise. The active contour models convergence to
the desired boundary without using any filter, that is, f(x,
y)=—I(x, y). It is clear that the results of ADF and VFC active con-
tour models look similar. The initial curves for the VFC and ADF
active contour models are red dashed lines, and for the GVF active
contour model they are set closer to the true boundary to ensure
better results.

The performance of ADF in noise robustness is qualitatively
illustrated through the subjective inspection of the visual appear-
ance of segmentation results in Figs. 10 and 11. Next, to quantify
the accuracy of the results, we adopt the root mean squared error
(RMSE) as a metric for comparison in this section. The RMSE

measures a distance between the true boundary and each active
contour. In our experiment, the result of GGVF active contour mod-
el obtained from the noise-free is taken as ground truth. The RMSE
results are plotted in Figs. 12 and 13 corresponding to Figs. 10 and
11, respectively.

4.5. Preventing weak edge leakage

Fig. 14a is a circular object with a blurred area on the upper left
boundary, which is commonly used for weak edge leakage analysis.
According to the analysis in Section 2, the smoothness energy
terms of the GVF and GGVF are well known to smooth the image
isotropically without preserving the weak edge (see Fig. 14c and
d). The property of preventing weak edge leakage can be melio-
rated by decreasing p (GVF) and x (GGVF), respectively, however,
this will significantly increase the computational time. Since the
NGVF active contour model only adopts normal direction diffusion,
it could not stop at weak edges and move towards stronger edges
(see Fig. 14e). HGVF is decomposed as a weighted sum of diver-
gence and curl, which makes it more flexible than the GVF in con-
cavity convergence, yet it would be prone to error in case of weak
edge leakage, as shown in Fig. 14f. In contrast, our ADF active
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(a) GVF (b) NGVF

(c) VEC (d) ADF

Fig. 17. Example on a cardiac CT image. (a) results of GVF active contour model with p = 0.1; (b) results of NGVF active contour model with u = 0.1; (c) results of VFC active
contour model with y = 1.7; and (d) results of ADF active contour model with ¢ = 2, i = 0.05, respectively. The edge map used for these active contour models is f(x, y) = G4(X,

y) @ I(x, y), where g = 2.

(a) GVF (b) NGVF

(c) VFC (d) ADF

Fig. 18. Example on a cell tissue slide image. The parameters of (a)-(d) are the same as ones in Fig. 17.

(e) NGVF

(f) VEC

(g) ILGVF (h) ADF

Fig. 19. Segmentation of human lung CT image. (a) original image; (b) edge map obtained by a 2D Gaussian kernel with standard deviation 2; (c) initial curves; (d) results of
GVF active contour model with p = 0.1; (e) results of NGVF active contour model with y = 0.05; (f) results of VFC active contour model with y = 1.7; (g) results of ILGVF active
contour model with u=0.1, At=0.5; and (h) results of ADF active contour model with ¢ =1, x = 0.03, respectively. The parameters for active contour models in this

experiment are o = 0.5, #=0.5, time step 7= 1.

contour model is very efficient to solve this issue using harmonic
hypersurface functional (see Fig. 14g). Note, there is no discernable
difference between the results obtained using ADF and ILGVF (see
Fig. 14h).

The next experiment is carried out to illustrate that the ADF ac-
tive contour model also performs well in neighboring objects sep-
aration, especially when the edge of one object is weak and the
other is strong. Fig. 15a is a synthetic torus image with
150 x 150 pixels, where the upper left part is blurred and the edge
of the outer circle is weak while the inner circle is strong. Because
the intensity changes so gradually in the blurred area that there is
ambiguous boundary representation in the edge map, the active
contour models except the ADF active contour model are driven
to move across week edges to the strong neighbore ones.
Especially, ILGVF active contour model is attracted by the inner

edge due to strong gradient vectors caused by the inner circle.
Fig. 16 is another tested image with 128 x 128 pixels, in which
there is one gray disk neighbored by one white rectangle on the
black background. It is clear that our ADF active contour model cor-
rectly separates these two closely neighbored objects, as shown in
Fig. 16h, while the other active contour models fail.

4.6. Real images

Real images have been used for the validation of the proposed
method. Fig. 17 gives comparative results on a CT image of the left
ventricle of a human heart. In order to extract the endocardium of
the left ventricle, we have to cope with noise, inhomogeneity with-
in the blood pool and weak edges even neighbored by strong ones.
In GVF and NGVF active contour models, the initial curves are
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—

(d) NGVF ¢) VEC

(f) ILGVF (g) ADF

Fig. 20. Segmentation of ultrasound image. (a) original image; (b) corresponding edge map derived from f(x, y) = G4(x, y) ® I(x, y), where ¢ = 2; (c) initial curves; (c) results of
GVF active contour model with p = 0.1; (d) results of NGVF active contour model with u = 0.1; (e) results of VFC active contour model with y = 2.3; (f) results of ILGVF active
contour model with u=0.1, At=0.5; and (g) results of ADF active contour model with ¢ =1, k =0.05, respectively. The parameters for active contour models in this

experiment are o = 0.5, f=0.5, time step 7= 1.

Fig. 21. More ADF active contour model examples on real images.

carefully placed closer to the true boundary to achieve as good re-
sults as possible (see Fig. 17a and b). However, these two active
contour models fail in neighboring strong edges. The VFC active
contour model shows very limited improvement and also fails
(see Fig. 17¢). In contrast, our ADF active contour model gives sat-
isfactory results (see Fig. 17d). Similarly, Fig. 18 illustrates a com-
parison on a cell tissue slide image, and we can see that the GVF,
NGVF and VFC active contour models fail. The dashed lines in the
images are initial curve and the parameters of active contour mod-
els in this experiment are o = 0.5, = 0.5, time step 7= 1.

In Fig. 19, a human lung CT image is chosen to exemplify to the
effectiveness of the ADF active contour model. We aim at
extracting the both left and right parenchym, and the difficulties
reside in the weak and closely-neighbored boundaries in the right
parenchym. Fig. 19c shows the initialization curves. The GVF,
NGVF, VFC, ILGVF active contour models collapsed to nearby edges
as shown in Fig. 19d-g, respectively. In contrast, Fig. 19h exempli-
fies the abilities of the ADF active contour model for weak edge
preserving and neighbored objects separation.

Fig. 20 demonstrates the active contour models in processing
noisy ultrasound image. It is very clear to see the difference perfor-
mance of these five methods on the weak edge caused by noise, as
shown in the top right part of the images. The segmentation result
of the ADF active contour model (Fig. 20g) is obviously more accu-
rate than the corresponding results of the GVF, NGVF, and VFC ac-
tive contour models. We also note that the ILGVF active contour
model could converge to correct boundary if the initialization is
closer to the boundary, which exemplifies the robustness to initial-
ization afforded by the ADF approach. More results using the pro-
posed ADF active contour model are shown in Fig. 21.

4.7. Processing speed

In considering the computation time in generating the external
force, we note that all the simulations are implemented in matlab
7.7 without optimization on a 3.4-GHz Pentium (R) computer. Both
the matlab source code and demos of the proposed algorithm can
be downloaded at http://mcislab.cs.bit.edu.cn/member/
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Table 1

CPU time (in seconds) for six models in generating the external force.
Image Size CPU time (s)

GVF GGVF NGVF ILGVF HGVF ADF

U-shape 64 x 64 0.2750 0.3630 0.1980 0.3670 0.4110 0.2010
Heart CT 128 x 128 0.8800 1.1200 0.2980 0.9930 1.2110 0.7610
Lung CT 257 x 257 5.1860 6.2600 2.1050 6.1620 7.4520 4.6150
Ultrasound 201 x 171 1.9110 2.3240 1.9570 23250 3.5310 2.1010
Heart MR 160 x 160 1.0840 2.1210 0.9420 1.5730 2.0180 1.1340
Elbow CT 240 x 240 4.4450 45170 3.1760 3.8900 4.1750 2.8240
Monkey 320 x 240 12.0200 17.6980 9.5740 11.8460 13.7430 13.7900
Airplane 400 x 320 28.5250 30.7920 19.5970 37.4860 38.1610 21.5400

wuyuwei/download.htm. Table 1 presents the details about the ' (|VV)) . ,

. LN . . . im ———~*= lim @'(|VV|)=0

computation time in generating the external force fields including VV-too  |VV] [VV|— 400

GVF, GGVF, NGVF, ILGVF, HGVF and ADF. As observed in Table 1, d

the computation time of proposed approach is roughly as same an

as GVF method. More computational efficiency can be gained " (|IVV])

through code optimization (e.g. multigrid method [39]) and by ‘Wl‘ﬂw & (|VV))/|VV|

implementing in a compiled language such as C.

5. Conclusion

In this paper, we have proposed an active contour model with a
novel external force, named adaptive diffusion flow field (ADF), by
adopting hypersurface minimal functional and infinity laplacian
functional. We demonstrated the performance of our ADF active
contour model, against the GVF, GGVF, NGVF, HGVF and ILGVF
active contour models on synthetic and real images. In general,
the ADF active contour model has great capture range, and it is
much more robust toward detecting and preserving the locations
of weak edges, even if very noisy. Also, our method is able to detect
objects whose boundaries are narrow and deep, whereas the clas-
sical active contour models might not be applicable. The future
work is to extend our method to 3-dimensional ADF active surface.
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Appendix A

In this paper, we adopt ®(|VV|) = /1 + |[VV|?, usually called
the hypersurface minimal function. In this case, we can get

& (|VV)/|VV| =1/4/1+ |VV]?

and

o'(|VV)) = 1/<\/1 + |VV|2>3.

We can observe that @(|VV]) satisfies the condition (7), that is,

> (IVV))

— 2V~ lim @"(|VV]) = 1.
\Vl}\To* IVV| im (VD)

[VV|—0*

Unfortunately, two sub-conditions of Eq. (8) are incompatible.
One must find a compromise. For example, @'(|VV])/|VV] and
@’(|VV]) both converge to 0 as |VV| — + oo, but at different rates.
We can obtain

This means that the rate of change in the normal direction is faster
than that of tangent direction during diffusion. Thus, the diffusion
along the tangent direction plays the key role on the edge of an im-
age, while the diffusion along the normal direction has little effect.
Accordingly, the ADF model is able to preserve the weak edges.

Appendix B

For Eq. (12), let Q c R? presents a bounded, open and connected
domain with sufficiently smooth boundary. We can obtain the fol-
lowing formulation by minimizing Eq. (11):

div(|VVP2VV) = 0. (18)

The infinity Laplace equation is derived as the limit as p — oo of the
Euler-Lagrange equation

div([VVP2VV) = [VVP2AV + (p = 2)[VVP 4 V=0,  (19)

for approximating Eq. (12), where A is Laplacian operator. Formally
dividing Eq. (19) by (p — 2)|VV|P~2 and letting p — oo, thus

1
——— 4.V =0, (20)
[VV|
where 4,V = Z,-Z:”-:1Vxl Vi Vi = 0 in Q. It can be note that Eq.
(20) is equal to the second derivative of V in the direction of the
intensity gradient. The non-linear operator 4, is called the infinite

Laplacian.
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