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ABSTRACT

In this paper, we propose a scene-aware context reasoning method
that exploits context information from visual features for unsuper-
vised abnormal event detection in videos, which bridges the seman-
tic gap between visual context and the meaning of abnormal events.
In particular, we build a spatio-temporal context graph to model
visual context information including appearances of objects, spatio-
temporal relationships among objects and scene types. The context
information is encoded into the nodes and edges of the graph, and
their states are iteratively updated by using multiple RNNs with
message passing for context reasoning. To infer the spatio-temporal
context graph in various scenes, we develop a graph-based deep
Gaussian mixture model for scene clustering in an unsupervised
manner. We then compute frame-level anomaly scores based on
the context information to discriminate abnormal events in various
scenes. Evaluations on three challenging datasets, including the
UCF-Crime, Avenue, and ShanghaiTech datasets, demonstrate the
effectiveness of our method.
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1 INTRODUCTION

Detecting abnormal events in videos is a challenging problem due
to diverse events, lack of training data, and highly contextual defi-
nition of abnormal events [8, 15, 29]. Several existing methods are
devoted to learning normal spatio-temporal patterns of appearance
and motion, and then detecting abnormal events by distinguishing
the events from the normal patterns [4, 37]. They usually extract
visual features based on an image [3, 6] or an isolated object region
[8] in the image to learn the normal spatio-temporal patterns.

Psychological evidence shows that humans can recognize ob-
jects and scenes comprehensively through exploiting visual context
information [1, 34], and a variety of computer vision tasks benefit
from context information [7, 30, 32, 33]. Therefore, mining abun-
dant context information beyond the image-level and object-level
features is also critical to discriminating abnormal events in a video,
where visual context highly influences the way to determine ab-
normal events. Taking vehicle stopping as an example, the vehicle
stopping at traffic junctions is considered as a normal event, but
stopping on highways is an abnormal event. False detection will
occur if ignoring the context information of traffic junctions and
highways.

Prior to our work, all the efforts of context-based abnormal event
detection manually pre-define the collections of context based on
the human experience. For example, several methods develop con-
text models of specific relationships among objects, such as support
relationships [2], co-occurrence and geometric relationships [23],
and so on. In addition to the relationship context, recent work
[14] four specific types of scene context for anomaly prediction.
These methods treat behaviors that deviate from the pre-defined col-
lections of context as abnormal, meaning that the correctness and
completeness of the collections are crucial to the performance of ab-
normal event detection. Unfortunately, it is impossible to manually
pre-define the collections that take all possible context information
involved in events into account, because in many cases the defini-
tion of context-related events is diverse, constantly changing, and
unpredictable [24].

In this paper, we propose to automatically learn context informa-
tion from data rather than manually pre-define contextual contents.
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To this end, we perform a context reasoning method to mine high-
level context information from low-level visual features of data,
which bridges the semantic gap between visual context and the
meaning of abnormal events. Specifically, we construct a spatial
context graph (SC Graph) from a single frame to learn appearances
of objects and spatial relationships among different objects. The
appearances and relationships are encoded into representations of
the nodes and edges of the graph, respectively. Furthermore, the
SC Graphs are input into the structural recurrent neural network
(structural-RNN) for building a spatio-temporal context graph (STC
Graph), where temporal dynamics of each object are encoded as
representations of temporal edges of the STC graph. In order for
context reasoning, we iteratively update the states of the nodes
and edges of the STC graph using a mean-field like procedure to
infer semantic context from visual features, and then discriminate
abnormal events based on the reasoned context.

Since abnormal events are usually rare [6, 21], we introduce a
scene clustering strategy to infer the spatio-temporal context graph
in various scenes in an unsupervised manner. We develop a graph-
based deep Gaussian mixture model to divide scenes into groups.
Events in a group are regarded to be normal for the group and
abnormal for other groups. The labeled normal and abnormal events
are used to infer the spatio-temporal graph for each group. During
detecting abnormal events, the scenes of events are identified with
the scene clustering, and abnormal events are discriminated in the
clustered scenes.

We conduct experiments on the UCF-Crime [31], Avenue [18]
and ShanghaiTech [19] datasets to verify the effectiveness of our
method. The UCF-Crime dataset is a large-scale dataset of real-
world surveillance videos that contains diverse abnormal events in
both indoor and outdoor scenes. Our method significantly improves
the performance of the state-of-the-art unsupervised methods. Com-
pared with supervised methods, we still gain comparable results
in an unsupervised manner. On the Avenue and ShanghaiTech
datasets, we have achieved relatively obvious improvement com-
pared with the existing methods.

In summary, this paper makes the following contributions.

e We propose a novel method of abnormal event detection in
videos via scene-aware context reasoning that mines context
information from visual features of data to bridge the seman-
tic gap between visual context and the meaning of abnormal
events. To the best of our knowledge, it is the first work that
uses the scene-aware context reasoning for the problem.

e We build a spatio-temporal context graph for context en-
coding and reasoning, which takes full advantage of context
information for discriminating abnormal events.

e We develop a graph-based deep Gaussian mixture model for
scene clustering to identify scene types. The scene cluster-
ing contributes to detecting context-related and unknown
abnormal events in different scenes.

2 RELATED WORK

Recently, many researchers have focused on abnormal event detec-
tion in videos [10, 16, 28, 39]. Existing methods are broadly cate-
gorized as classification-based, reconstruction-based, and context-
based.

Classification-based methods usually use one or more oneclass
classifiers trained by normal events, and then detect abnormal
events through classifier scores [35, 39]. For example, Ionescu et al.
[35] extracted deep features using convolutional neural networks
(CNN) and adopted a one-class Support Vector Machines (SVM)
model to classify normal and abnormal events. Xu et al. [37] used
multiple one-class SVM models based on fused deep appearance
and motion features to predict anomaly scores. Ionescu et al. [8]
formalized abnormal event detection as a one-versus-rest binary
classification problem by learning spatio-temporal features and
clustering the training samples into normality clusters. In contrast,
we perform scene clustering to identify scene types, and further
predict anomaly scores with multiple dummy binary classifiers in
the clustered scenes.

Reconstruction-based methods learn normal patterns and dis-
tinguish abnormal events through reconstruction errors. Hasan
et al. [6] used one fully connected auto-encoder and another end-
to-end convolutional auto-encoder to reconstruct normal events,
respectively, to learn the regular dynamics. Chong and Tay [3] pro-
posed a spatio-temporal auto-encoder for abnormal event detection.
Gong et al. [5] proposed a Memory-augmented Deep Auto-encoder
(MemAE) and detect abnormal events with higher reconstruction
errors. These methods focus on designing a good reconstruction
model such as auto-encoders to model spatio-temporal normal pat-
terns of the whole frame or per-object in videos. Different from
these methods, we take full advantage of context cues by encoding
them into a spatio-temporal context graph, and perform context rea-
soning and abnormal event detection through iteratively updating
the states of the graph with multiple RNNs.

There are also several methods that use context models to im-
prove the performance of abnormal event detection [2, 14, 25]. Choi
et al. [2] modeled support relationships between objects to detect
“out-of-context” objects and scenes. Zhu et al. [41] defined a set of
six context attributes related to the scene and involved objects in
normal events, and detect abnormal events that deviate from the
defined set. Leach et al. [14] modeled context information based
on social scenes of four types for abnormal event detection. These
methods manually pre-define regulation sets of context based on
the human observation, and may not be applicable to different un-
known abnormal events in various scenes. Differently, our method
performs context reasoning to automatically mine high-level con-
text information from low-level visual features of data, which can
be used to discriminate abnormal events in various scenes.

3 METHOD

We present a scene-aware context reasoning method for abnormal
event detection by constructing a spatio-temporal context graph in
various scenes. As depicted in Figure 1, we build a spatial context
graph for each frame to model the appearance of objects and the
spatial relationships of different objects. Then the spatial context
graphs are input into the structural-RNN [9] to learn the tempo-
ral dynamics of each object for constructing the spatio-temporal
context graph. Furthermore, we introduce a scene clustering strat-
egy to identify scene types and infer the spatio-temporal context
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Figure 1: The framework of our method. The spatial context graph (SC Graph) is inferred from each frame I with object
bounding boxes, where i, j, k denote the graph nodes and the superscripts (¢ — 1), ¢, (¢ + 1) refer to timestamps of frames. The
spatio-temporal context graph (STC Graph) is constructed by temporally modeling the SC Graph using the structural-RNN.
Meanwhile, the scene clustering of the SC Graph is executed to identify different scene types. The reasoning model is made
upon the STC graph to discriminate abnormal events in various scenes.

graph model in an unsupervised manner. Finally, context informa-
tion is exploited for distinguishing abnormal events based on the
spatio-temporal context graph and scene clustering.

3.1 Spatio-temporal Context Graph

The visual context is encoded into the spatio-temporal context
graph (STC Graph), where the nodes are used to describe appear-
ances of objects, the spatial edges denote the spatial relationships
among objects, and the temporal edges represent the temporal
dynamics of each object in videos. The STC Graph is built to in-
fer the semantics of the individual object (nodes of the graph),
spatio-temporal relationships (edges of the graph) and the scenes
of events (the whole graph), which are used to detect point anom-
alies, contextual anomalies, and collective anomalies, respectively.
We formulate abnormal event detection as the construction and
inference of spatio-temporal context graph in various scenes, and
perform context reasoning by iteratively updating the states of the
nodes and edges of the graph representations.

3.1.1 Formulation. Given a video V with T frames [I',I?, - - - ,IT],
the region proposal network (RPN) [27] generates object bounding
boxes for each frame, where top-K bounding boxes are selected in
the t-th frame as B!. The whole frame is also considered as an extra
bounding box. For each frame, we build a spatial context graph
(SC Graph) based on the image with the k bounding boxes. The
node v; of the SC Graph represents the i-th object, and the edge
e;,j denotes the relationship between the i-th object and the j-th
object. Each node and edge is assigned a “normal” or “abnormal”
label that will be predicted by inferring the graph.

For the t-th frame, we define the label of the i-th object as yf ,
and the label of the spatial relationship between the i-th and j-
th objects (i # j) as y .. All these labels are binary, i.e., 0 for

normal objects (or relationships) and 1 for abnormal objects (or
relationships). The set of all anomaly labels in the ¢-th frame is
defined as y* = {yit,yfj|i,j =1,2,...,K;j # i}. The generation of
the SC Graph is formulated as arg maxy: P(y*|1*, BY), where
Pyt By = [ ] [ [Pwivi, 11t BY. 1)
i,jek j#i
Then we integrate temporal information of multiple SC Graphs
into an STC Graph using the structural-RNN. A node v; at the ¢t-th
frame is only connected to the same node v; in the (¢ + 1)-th frame

with a temporal edge e; ;, whose relationship label is defined as
yit ;- The final probability function is given by

P(Y|V B) - 1_[ 1—[ l_[P(yl’yzj’yl 1|V’B)’ (2)
teT i,jeK j#i

LTiij=1,2,...
set of all anomaly labels in a v1de0.

where y = {yl y”|t =1,2,. ,K} denotes the

3.1.2  Graph Inference. The semantics of context can be inferred
through iteratively updating the states of the nodes and edges of the
graph representations, where we adopt a graph inference method
of the mean-field [26, 38]. The probability function P(y|-) in Eq.
(2) is approximated to Q(y|-) that is decided by the current state
of each node and each edge. Specifically, we use the states hf and
hf’j to represent the current states of the i-th node and the edge
between the i, j-th nodes in the ¢-th frame, respectively. In Eq. (2),
the probability distribution of the i-th node P(yt [) depends on
states of all nodes and edges h’ ht ,wheret = 1,2,---,T;i,j =
1,2,---,K. The mean-field approx1mat10n probability distribution
Q(ylt |) only depends on its current states (i.e. Q(yf|) = Q(ylt|hf))
The probability distributions of edges are also approximated in a
similar way.
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Figure 2: Illustration of the STC Graph inference. Object bounding boxes are obtained from raw frames via the region proposal
network (RPN). Then the nodes and edges features are extracted by three feature extraction modules: the module N extracts
node features, the module SE extracts spatial edge features, and the module TE extracts temporal edge features. These features
are regarded as the initial input of the nodeRNNs and edgeRNNs for graph inference. The message passing method is intro-
duced to update the hidden states of RNNs. When R times iteration of RNNs (r = R), the nodeRNNs and the edgeRNNs output

the prediction of anomaly labels y.

With the mean-field distribution, the probability function In Eq.
(2) is transferred into

=

T
olv.B) =] |

t=1

O(y; Ihp)Q(KL1f)

1l
—_

(3
x l_[ Q(y; ;i QR SIf )

=1 j#i

X Q(ylt,|hfl)Q(hf,|fltl)7

where fit is the initial appearance feature of the i-th object in the
t-th frame, flt] is the initial spatial relationship feature between
the i-th object and j-th object, and fltl is the initial temporal rela-
tionship feature of the i-th object in the ¢-th and (¢ + 1)-th frames.
fl.t is extracted from the bounding box of the object with the RPN,
and flt j is extracted from the union bounding box over its objects.

We concatenate fit and fit s | fit , fitﬂ] to integrate temporal
information of the i-th object. Then a learnable matrix W is used
to reduce the dimensionality of the concatenated feature by half to
generate the temporal relationship feature flt ;= Wyl fit , fit *1in
the t-th and (¢ + 1)-th frames.

Inspired by [38], we compute the states in Q(y|-) with multiple
RNNSs, and the hidden states of the RNNs are considered as the
current states hf, hf’j, and hl?,l. used in Q(y|-). As shown in Figure 2,

the hidden states of nodes are modeled by nodeRNNs with one iden-
tical set of parameters, and the hidden states of spatio-temporal
edges are modeled by edgeRNNs with another set of parameters.
The spatial edges and temporal edges are modeled by the same
edgeRNNs. The nodeRNNs and edgeRNNs iteratively update the
states of the nodes and edges in the STC Graph to infer the seman-
tics of context from visual features. During the iterative update,
we also adopt Message Passing to improve the inference efficiency.
The r-th iteration of nodeRNNs is formulated as

t, Trot, t, t,
mi" = (W T R DRy

J
+ > o (WE TR hETDRLY, (@)
7

t,r+1 _ t,r i t,r
h; = RNNpoge(m; ", h;"),

where o denotes activation function (sigmoid), [-, -] represents
concatenating the vectors. W), and W2 are learnable parameters.
RNN,,,4. denotes the recursive function. Similarly, the r-th itera-
tion of edgeRNNs is formulated as
tr _ 1T t,r ptrpygt,r
m; = (W, [hi’j Jhy Dh;

2T t,r pt,r\p b7

+o(WET[RET TR, (5)

t,r+1 _ t,r 1 t,r
hij " = RNNeage(my . hij).
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Figure 3: Illustration of the graph-based deep Gaussian mix-
ture model. The graph representations 7 are modeled by
the graph convolutional network (GCN) and the average
pooling layer (AP), generating the vector representations z
of the graph. The vector representations are clustered to di-
vide the scenes into groups using the GMM modeled by the
multi-layer network (MLN).

where W1 and W2 are learnable parameters. RN N, 4 ge denotes the
recursive function.

3.2 Scene Clustering

It is common that a normal event in some scenes becomes abnor-
mal in others, which means that identifying scene types is vital
to understanding abnormal events. Hence we introduce a scene
clustering strategy to identify scene types and meanwhile infer the
STC Graph in an unsupervised manner.

Humans can easily identify the scene types from a single im-
age, so we discriminate different scenes through clustering the SC
Graphs in a static frame. The scene clustering divides the scenes of
events into groups. All events in a group are regarded as normal
events for the group and dummy anomalies for the other groups.
These normal and “abnormal” events are used to infer the context
graph for each group and detect abnormal events.

We build a graph-based deep Gaussian mixture model (GMM)
for scene clustering. As shown in Figure 3, we first construct the SC
Graph using the pre-trained model in [38] on Visual Genome dataset
[13]. The outputs of the final layer of nodeRNNs are extracted as
the node features X € RKXD , where K is the number of nodes
(bounding boxes) and D is the dimension of features. Then the
graph convolutional network (GCN) [11] is utilized to model the
graph by two graph convolutional layers

20 = o (az-0wD), ©)

where A € RK*K s the adjacency matrix, o(-) represents an activa-
tion function (relu in our paper), Z() is the feature representation
of nodes in the I-th layer, and Z(*) = X. Wil) is the layer-specific
trainable weight matrix. The generated SC Graph is full-connected,
so the elements of matrix A are all set to 1.

The GCN outputs another graph with node representations. We
perform average pooling operation on the outputs of the GCN to
get the vector representation z of the graph. A deep network of
the GMM [42] is adopted for clustering on the normalized vec-
tor representations z. The GMM estimates the parameters of the
mixture-component distribution ¢, mixture means y, and mixture
covariance X to realize maximum likelihood function or minimum
energy function. The deep network of the GMM is a multi-layer
network (MLN) to output the mixture membership and calculate
these parameters. We set the number of components to M, and set

the number of batches to N. The network is
p = MLN(z;0),
¥ = softmax(p),
where 6 denotes the parameters of MLN and y € RNV*M is the

soft mixture-component membership prediction. The estimated
parameters of the m-th component of the GMM are

(7)

N A.
¢m = Z Ln s
i=1 N
~ Zf\il Zi);i,m
Hm =T, (8)
Zi=1 Yi,m
$ Zf\il Viom(zi = fim)(zi = ﬁm)T
m= - ,
Zl{il Yi,m

where ¢;m, fim and 3, are mixture-component distribution, mean,
covariance for the m-th component, respectively. The sample energy
function is used to estimate parameters as

exp (~4(z = fim) 571z = fim))

M
E=-log| ) ¢ :
’ '"Zzll " \”27[2m|

where | - | calculate the determinant of a matrix.

We fix the parameters of the feature extraction network, and
optimize the parameters of the GCN and the deep network of the
GMM simultaneously using the loss function of

©)

1 N M d 1
Lclu:NZE"'AIZ i3 > (10)
i=1 m=1 j=1 <M, ],]

where A; is the trade-off parameter and d is the dimension of z.
The second term of Eq. (10) penalizes small values on the diagonal
entries to avoid the singularity problem. In this paper, A is set to
0.005.

3.3 Model Training

Through the scene clustering, we have divided the context scenes
into groups, and have labeled the objects and relationships in videos.
The labeled data is used for the STC Graph inference, where the
nodes predict whether the objects are abnormal, and the edges
predict whether the relationships are abnormal. In our network, all
learnable model parameters are optimized via the back propagation
(BP) algorithm under an end-to-end condition. To this end, we use
regularized cross-entropy loss function to maximize the probability
in Eq. (3). For each group, we calculate the probability of being
normal or abnormal for the node v; and the edge e; ; in the t-th
frame by

P(y!|V.B) = sof tmax(MLN(h!)),

4 ¢ (11)
P(y; ;|V, B) = sof tmax(MLN(hj ;)),

where MLN represents a neural network with two fully-connected
layers. For simplicity, we write the anomaly probability P(yi’ |V,B)
and P(yfj|V, B) as pf and pl.tj, respectively. The loss function of
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where Ls(-, -) is the binary cross entropy loss function, and W,
denotes the parameters of the MLN. A3 is the regularization term
and is set to 0.0001 in this paper. The superscript m of £™ denotes
that the classifier is trained on the m-th group In the group, the
labels of all objects y and relationships y - are set to normal, and
we randomly sample data from other groups and label them as
dummy anomalies to train the graph model.

3.4 Anomaly Score

For each group, an independent object classifier and an independent
relationship classifier are trained to generate classification scores of
objects and relationships. The final anomaly scores are calculated
based on these classification scores to discriminate abnormal events
in videos.

In the testing procedure, with one forward pass, the classification
scores P™(y!|V, B) and Pm(yl{j |V, B) of test data in the m-th group
are calculated by Eq. (11). The lowest classification score in all scene
groups is used as the anomaly score:

si = min{P™(y{|V,B)lm = 1,2,--- , M},

sf’j = min{P"(y}|V,B)|m = 1,2, -+ , M},

(13)

where s; ! and s s; ; are the anomaly scores of objects and relationships,
respectlvely, and M is the number of groups. These anomaly scores
correspond to detecting individual anomalies and group anomalies,
respectively. To obtain frame-level detection, we regard the highest
score of all objects and relationships in a frame as the frame-level
anomaly score. Since the anomaly score should vary smoothly
among frames, we enforce temporal smoothness of the final frame-
level anomaly scores using a Gaussian filter.

4 EXPERIMENTS

4.1 Datasets

We evaluate our method on the UCF-Crime [31], Avenue [18], and
ShanghaiTech [19] datasets.

The UCF-Crime is a large-scale dataset of real-world surveil-
lance videos with 13 types of abnormal events in diverse scenes,
which consists of 1610 training videos and 290 testing videos. We
select all normal training videos to train our network.

The Avenue dataset has 16 training and 21 testing videos with
35240 frames, totally. Each video lasts about 2 minutes long. Abnor-
mal events are running, walking in opposite direction, throwing
objects, and loitering.

The ShanghaiTech dataset contains 13 scenes with complex
light conditions and various viewpoints. This dataset has 130 ab-
normal events and over 270, 000 training frames.

4.2 Implementation Details

We follow the experimental setting in [38] to construct the SC
Graph. We use the MS COCO-pretrained RPN [27] that adopts the
VGG-16 network as the backbone to generate object bounding boxes
and extract visual features. The 512-dimensional feature vectors of
bounding boxes generated by the RPN are used as the initial visual
features of appearances f; ! and relationships f ! . The hidden states
ht ht of RNNs are also 512-dimensional vectors Considering the
denSIty of objects in videos and computational efficiency, we di-
rectly use the RPN detector and the KLT tracker [22] to generate
the top-K (10 in this paper) ground-truth bounding boxes of objects,
and ignore the regression of the bounding box offsets. The KLT
tracker is used to connect each object in adjacent frames for mod-
eling temporal relationships of the STC graph. During training, a
sliding window of 10 frames is sampled to construct the STC Graph,
and the batch size is set to 16. We choose the RMSprop optimizer
with a 0.001 learning rate to train the graph model.

When performing scene clustering, we randomly select one
frame from each sliding window to generate the SC Graph. The
clustering result of each frame is used to label the corresponding
sliding window. The graph-based deep Gaussian mixture model is
built by three graph convolutional layers and two fully-connected
layers. In particular, the graph convolutional network runs with
GC(512, 128, ReLU)-Drop(0.5)-GC(128, 32, ReLU)-Drop(0.5)-GC(32,
4, none). The architecture of the fully-connected network is FC(4, 32,
ReLU)-Drop(0.5)-FC(32, 10, softmax). Layer(a, b, f) means a graph
convolutional (GC) layer or fully-connected (FC) layer, where the
size of the layer-specific trainable weight matrix is a X b and the
activation function is f. Drop(p) refers to a dropout layer with the
parameter p. During clustering, the number of clustering centers
M denotes the preset number of scene types, and we set M to 10
to cover common scenes (e.g., campuses, highways, subways, etc).
The training batch of scene clustering is set to 1024, and we use
the RMSprop optimizer with a 0.0001 learning rate to train the
clustering model.

4.3 Evaluation Metric

We evaluate our method based on the frame level, and compute
anomaly scores of frames. The ROC curve is applied by gradually
changing the threshold of anomaly scores. The corresponding Area
Under Curve (AUC 1) and Equal Error Rate (EER |) are also used
for evaluation. In addition, the false alarm rate is introduced to
evaluate the probability of misclassification. A higher AUC value, a
lower EER value or a lower false alarm rate value indicate a better
performance of abnormal event detection.

4.4 Comparisons

4.4.1 Results on the UCF-Crime Dataset. As Table 1 and Table 2
depicted, we report the performance of the AUC and the false
alarm rate of our method compared with several existing unsu-
pervised and supervised methods on the UCF-Crime dataset. We
re-implement the work of Ionescu et al. [8], and replace the detec-
tor they used with the RPN detector for a fair comparison. The
performances of other compared methods are taken from [31]. Our
method significantly improves the performance of the state-of-the-
art unsupervised method, gaining an improvement of 7.2% and



Table 1: Abnormal event detection results compared with
unsupervised methods on the UCF-Crime dataset. T repre-
sents that higher scores are better, and | indicates that lower
is better.

Training Method AUCT | False Alarm|
Lu et al. [18] 65.5% 3.1%
Unsupervised Hasan et al. [6] | 50.6% 27.2%
Tonescu et al. [8] | 61.6% 8.5%
Ours 72.7% 2.2%

Table 2: Abnormal event detection results compared with su-
pervised methods on the UCF-Crime dataset.

Training Method AUCT | False Alarm|
Supervised SVM Baseline 50% -
Sultani et al. [31] | 75.41% 1.9%
Unsupervised Ours 72.7% 2.2%
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Figure 4: The ROC curves compared with several unsuper-
vised and supervised methods on the UCF-Crime dataset.

0.9% on the AUC evaluation and the false alarm evaluation, re-
spectively. This verifies the superiority of our method of detecting
context-related abnormal events in various scenes. Our method
is also comparable to the state-of-the-art supervised method [31].
Without video-level annotations, we achieve the comparable results
of the AUC score and the false alarm rate, which demonstrates that
our method can effectively detect unknown abnormal events in
real-world applications.

As shown in Figure 4, we plot the ROC curves to evaluate our
method. Our curve almost completely encloses the curves of the
unsupervised methods, which means that our method outperforms
the works of [6, 8, 18] at various thresholds. From the ROC curves,
we observe that the performance of our method is comparable
with the state-of-the-art supervised method [31]. Especially when
the middle threshold is selected, our true positive rate slightly
outperforms the work of [31], which demonstrates the effectiveness
of our method.

Table 3: Abnormal event detection results in terms of frame-
level AUC and EER on the Avenue dataset.

Method AUCT | EER]
Hasan et. al [6] 70.2% | 25.1%
Ionescu et. al [35] | 80.6% -
Chong and Tay [3] | 80.3% | 20.7%
Luo et. al [19] 81.7% -
Liu et. al [17] 84.9% -
Wang et. al [36] 85.3% | 23.9%
Morais et al. [21] | 86.3% -
Ye et al. [40] 86.2% -
Ours 89.6% | 21.1%

Table 4: Abnormal event detection results in terms of frame-
level AUC on the ShanghaiTech dataset.

Method AUCT | EER|
Hasan et. al [6] | 60.85% -
Luo et. al [19] 68.00% -
Liu et al. [17] 72.8% -

Morais et al. [21] | 73.4% -
Ye et al. [40] 73.6% -
Ours 74.7% | 28.6%

4.4.2 Results on the Avenue Dataset. Table 3 shows that our method
outperforms all existing methods on both the AUC and EER evalua-
tions in the Avenue dataset. The state-of-the-art work of Morais et
al. [21] achieves the AUC values of 86.4%, and our method gains a
relatively significant improvement of 3.3%, which verifies that our
method is effective and robust.

4.4.3 Results on the ShanghaiTech Dataset. We report experiment
results on the ShanghaiTech dataset in Table 4. The ShanghaiTech
dataset has complex scenes and various actions, which is recog-
nized as a challenging benchmark of abnormal event detection. Our
method outperforms the state-of-the-art methods on the Shang-
haiTech dataset, which demonstrates the effectiveness of our method.

4.5 Ablation Study

In Table 5, we compare the contributions of different components in
our method. “w/o spatial relationships” denotes removing the mod-
eling of spatial relationships. Specifically, the STC Graphs are trans-
formed to multiple object-centric chains across multiple frames,
which are modeled by RNNs. “w/o temporal relationships” rep-
resents that we carry out the reasoning on the SC Graph. “w/o
relationships” means that we use two fully-connected layers to
model each object in isolation. In the above three cases, we perform
the same scene clustering. “w/o scene clustering” refers to removing
the scene clustering and only using a one-class classifier to classify
all normal events for detecting abnormal events. From Table 5, it is
interesting to observe that: (1) when discarding the spatial relation-
ships, temporal relationships or spatio-temporal relationships, the
performance of the AUC is reduced by 5.1%-14.7%, which verifies



Table 5: The AUC and false alarm results of different com-
ponents of our method on the UCF-Crime dataset.

Method AUCT | False Alarm|
w/o spatial relationships | 61.8% 4.7%
w/o temporal relationships | 67.6% 3.1%
w/o relationships 58.0% 13.4%
w/o scene clustering 63.6% 6.5%
Ours 72.7% 2.2%
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Figure 5: Qualitative results on the UCF-Crime dataset. Col-
ored window shows the ground-truth labes of abnormal
events.

the importance of the context relationships for discriminating ab-
normal events. (2) The performance is significantly improved by
employing the scene clustering, demonstrating the effectiveness of
discriminating different scenes for detecting abnormal events. The
improvement also proves that the scene clustering is an effective
unsupervised training strategy.

4.6 Event Count

To localize abnormal events according to anomaly scores, we select
the local maximum in the time series of anomaly scores in a video.
Specifically, we use the persistencelD algorithm [12] to identify
the meaningful local maximum and span the region with a fixed
temporal window. We follow the work of [6] to group nearby ex-
panded local maximum regions if they overlap to obtain the final

Table 6: The number of detected abnormal events and false
alarm on the Avenue datasets. GT stands for groudtruth val-
ues of event count.

Method True PositivesT | False Alarm|
Medel et. al [20] 40 2
Hasan et. al [6] 45 4

Chong and Tay [3] 44 12
Ours 46 4

abnormal temporal regions, where abnormal events are localized
into the temporal regions.

Table 6 shows the number of detected abnormal events and a
false alarm on the Avenue dataset. Our method can detect abnormal
events more precisely than the work of [6] and [3]. The False Alarm
of our method is higher than that of [20], mainly because they select
a small threshold of anomaly scores to detect abnormal events. Their
method detects 40 true abnormal events, which is less than the 45
abnormal events detected by our method. The result demonstrates
that our method can determine the temporal region of abnormal
events more accurately, which makes it more practical in real scenes.

4.7 Qualitative Results

Figure 5 shows two examples of detected abnormal events, where
colored windows show ground-truth labels of abnormal events, and
curves represent anomaly scores of a portion of frames in the test
video. The detected abnormal events are “burglary” and “arson”
in the UCF-Crime dataset. From Figure 5, we can clearly see that
the anomaly scores produced by our method match well with the
ground-truth labels. Furthermore, there is a large score gap between
normal and abnormal events, which validates the effectiveness of
our method.

5 CONCLUSION

In this paper, we have presented a scene-aware context reason-
ing method for unsupervised abnormal event detection in videos.
Context reasoning can explicitly mine high-level context infor-
mation from low-level visual features. Through constructing the
spatio-temporal context graph, the proposed method can explic-
itly model visual context by encoding appearances of objects and
spatio-temporal relationships among objects into graph representa-
tions. In addition, we have developed a graph-based deep Gaussian
mixture model for scene clustering that can effectively identify
scene types and infer the spatio-temporal context graph in an un-
supervised manner. Experiments on the UCF-Crime, Avenue and
ShanghaiTech datasets demonstrate that our method outperforms
existing state-of-the-art unsupervised methods, and is comparable
to state-of-the-art supervised methods. In future work, we will ex-
ploit more fine-grained context information to extend our method
from frame-level to pixel-level anomaly detection.
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