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ABSTRACT

Video anomaly detection aims to discriminate events that deviate

from normal patterns in a video. Modeling the decision boundaries

of anomalies is challenging, due to the uncertainty in the probability

of deviating from normal patterns. In this paper, we propose a deep

evidential reasoning method that explicitly learns the uncertainty

to model the boundaries. Our method encodes various visual cues

as evidences representing potential deviations, assigns beliefs to

the predicted probability of deviating from normal patterns based

on the evidences, and estimates the uncertainty from the remained

beliefs to model the boundaries. To do this, we build a deep evi-

dential reasoning network to encode evidence vectors and estimate

uncertainty by learning evidence distributions and deriving beliefs

from the distributions. We introduce an unsupervised strategy to

train our network by minimizing an energy function of the deep

Gaussian mixed model (GMM). Experimental results show that our

uncertainty score is beneficial for modeling the boundaries of video

anomalies on three benchmark datasets.
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1 INTRODUCTION

Video anomaly detection aims to discriminate events that deviate

from the normal patterns, and it is increasingly being studied for

various applications in ubiquitous surveillance videos [5, 6, 26, 45].

Due to lack of training anomaly data, it is difficult to use popular su-

pervised deep learning to discriminate anomalies in videos. Hence,
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many researchers have investigated unsupervised deep learning

for video anomaly detection.

Most existing unsupervised methods [12, 22, 44] model anomaly

boundaries by calculating the probability of deviating from nor-

mal data distributions by using deep networks. However, these

methods do not work well in discriminating anomalies that are

context-specific and/or visually similar to normal patterns, due

to the large uncertainty in the probability of deviating from the

normal patterns. For example, anomaly scores representing the

deviation probability as decision boundaries, which are estimated

by using a reconstruction-based method [12] and a classification-

based method [16], are not discriminative enough, as shown in

Figures 1a and 1b. Figures 2a and 2b illustrate the average anomaly

scores on the whole Avenue dataset, where the small score gaps

also show less discrimination. The reason is that deep networks

in these methods are encouraged to uniformly generate the low

deviation probability for all normal data with high confidences, but

they tend to wrongly extend their confidences to visually similar

anomaly data. Fortunately, learning uncertainty is able to prevent

deep networks from making overconfidence predictions [2, 3, 10].

In this paper, we propose to learn the uncertainty of deviation prob-

abilities to model decision boundaries of anomalies in videos. As

demonstrated in Figures 1c and 2c, using uncertainty to compute

anomaly scores is beneficial for modeling the boundaries with good

discrimination.

Using deep networks to learn the uncertainty of deviation prob-

abilities is non-trivial. There are two challenges we address in
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(a) Reconstruction-based 
Method

(b) Classification-based 
Method (c) Our Method

Anomaly Frame: Wrong Direction

Normal Frame

Normal Frame

Anomaly Frame: Throw Bag

Figure 1: Frame-level anomaly scores of two example videos

on the Avenue dataset [20]. Red and blue points represent

anomaly and normal frames, respectively. The horizontal

axis denotes the reduced 1-dimensional feature space by us-

ing t-SNE. The vertical axis denotes the computed anomaly

scores. Our method produces more discriminated anomaly

scores than the other two methods.
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Figure 2: Average of anomaly scores on the whole Avenue

dataset. Anomaly scores of ourmethod between normal and

anomaly frames indicate good discrimination.

particular. (1) The bias of visual cues is likely to mislead the un-

certainty estimation, because the deviations of anomalies are often

revealed in various visual cues in contexts (e.g., object appearance,

motion and scene, etc.). Therefore, it is necessary to mine diverse

visual cues in complex contexts for uncertainty estimation. (2) Lack

of sufficient anomaly annotations will impede estimating the un-

certainty in deep networks, since many deep uncertainty learning

methods require supervised annotations to model uncertainty by

penalizing wrong predictions with high uncertainty.

To address the two challenges, we propose a deep evidential

reasoning method that learns the uncertainty to model the decision

boundaries. Specifically, we mine visual cues in different types by

multiple evidence learning processes, and estimate the uncertainty

in an unsupervised manner by introducing a deep Gaussian mixed

model (GMM) to penalize wrong cluster predictions. To this end,

we build a deep evidential reasoning network consisting of an evi-

dence encoder and an uncertainty learner. The evidence encoder

extracts representative normal patterns in a memory auto-encoder,

and selects relevant normal patterns to encode visual cues in differ-

ent types, including object appearance, motion, visual relationship,

and scene, into evidence vectors of deviations through a memory

Transformer. The uncertainty learner is used to estimate the un-

certainty by learning evidence distributions based on the evidence

vectors and deriving both the beliefs and probabilities from the dis-

tributions. The uncertainty scores are used to calculate frame-level

anomaly scores for video anomaly detection. We further introduce

an unsupervised strategy to train our network by assigning the

beliefs and probabilities to normal clusters of the deep GMM and

penalizing wrong cluster predictions.

We evaluate our method on ShanghaiTech [21], Avenue [20],

and UCSD Ped2 [23] datasets. Experimental results show that our

method outperforms state-of-the-art methods. For a fair compar-

ison, we use the same backbone (i.e., memory auto-encoder and

memory Transformer) as our network to calculate anomaly scores

in Figure 1 and Figure 2, and the inputs are cues of the scene type.

2 RELATEDWORK

We review related work on the unsupervised deep anomaly de-

tection that we are concerned about in this paper. Most existing

methods roughly fall into two categories: reconstruction-based and

classification-based.

Reconstruction-based methods assume that normal data can be

better reconstructed from the feature space than anomalies, and

use reconstruction errors to model the anomaly deviations from the

patterns of normal data. Among these methods, auto-encoder net-

works are the commonly-used techniques [36, 38, 46]. For example,

Hasan et al. [14] used one fully connected auto-encoder and another

end-to-end convolutional auto-encoder to learn spatial normal pat-

terns for modeling the deviations. Chong and Tay [8] introduced

a spatio-temporal auto-encoder to learn spatio-temporal normal

patterns in videos. Gong et al. [12] proposed a Memory-augmented

Deep Auto-encoder (MemAE) to record prototypes of normal pat-

terns for reducing noise in the learned patterns. These methods aim

to represent common patterns of normal data and reconstruct them

with low reconstruction errors uniformly, which may not work

well when anomalies share somewhat similar patterns with the

normal data, because the reconstruction task does not need to learn

the discriminative information from normal data. In contrast, our

method learns the uncertainty of deviation probabilities based on a

deep GMM, and extracts discriminative information for assigning

both beliefs and probabilities to different normal clusters of the

deep GMM, thereby performing well in discriminating anomalies

with a similar pattern of normal data.

Classification-based methods assume that normal data come

from one or more abstract classes and anomalies do not conform to

them. They usually use classification errors to model the deviations

for anomaly discrimination [32, 35, 43, 44]. For example, Ionescu

et al. [39] extracted deep features and adopted a one-class SVM to

acquire classification errors as anomaly deviations. Xu et al. [42] ex-

tended one one-class SVM to three one-class SVMs based on fused

deep appearance and motion features. Ionescu et al. [16] introduced

a one-versus-rest SVM to classify samples into multiple normal

classes for discriminating anomalies outside all classes. These meth-

ods classify normal data into known classes with high confidences,

but are likely to wrongly classify unknown anomalies that fall near

the classification boundaries into normal classes. In contrast, our

method estimates the uncertainty by evidential reasoning to pre-

vent making overconfidence predictions, obtaining the capacity to

classify unknown anomalies near the boundaries successfully.

3 METHOD

Figure 3 illustrates the framework of our method. We parse input

videos into different types of visual cues, and then build a deep

evidential reasoning network to obtain the evidence vectors and

uncertainty from visual cues in each type. The frame-level anomaly

scores are computed according to the vectors and uncertainty. The

deep evidential reasoning network consists of an evidence encoder

and an uncertainty learner. We use the evidence encoder to encode

evidence vectors of deviations, and use the uncertainty learner to

estimate the uncertainty by learning evidence distributions and

deriving both beliefs and probabilities from the distributions.

3.1 Video Parsing

Video anomalies are heterogeneous, and different anomalies may

exhibit completely different expressions [11, 27]. Their deviations
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Figure 3: The framework of our method.

from the normal patterns will also involve visual cues in differ-

ent types. Therefore, we parse input videos to acquire visual cues

in different types for estimating the uncertainty of the deviation

probability.

Given a video𝑉 with𝑇 frames [𝐼1, 𝐼2, · · · , 𝐼𝑇 ], we use the region
proposal network (RPN) [31] to generate object bounding boxes

for each frame, where the top-𝐾 bounding boxes are selected in

each frame. The pre-trained FlowNet-v2 [15] is used to generate

optical-flow images between the current frame and the previous

frame. We parse the video to obtain four typical types of visual cues

as follows. (1) Scene: the whole image frames from the input video.

(2) Appearance: the sub-images cropped by bounding boxes. (3)

Relationship: the sub-images cropped by union bounding boxes over

pairwise objects. (4) Motion: the optical-flow sub-images cropped

by bounding boxes.

We use the notation X ∈ ℝ𝑊 ∗𝐻∗3 to represent a parsed sample

of an image or a sub-image.𝑊 and 𝐻 denote its width size and

height size, and both of them are set to 64.

3.2 Deep Evidential Reasoning Network

Evidential reasoning is to represent and combine evidences to allo-

cate belief masses to subsets of a frame-of-discernment 1 according

to Dempster-Shafer theory [9, 34], which contributes to detecting

out-of-distribution samples by modeling the uncertainty. We de-

sign a deep evidential reasoning network consisting of an evidence

encoder and an uncertainty learner, to learn the uncertainty of devi-

ation probabilities. As shown in Figure 4, the evidence encoder ex-

tracts normal patterns from visual cues in a memory auto-encoder,

and jointly represents and combines evidences by encoding the

evidence vector in a memory Transformer. The uncertainty is es-

timated by deriving both belief masses and probabilities in the

uncertainty learner. The frame-of-discernment in our evidential

1In Dempster-Shafer theory, the frame-of-discernment denotes the set of exclusive
assumed states, e.g., assumed classes for a sample.

reasoning is defined as a finite set Θ = {𝜃1, 𝜃2, · · · , 𝜃𝐾 } of potential
normal clusters of a deep Gaussian mixed model (GMM). Allocat-

ing belief masses to the clusters is realized by learning an evidence

distribution in the uncertainty learner.

3.2.1 Evidence Encoder. As illustrated in Figure 4, the evidence

encoder is composed of a memory auto-encoder and a memory

Transformer. We use the memory auto-encoder for explicitly learn-

ing representative normal patterns, providing supports of potential

deviation references. We introduce a self-attention Transformer net-

work for mining the relationships between input samples and the

learned normal patterns, generating evidence vectors representing

deviations.

Memory Auto-encoder. The memory auto-encoder is used to ob-

tain the encoding feature f andmemory itemsM = [m1,m2, · · · ,m𝑁 ]
�,

where M records the patterns of normal samples. We encode a

parsed sample X into an encoding feature f in a convolutional

network f = Conv(X), and randomly initialize all memory items

m𝑖 by using a multidimensional standard Gaussian distribution.

The encoding feature f and memory items m𝑖 are used to calculate

attention values for memory addressing:

𝑑 (f,m𝑖 ) =
fm�

𝑖

‖f ‖‖m𝑖 ‖
, (1)

𝜔𝑖 =
exp(𝑑 (f,m𝑖 )∑𝑁
𝑗=1 exp(𝑑 (f,m𝑗 ))

, (2)

where 𝑑 (·, ·) denotes the cosine similarity. The memory addressing

is performed to construct the decoding feature f̂ by soft weighting

f̂ =
∑𝑁
𝑖=1 𝜔𝑖m𝑖 . We use the decoding feature f̂ for reconstructing X

in a de-convolutional network, and obtain the reconstruction out-

put X̂ = DeConv(f̂). The reconstruction error ‖X − X̂‖2 is treated

as the loss function for optimizing the network parameters. All

memory items M are also optimized together with the network

parameters by using the gradient descent algorithm. The network

parameters are shared across different visual cues in each type,
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Figure 4: Illustration of the evidence encoder. The evidence encoder consists of a memory auto-encoder and a memory Trans-

former.

while the memory items are not shared. Once the network parame-

ters and memory items are optimized, the encoding feature f and

memory items M can be obtained by feeding a parsed sample X to

the auto-encoder.

Memory Transformer. The evidence vector e is acquired in a

memory Transformer, and its inputs include the encoding feature f

and memory items M. Considering the redundancy of M in record-

ing normal patterns, we perform memory weighting to select more

important normal patterns inM, and then transform both the en-

coding feature f and the weighted memory items into the evidence

vector e in support of estimating the uncertainty.

The memory itemsM record representative normal patterns. We

argue that different patterns in memory items contribute differently

to estimating the uncertainty of deviation probabilities, because

anomalies are discriminated by modeling deviations from common

patterns instead of uncommon patterns. Therefore, we use a density

estimator to weight memory items based on their local density. A

neural density estimator of autoregressive models [28] is used to

generate densities as soft weights 𝜷 = [𝛽 (m1), (m2), · · · , 𝛽 (m𝑁 )].
The final weighted memory items are M̂ = [m̂1, m̂2, · · · , m̂𝑁 ]

�,

where m̂𝑖 = 𝛽 (m𝑖 )m𝑖 .
We introduce a self-attention Transformer network [40] to gen-

erate the evidence vector e for mining the relationships between

the encoding feature f and its normal references (i.e., weighted

memory items M̂). The weighted memory items M̂ are fed into

a Transformer encoder to capture their internal relationships. A

Transformer decoder captures co-contextual representations be-

tween the input memory items and the encoding feature, generating

the transformed feature as

z = Transformer_1(M̂, f). (3)

The evidence vector e = [𝑒1, 𝑒2, · · · , 𝑒𝐾 ] is generated via a multi-

layer perceptron (MLP) with the input of the concatenation vector

[z, f]:

e = ReLU(MLP_1( [z, f]), (4)

where ReLU(·) represents the ReLU activation function ensuring

non-negative outputs. The network architectures of the Trans-

former and MLP_1 as well as the optimization of their learnable

parameters are detailed in the experiment section.

3.2.2 Uncertainty Learner. We estimate the uncertainty in the un-

certainty learner by learning an evidence distribution and deriving

belief masses and probabilities assigned to a frame-of-discernment

based on the distribution.

BeliefMass andProbability.Wedefine the frame-of-discernment

as𝐾 mutually exclusive singletons, i.e.,Θ = {𝜃1, 𝜃1, · · · , 𝜃𝐾 }, which
is similar to the assumed classes of a classification task. Since none

of supervised information is available during training, we introduce

the deep GMM to generate Gaussian clusters as potential classes of

normal samples, and treat each Gaussian cluster as the singleton.

The belief mass of the 𝑘-th singleton is denoted as𝑏𝑘 and the overall
mass is 𝑢. We use the notation 𝑝𝑘 to represent the probability with

which instance is predicted to be the 𝑘-th Gaussian cluster. Both the

probabilities of all membership predictions p = [𝑝1, 𝑝2, · · · , 𝑝𝐾 ]
�

and the overall mass 𝑢 represent the uncertainty.

We calculate the belief masses 𝑏𝑘 , overall mass 𝑢, and probabil-

ities p by learning an evidence distribution instead of using con-

ventional Dempster’s rule [9, 34], thereby ensuring differentiable

calculations in deep evidential reasoning. Learning an evidence

distribution is an equivalent form of Dempster’s rule given some

constraint conditions [33], which is summarized in Theorem 1. The

proof can be found in Supplementary materials.

Theorem 1. When the frame-of-discernment of evidential reason-

ing is in the form of singletons, subjective logic formalizes evidential

reasoning’s notion of belief assignments as a Dirichlet distribution.

Implementation.We establish a Dirichlet distribution as the ev-

idence distribution based on the evidence vector e in Eq. (4). Ac-

cording to the work of Sensoy et al. [33], the belief assignment corre-

sponds to aDirichlet distributionwith parameters𝜶 = [𝛼1, 𝛼2, · · · , 𝛼𝐾 ]:

𝜶 = e + 1. (5)

The belief mass 𝑏𝑘 and overall mass 𝑢 can be derived from the

parameters 𝜶 by

𝑏𝑘 =
𝑒𝑘∑𝐾
𝑘=1 𝛼𝑘

,

𝑢 = 1 −

𝐾∑
𝑘=1

𝑏𝑘 =
𝐾∑𝐾
𝑘=1 𝛼𝑘

.

(6)
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The expected probability 𝑝𝑘 with which an instance is predicted to

be the 𝑘-th normal Gaussian cluster is computed by

𝑝𝑘 =
𝛼𝑘∑𝐾
𝑘=1 𝛼𝑘

. (7)

Both 𝑝𝑘 and 𝑢 are calculated in a differentiable form with the

input of the evidence vector e, so the network parameters of both the

memory Transformer and memory auto-encoder can be optimized

jointly. To this end, we use the notation P ∈ ℝ𝑀∗𝐾 to denote

the probabilities with which 𝑀 input instances are predicted to

be 𝐾 Gaussian clusters. We use the notation z𝑖 to represent the

transformed feature of the 𝑖-th instance in Eq. (3). An MLP is used

to perform dimension reduction as g𝑖 ∈ ℝ𝐷 = MLP_2(z𝑖 ). P and

g𝑖 are computed in a differentiable feedforward process, and the

network parameters are optimized by using the loss function

L =
1

𝑀

𝑀∑
𝑖=1

− ln
( 𝐾∑
𝑘=1

𝜙𝑘
𝑒−

1
2 (g𝑖−𝝁𝑘 )

�𝚺−1
𝑘 (g𝑖−𝝁𝑘 )√

|2𝜋𝚺𝑘 |

)

+ 𝜆
𝐾∑
𝑘=1

𝐷∑
𝑗=1

1

𝚺𝑘 ( 𝑗, 𝑗)
,

(8)

where

𝜙𝑘 =
𝑀∑
𝑖=1

P(𝑖, 𝑘)

𝑀
, 𝝁𝑘 =

∑𝑀
𝑖=1 g𝑖P(𝑖, 𝑘)∑𝑀
𝑖=1 P(𝑖, 𝑘)

, (9)

𝚺𝑘 =

∑𝑀
𝑖=1 P(𝑖, 𝑘) (g𝑖 − 𝝁𝑘 )

�(g𝑖 − 𝝁𝑘 )∑𝑀
𝑖=1 P(𝑖, 𝑘)

. (10)

The number of Gaussian clusters𝐾 is 10 and the trade-off parameter

𝜆 is 0.005.

3.3 Anomaly Scoring

We calculate frame-level anomaly scores based on the overall mass

and probabilities from visual cues in different types for anomaly

detection. As shown in Figure 5, anomaly scores are estimated in

an anomaly scoring network. In each type, the feature vector z

is concatenated with the probabilities p = [𝑝1, 𝑝2, · · · , 𝑝𝐾 ]
� and

overall mass𝑢. The concatenated features are fed into a Transformer

encoder and an MLP, modeling a new Dirichlet distribution with

parameters 𝜶 = [𝛼1, 𝛼2, · · · , 𝛼𝐾 ]:

𝜶 = ReLU(MLP_3(Transformer_2( [z, p, 𝑢]))) + 1. (11)

We introduce the self-attention Transformer encoder to capture the

internal relationships among all visual cues of features, probabilities,

and overall mass for aggregation. Different from the memory Trans-

former in Eq. (3), we do not use the Transformer decoder because

capturing co-contextual relationships is unnecessary for frame-

level anomaly scoring. The loss function of the Transformer_2 and

MLP_3 networks is similar to L in Eq. (8) for unsupervised cluster-

ing and network training. Once the networks are optimized, the

frame-level anomaly score is derived from the Dirichlet distribution:

𝑠 =
𝐾∑𝐾
𝑘=1 𝛼𝑘

−max
𝑗

(
𝛼 𝑗∑𝐾
𝑘=1 𝛼𝑘

)
. (12)

Since anomalies significantly deviate from the normal patterns,

they should not belong to any normal clusters, indicating that

anomaly scores should have a lower assignment probability, i.e.,
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Figure 5: Illustration of frame-level anomaly scoring.

−max𝑗
𝛼 𝑗∑𝐾
𝑘=1 𝛼𝑘

. Anomalies are unseen during training and their

scores should have a larger overall mass 𝐾∑𝐾
𝑘=1 𝛼𝑘

. The anomaly score

should vary smoothly among frames, so we use a Gaussian filter

to enforce temporal smoothness of the final frame-level anomaly

scores.

4 EXPERIMENTS

4.1 Datasets

We evaluate our method on the ShanghaiTech [21], Avenue [20],

and UCSD Ped2 [23] datasets. The ShanghaiTech dataset contains

13 campus scenes with various viewpoints. It has over 310𝑘 video

frames and 130 anomalies such as jumping, biking, and fighting.

The Avenue dataset has 16 training and 21 testing videos with

about 35𝑘 frames. Each video lasts about 2 minutes long. Anomalies

include running, walking in opposite direction, throwing objects,

and loitering. TheUCSDPed2 dataset has 16 training and 12 testing

videos with about 5𝑘 frames of pedestrian walkways. Anomalies

include cars, person skating, bicycling, and so on.

4.2 Implementation Details

Architecture.We construct the memory auto-encoder proposed

by the work of Gong et al. [12], generating the memory items

M ∈ ℝ2000∗128 and feature f ∈ ℝ128. The encoder and decoder in

Transformer_1 both have 2 layers and 4 attention heads, and the

embedding dimension is 32. The MLP_1 has the architecture of

(256, 64, ReLU)-(64, 32, ReLU)-(32, 10, None), where (𝑎, 𝑏, 𝑓 ) means

a fully-connected layer with a trainable weight matrixW ∈ ℝ𝑎∗𝑏

and an activation function 𝑓 . The architecture of MLP_2 is (128,

64, ReLU)-(64, 32, None). Transformer_2 and MLP_3 have similar

architectures as those in the memory Transformer.

Hyper-parameter. We set the memory size 𝑁 to 2000 among

all datasets, guaranteeing that most of the representative normal

patterns are recorded. The cluster number 𝐾 is set to 10 to cover

common behavior classifications in the scenes of the three datasets

(i.e., avenues, subways, and campuses).

Training. The training process is summarized in Algorithm 1. The

training batch is set to 32, and we use the RMSprop optimizer with

a 0.001 learning rate.
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Algorithm 1 The training process.

Input: Training videos 𝑉 .
Output: Optimized parameters {ΦM,ΦT,ΦA} of the memory

auto-encoder, memory Transformer and anomaly scoring network.

1: Pre-process 𝑉 into the images or cropped sub-images X1, X2,

X3 and X4 as visual cues in four types;

2: Randomly initialize the parameters {ΦM,ΦT,ΦA};

3: for each type 𝑖 do
4: Reconstruct X𝑖 as X̂𝑖 through the memory auto-encoder;

5: Use the stochastic gradient descent (SGD) algorithm with

the loss function of ‖X𝑖 − X̂𝑖 ‖
2 to optimize parameters ΦM;

6: Extract memory items M and feature vectors f from the

memory auto-encoder. Calculate the evidence vectors e, proba-

bilities p, and overall mass 𝑢 from the memory Transformers

through Eqs. (3), (4) and (6);

7: Use the SGD algorithm with the loss function in Eq. (8) to

optimize parameters ΦT;

8: end for

9: Concatenate z, p and 𝑢 into [z, p, 𝑢] in all types, and calculate

the frame-level scores in Eqs. (11) and (12) through the anomaly

scoring network;

10: Use the SGD algorithm with a similar loss function in Eq. (8)

to optimize parameters ΦA;

11: return Network parameters {ΦM,ΦT,ΦA}.

Table 1: Anomaly detection results in terms of the frame-

level AUROC on the ShanghaiTech dataset.

Method AUROC↑

Hasan et al. ([14]) 60.85%
Morais et al. ([25]) 73.4%
Park et al. ([29]) 72.8%

Markovitz et al. ([24]) 76.1%
Cai et al. ([4]) 73.7%

Szymanowicz et al. ([37]) 70.4%
Astrid et al. ([1]) 73.7%
Hao et al. ([13]) 73.8%
Liu et al. ([19]) 76.2%
Chen et al. ([7]) 78.1%

Ours 79.3%

4.3 Evaluation Metric

We generate frame-level anomaly scores, and compute the Area

Under the Receiver Operation Characteristic (AUROC ↑) by gradu-

ally changing the threshold of anomaly scores for evaluation. We

also compute the Equal Error Rate (EER ↓) for evaluation. A higher

AUROC value and a lower EER value indicate a better performance.

4.4 Comparisons

Results on the ShanghaiTech Dataset. We report the AUROC

performance of our method and state-of-the-art methods in Ta-

ble 1. The performances of all compared methods are taken from

their original paper. Our method outperforms the state-of-the-art

method of Chen et al. [7] on the ShanghaiTech dataset, gaining an

Table 2: Anomaly detection results in terms of the frame-

level AUROC and EER on the Avenue dataset.

Method AUROC↑ EER↓

Hasan et al. ([14]) 70.2% 25.1%
Liu et al. ([18]) 84.9% -

Wang et al. ([41] ) 85.3% 23.9%
Morais et al. ([25]) 86.3% -

Park et al. ([29]) 88.5% -

Cai et al. ([4]) 87.4% -

Li et al. ([17]) 83.5% 23.5%
Hao et al. ([13]) 86.6% -

Astrid et al. ([1]) 87.1% -

Chen et al. ([7]) 90.3% -

Liu et al. ([19]) 91.1% -

Ours 92.7% 20.0%

Table 3: Anomaly detection results in terms of the frame-

level AUROC and EER on the UCSD Ped2 dataset.

Method AUROC↑ EER↓

Hasan et al. ([14]) 90.0% 21.7%
Chong and Tay ([8]) 87.4% 12.0%

Ravanbakhsh et al. ([30]) 95.5% 14.0%
Park et al. ([29] ) 97.0% -

Cai et al. ([4]) 96.6% -

Hao et al. ([13]) 96.9% -

Chen et al. ([7]) 98.3% -

Astrid et al. ([1]) 98.4% -

Liu et al. ([19]) 99.3% -

Ours 97.1% 10.9%

improvement of 1.2% on the AUROC evaluation. Since the Shang-

haiTech dataset is recognized as a challenging benchmark of video

anomaly detection, the performance demonstrates the superiority

of our method.

Results on the Avenue Dataset. Experimental results in Table 2

show that our method outperforms all compared methods on both

the AUROC and EER evaluations on the Avenue dataset. The state-

of-the-art work of Park et al. [19] achieves the AUROC values of

91.1%, and our method gains an improvement of 1.6%, showing the

superiority of our method.

Results on the UCSD Ped2 Dataset. We compare our method

with existing methods on the UCSD Ped2 dataset in Table 3. Our

method achieves slightly worse results on the UCSD Ped2 dataset

compared with state-of-the-art methods of [1, 7, 19]. Nevertheless,

our method outperforms them on the other two datasets, with

improvements of 5.6%, 1.2%, and 3.1% on the ShanghaiTech dataset

as well as improvements of 5.6%, 2.4%, and 1.6% on the Avenue

dataset, respectively. The reason for the dropped performance is

that the UCSD Ped2 dataset is relatively small so that our deep

networks are prone to overfitting, and the overfitting problem may

be solved by performing data augmentation in the future study.
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Table 4: The AUROC and the EER of different components

of our method on the Avenue dataset.

Method AUROC↑ EER↓

Visual

Cues

w/ scene 61.8% 34.7%
w/ appearance 87.6% 23.3%
w/ relationship 78.0% 27.2%
w/ motion 83.6% 26.5%
w/o scene 91.2% 20.9%

w/o appearance 78.8% 25.4%
w/o relationship 88.2% 23.1%
w/o motion 83.6% 24.4%

Memory
w/o memory 82.4% 25.5%
w/o weights 85.2% 24.5%

Uncertainty w/o uncertainty 89.7% 21.3%

Scoring
w/ max-pooling 88.1% 21.5%

w/ average-pooling 84.4% 24.0%
w/o GMM 88.5% 22.4%

Ours 92.7% 20.0%

Scene Appearance Motion Relationship

Anomaly

Scene Appearance Motion Relationship

Anomaly

Figure 6: Qualitative results of overall mass scores and

anomaly scores from visual cues in four types.

4.5 Ablation Study

We compare the contributions of different components of ourmethod

in Table 4, including the visual cues, the memory items, the uncer-

tainty, and the scoring network.

Analysis of Visual Cues. Table 4 shows the quantitative results

about four types of visual cues. “w/ scene”, “w/ appearance”, “w/

relationship” and “w/ motion” denote that the uncertainty is only es-

timated based on visual cues in one corresponding type. “w/o scene”,

“w/o appearance”, “w/o relationship” and “w/o motion” means that

removing the belief mass and probability from visual cues in the

corresponding type. It can be seen that: (1) The visual cue of object
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Figure 7: Qualitative results on the ShanghaiTech dataset.

Frames inwhite and bluewindows are the ground-truth nor-

mal and anomaly events, respectively. Anomaly scores in

our method match well with the ground-truth annotations.

appearance plays the most important role because when discarding

it, the largest decrease of the AUROC is obtained. This represents

that anomalies in videos are often object-centric. (2) When discard-

ing any cues, the AUROC value is reduced by 1.5%-13.9%, which
further verifies the importance of various visual cues.

Figure 6 visualizes the overall mass score 𝐾∑𝐾
𝑘=1 𝛼𝑘

and anomaly

scores 𝑠 in Eq. (12) of two anomaly examples with visual cues in

different types. It can be seen that: (1) The high scores of “running”

are acquired from the optical-flow images because the behavior

pattern tends to be discriminated based motions. (2) The “biking”

can be detected from object appearance images with higher scores.

Analysis of Memory. We analyze the importance of the memory

items in Table 4. “w/o memory” represents that we only use the

MLP_1 with inputs of the encoding feature to obtain the belief

and probability, where the memory Transformer is removed. “w/o

weight” denotes removing the memory weighting. It can be seen

that: (1) When discarding the memory items, the performance of

the AUROC drops sharply from 92.7% to 82.4%, which verifies the

necessity of explicitly adopting the memory items to record the

reference samples. (2) The performance is significantly improved

by employing the weights, demonstrating the effectiveness of dy-

namically representing normal patterns.

Analysis of Uncertainty. “w/o uncertainty” in Table 4 means

that we remove the evidential distributions and directly obtain

the prediction probability by p = softmax(e), and the removal

of uncertainty decreases the performance of anomaly detection.

The possible reason is that unknown anomalies may be wrongly

assigned to a certain class without considering the uncertainty.

We show two qualitative results of our uncertain-aware anom-

aly scores in Figure 7. Blue windows show ground-truth labels of
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Figure 8: Frame-level anomaly scores of an example video.

Frames inwhite and bluewindows are the ground-truth nor-

mal and anomaly events, respectively. Red dotted lines rep-

resent their ground-truth boundary. It is easy to construct

the correct decision boundary between normal and anomaly

frames by using our method to compute anomaly scores.

anomalies, and red curves represent the smoothed anomaly scores

of our method. The scores match well with the anomaly annota-

tions, and the score gaps between normal and anomaly frames are

large, indicating good discrimination. We also compare our method

with a reconstruction-based method [12] and a classification-based

method [16] in Figure 8. For a fair comparison, we use the same

backbone (i.e., memory auto-encoder and memory Transformer)

to calculate anomaly scores in [12, 16], and the inputs are visual

cues of the scene type. The results in Figure 8 verify the benefits

of learning the uncertainty for modeling the boundaries of video

anomalies. Furthermore, we project scene features z in Eq. (3) on

the Avenue dataset onto a 2D space by using t-SNE. The results

of two example videos are shown in Figure 9, where red and blue

points represent anomaly and normal frames, respectively. It can

be seen that the uncertainty estimation will separate normal and

anomaly frames clearly for better discrimination.

Analysis of Scoring. We use a Transformer encoder to aggregate

visual cues for scoring. We compare the Transformer encoder with

two aggregation methods of max-pooling and average-pooling.

“w/ max-pooling” and “w/ average-pooling” denote replacing the

Reduced Dimension-X Reduced Dimension-X

Re
du

ce
d 

D
im

en
sio

n-
Y

Re
du

ce
d 

D
im

en
sio

n-
Y

Reduced Dimension-X Reduced Dimension-X

Re
du

ce
d 

D
im

en
sio

n-
Y

Re
du

ce
d 

D
im

en
sio

n-
Y

(a) w/o Uncertainty (b) Our Method

Figure 9: Visualizations of learned features of two example

videos by using t-SNE on the Avenue dataset. Red and blue

points represent anomaly and normal frames, respectively.

Transformer_2 in Eq. (11) with pooling operations. The results show

that the self-attention aggregation in the Transformer encoder is

more effective than the pooling operation. In addition, we use the

deep GMM to train our scoring network, and perform an ablation

study of “w/o GMM” to verify its effectiveness. “w/o GMM” means

replacing the end-to-end training strategy of the deep GMM by

using another learning strategy of pseudo-labels [16, 35], where

we use the k-means algorithm to obtain pseudo-labels for training

our scoring network by establishing a classifier. The AUCROC

performance of using the deep GMM is 92.7%, and is higher than

the 88.5% of using the pseudo-label strategy, which verifies the

contribution of the GMM in our method.

5 CONCLUSION AND DISCUSSION

We have presented a deep evidential reasoning method that can

learn the uncertainty in the probability of deviating from normal

patterns to model the boundaries of video anomalies without anom-

aly annotations. We build a deep evidential reasoning network that

can both encode evidences by mining various visual cues and esti-

mate the uncertainty by deriving beliefs and probabilities from the

evidence distribution. We assign the beliefs and probabilities to nor-

mal clusters of the deep GMM, which can train the network in an

unsupervised manner. Experimental results demonstrate the bene-

fits of learning the uncertainty for modeling the decision boundaries

of video anomalies.
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