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Abstract

The Multi-modal Large Language Models (MLLMs) with ex-
tensive world knowledge have revitalized autonomous driv-
ing, particularly in reasoning tasks within perceivable re-
gions. However, when faced with perception-limited areas
(dynamic or static occlusion regions), MLLMs struggle to ef-
fectively integrate perception ability with world knowledge
for reasoning. These perception-limited regions can conceal
crucial safety information, especially for vulnerable road
users. In this paper, we propose a framework, which aims to
improve autonomous driving performance under perception-
limited conditions by enhancing the integration of perception
capabilities and world knowledge. Specifically, we propose
a plug-and-play instruction-guided interaction module that
bridges modality gaps and significantly reduces the input se-
quence length, allowing it to adapt effectively to multi-view
video inputs. Furthermore, to better integrate world knowl-
edge with driving-related tasks, we have collected and refined
a large-scale multi-modal dataset that includes 2 million nat-
ural language QA pairs, 1.7 million grounding task data. To
evaluate the model’s utilization of world knowledge, we in-
troduce an object-level risk assessment dataset comprising
200K QA pairs, where the questions necessitate multi-step
reasoning leveraging world knowledge for resolution. Exten-
sive experiments validate the effectiveness of our proposed
method.

Introduction
The Multi-modal Large Models (MLLMs) alleviates the
limitations of expert knowledge and training data diver-
sity in traditional autonomous driving systems. Recent re-
search (Wen et al. 2023; Ma et al. 2023; Tian et al. 2024b;
Chen et al. 2024a; Sima et al. 2023; Cui et al. 2023; Wang
et al. 2024a; Ding et al. 2024; Bai et al. 2024; Tian et al.
2024a) have made significant progress in understanding and
reasoning about perceivable regions. However, there remain
deficiencies in handling perception-limited regions, e.g., oc-
cluded areas caused by dynamic or static obstacles such as
bus and buildings. As shown in Figure 1, autonomous driv-
ing systems typically plan and control only within the per-
ceived areas, while hidden potential risks are critical fac-
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(a) Risk caused by occlusion of moving objects

(b) Risks present in static environments

Figure 1: Examples of dynamic and static environments
risks. (a) The bus in motion severely obstructs the line of
sight, resulting in the black sedan being hidden, which sig-
nificantly increases the risk of a traffic accident in an unpro-
tected scenario. (b) Buildings in static scenes can also be-
come occluding objects. For example, in a construction site
scene, the construction gate blocks the workers behind the
gate.

tors leading to severe accidents. These occluded areas may
conceal information crucial to road safety, especially for un-
detected vulnerable road users, such as pedestrians and cy-
clists, who are particularly susceptible to the effects of these
occlusions. We consider that a promising solution is to uti-
lize instruction-guided extraction of highly aggregated vi-
sual embeddings to fully leverage the world knowledge en-
coded in multi-modal large language models for inference.

Currently, methods utilizing MLLMs for driving tasks are
primarily categorized into the following three types: 1. Fine-
tuning MLLMs (Wang et al. 2024a; Ding et al. 2024; Wen
et al. 2023; Sima et al. 2023; Cui et al. 2023; Fu et al. 2024)
directly for tasks such as prediction and planning. 2. The
dual-branch system (Tian et al. 2024b; Ding et al. 2023;
Mei et al. 2024) for separating and managing tasks based
on real-time requirements, addressing time constraints with
fast and slow branches. 3. The training-free method (De-
wangan et al. 2023; Wang et al. 2024b; Ma et al. 2023)
based on the chain of thought. These three types of meth-
ods have shown promising results, but there are two main



issues. Firstly, MLLMs are not well-suited for multi-view
video inputs, which limits the model’s ability to fully lever-
age perception ability and integrate world knowledge into
subsequent reasoning processes. Secondly, due to the con-
straints on the input sequence length of MLLMs, aligning
inputs with widely used autonomous driving systems is chal-
lenging.

In this paper, we propose a multi-view multi-modal uni-
fied architecture, which aim to integrate perception ability
and world knowledge. The core of the architecture is the
instruction-guided interaction module to adapt multi-view
video inputs and enhancing the correlation between visual
features and natural language instructions, facilitating pre-
fusion of features across views and modalities. We select
the top-k most similar visual features as visual queries, in-
tegrating these queries with original visual features using a
cross-attention mechanism to generate enhanced and highly
aggregated visual representations. This pre-fusion strategy
not only aids subsequent decoders in more efficient infer-
ence but also significantly reduces the length of input se-
quences, thereby adapt to the inputs of autonomous driving
systems.

To align between multi-view video feature and language
embedding space, we collected and refined a large-scale
visual-textual dataset aimed at supporting highly complex
scene understanding and response capabilities. This dataset
comprises over 1.7 million annotated location entries and
2 million dialogue records, covering a diverse range of
real-world scenarios. Furthermore, to address specific cor-
ner cases, we employ GPT-4o (for multi-modal information
extraction) and GPT-4o-mini (for pure text reasoning path
generation), selecting challenging scenarios from NuScenes
such as occlusions, traffic violations, and potential collision
risks. For these scenarios, we conduct thorough object-level
risk assessments. Based on these efforts, we have design a
dataset of 200K QA pairs for training a deeper understand-
ing of complex scenes and to evaluate reasoning abilities in
perception-limited regions.

In summary, our approach aims to leverage instruction-
guided visual embeddings to handle multi-view video data
inputs, enhancing the integration of perception ability and
world knowledge, and achieving autonomous driving under
constrained perception conditions. Our contribution can be
summarized as follows:

• We propose a multi-modal large language model archi-
tecture tailored for autonomous driving systems, which
enhances the perception ability of MLLMs and integrates
world knowledge to enable reasoning in perception-
limited regions.

• We introduce a plug-and-play instruction-guided interac-
tion module that employs a pre-fusion strategy to gen-
erate highly aggregated visual features. This module not
only facilitates more efficient inference processes in sub-
sequent decoders but also significantly reduces the input
sequence length.

• We have reorganized the existing datasets for align be-
tween multi-view video feature and language embed-
ding space, and propose an object-level risk assess-

ment dataset for evaluating inference performance in
perception-limited scenarios.

Related Works
MLLMs with World Knowledge
Existing Large Language Models (LLMs) have demon-
strated extensive world knowledge (Yu et al. 2024), which
plays a crucial role in multi-hop reasoning tasks. Cer-
tain LLMs, such as GPT-4 (Achiam et al. 2023), Chat-
GLM2 (GLM et al. 2024), and LLaMA (Touvron et al.
2023), exhibit strong performance on knowledge-driven
tasks. Recently, MLLMs have introduced world knowl-
edge into the multi-modal domain. Some MLLMs, like
CLIP (Radford et al. 2021) and ALIGN (Cohen 1997), use
contrastive learning to create similar embedding spaces for
language and vision. On one hand, models like LLaVa (Liu
et al. 2024b), PaLM-E (Driess et al. 2023), PaLI (Chen
et al. 2022), RT2 (Brohan et al. 2023), and InternVL (Chen
et al. 2024b) align images and text tokens using self-
attention by interweaving or concatenating tokens of fixed
sequence length. On the other hand, models such as
Flamingo (Alayrac et al. 2022), Qwen-VL (Bai et al. 2023),
and BLIP-2 (Li et al. 2023) employ static queries for cross-
attention with visual features to extract a fixed number of
visual tokens. These approaches effectively map visual fea-
tures into the linguistic space to leverage world knowl-
edge for reasoning. However, the utilization of world knowl-
edge is often language-based, and when dealing with multi-
perspective video data, visual tokens dominate the input
token sequence, thereby diminishing the exploitation of
world knowledge. We propose a world-knowledge-enhanced
MLLM architecture that aggregates visual tokens effectively
and maximizes the utilization of world knowledge.

MLLMs for Driving Tasks
For driving tasks, multi-view images or videos are typ-
ically required as input. Approaches for handling multi-
ple image inputs can be categorized into image feature fu-
sion (Awadalla et al. 2023; Laurençon et al. 2024; Lin et al.
2024) and image concatenation (Jiang et al. 2024; Sun et al.
2024). The former approach significantly reduces the reso-
lution of the input images, leading to a loss of image de-
tails. The latter approach substantially increases the input
sequence length. Our model adopts a novel approach where
relevant features are extracted based on user instructions,
and potential details lost are supplemented from the origi-
nal features.

Previous work typically fine-tunes existing MLLMs with
driving tasks. Most existing MLLMs are optimized primar-
ily for visual understanding. As a result, autonomous driv-
ing MLLMs fine-tuned using these models (Sima et al.
2023; Wang et al. 2023; Ma et al. 2023; Ding et al. 2024;
Tian et al. 2024b,a; Bai et al. 2024) often lack fundamen-
tal 3D understanding and behavioral reasoning capabilities.
Recent work (Wang et al. 2024a) has integrated detection
heads into query transformer. The latent queries used for to-
ken extraction also interact with detection queries to guide
the tokens to capture 3D perception information. However,
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Figure 2: Overall of our architecture. (a) Task-specific instructions. (b) A multi-modal large language model equipped with
an interactor, which can select important tokens and perform pre-fusion of these tokens before inputting multi-view and multi-
modal information into the LLM. (c) Decoding results and visualization of tokens output by LLM.

for perception-limited regions, it is necessary not only to
achieve comprehensive perception of the current scene but
also to integrate world knowledge for reasoning.

Method
Architecture
As illustrated in Figure 2, our overall architecture comprises
four key components: (1) a shared visual encoder fenc,
(2) a BEV encoder fbev , (3) a instruction-guided interactor
finteract(·) that extracts relevant visual tokens based on user
requests, and (4) a large language model (LLM) fLLM (·) to
receive visual and language instruction tokens to generate
the response.

We input multi-view video sequence V = {V i}Nview
i=0 =

[vi1, v
i
2, v

i
3, . . . , v

i
n], where Nview is the number of views (to-

tal 6 views), n is the number of frames. For clarity in the fol-
lowing, we use Linst ∈ RNinst×D and Lresp ∈ RNresp×D

to denote the language instruction tokens and response to-
kens respectively, where D denotes hidden size, Ninst and
Nresp are numbers of tokens for the instruction and re-
sponse. We first extract BEV features Fbev ∈ RNbev×D by
BEV encoder fbev , and current frame multi-view image fea-
tures Fmv = {F i

mv}
Nview
i=0 ∈ RNmv×D. Notably, after ex-

tracting visual features using the encoder fenc, we employ
an MLP to project the feature dimensions of the visual fea-
tures to the feature dimension D of the language embed-
dings. And then we can formula our architecture as

Lresp = fLLM

(
Linst, finteract

((
Fmv,Fbev

)
,Linst

))
.

(1)

Instruction-guided Interactor. Current MLLMs often
concatenate information from different modalities directly
as input, and then utilizing the global attention mechanism
in LLMs to interact with this information. However, the
redundant multi-modal tokens can make it challenging for
these models to identify useful information relevant to the
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Figure 3: Interactor Module.
⊗

represents similarity oper-
ator. K represents the top-k operator.

task. Moreover, as the number of input images or modali-
ties increases, the excessively long input sequences can lead
to computational demands that are unacceptably high. This
issue is particularly prominent in autonomous driving sys-
tems, which require inputs from multiple perspectives and
modalities.

To address this issue, we propose the instruction-guided
interactor, which can select important tokens and pre-fuse
multi-view, multi-modal information before feeding it into
LLM. As shown in Figure 3, the instruction-guided interac-
tor consists of two operations: a selection operation to iden-
tify the k tokens most relevant to the language instruction,
and an interaction operation to facilitate interaction between
the selected tokens and the original features. The process of
the instruction-guided interactor is formulated as

F i′

mv = K(F i
mv

⊗
Finst),

F′
mv = {F i′

mv}
Nview
i=0 ,

F′
bev = K(Fbev

⊗
Finst),

(2)

where K represents the top-k operator,
⊗

denotes the com-
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Figure 4: Training pipeline of our method. SV means single-
view, and MV denotes multi-view.

putation of similarity between two matrices. Simply select-
ing k relevant tokens may result in the loss of some criti-
cal information. Therefore, inspired by Q-former (Li et al.
2023), we enhance the features by computing cross atten-
tion between these k tokens and the global features, which
can be represented as

Imv = CrossAttn(F′
mv,Fmv,Fmv),

Ibev = CrossAttn(F′
bev,Fbev,Fbev),

(3)

where CrossAttn(·, ·, ·) is the standard cross-attention op-
eration with the parameters query, key, and value, respec-
tively, Imv and Ibev are concatenated and fed into the LLM.
Notably, the instruction-guided interactor is a plug-and-play
module that can be easily extended to more modalities.

Training Strategy
Current MLLMs struggle to adapt to multi-view inputs in
driving scenarios. To address this issue, we propose a three-
phase training strategy. The first phase focuses on aligning
the visual and linguistic feature spaces. The second phase is
dedicated to constructing relationships between multi-view
inputs. The third phase involves instruction fine-tuning to
adapt to downstream tasks. We trained the model following
the pipeline shown in Figure 4.

Stage 1: Single-view Pre-train. In this stage, we train our
model on single images for captioning and grounding tasks,
aiming to establish image-level, region-level, and object-
level visual-language alignment. During this process, we un-
freeze all parameters except LLM and utilize LoRA to train
the LLM.

Stage 2: Multi-view Alignment Pre-train. To endow the
MLLM with the capability to comprehend multi-view driv-
ing scenarios, we extended the dataset from the first stage to
incorporate multiple views for model training and incorpo-
rated BEV features to provide global semantic information.
In this phase, the trainable parameters are similar to those
the first phase, and the BEV encoder is frozen.

Stage 3: Task-specific Instruction Tuning. We have in-
tegrated and cleaned multiple open-source datasets. We for-
mat all data to Llava’s style and use LoRA fine-tune. After
this training phase, we obtained a MLLMs capable of en-
gaging in dialogues and exhibiting proficient performance
across various driving tasks.

Task Pairs

Grounding-NuScenes 1700k
Caption-NuScenes 100k

Total 1800k

Table 1: Details of pre-train datasets

Dataset Train Test

NuScenes-QA 376k 83k
NuScenes-MQA 1204k 255k

OmniDrive-NuScenes 486k 90k
NuInstruct 72k 15k

RiskAssessment 166k 35k

Total 2304k 478k

Table 2: Details of fine-tune datasets

Dataset Construction
To achieve multi-modal alignment, we collected and refined
a large-scale multi perspective image text pair, including
1.7M grounding data, 200K object-level caption data (ob-
jects, risks, weather etc.), 4 open-source datasets and our
object-level risk assessment dataset, total 4M samples. Then
we format all the data into a unified format. Regarding the
grounding data, we use a pre-trained Grounding-DINO (Liu
et al. 2023b) model, specifically trained on traffic scenes, to
extract all significant objects from single-view images, such
as vehicles, pedestrians, traffic signs, and traffic lights.

Object-level Risks Assessment (ORA) To evaluate the
model performance in perception-limited regions, we pro-
pose an object-level risks assessment dataset base on
NuScenes (Caesar et al. 2019). We define four types of
object-level risks: 1. View obstruction. 2. Collision possi-
bility. 3. Traffic rule violations. 4. Potential risk. We classify
the QA pairs into six categories: Exist determines whether
there is a risk. Level classifies the risk into three levels—low,
medium, and high. Category specifies one of the four risk
categories mentioned earlier. Object identifies the category
of the target causing the risk. Reason describes the cause of
the risk. Grounding denotes the location of the target caus-
ing the risk.

We use GPT-4o and GPT-4o-mini to construct object-
level risk assessment data. The construction process is di-
vided into two steps: Step 1. We input images along with
detailed object information—including category, direction
relative to the vehicle, and distance from the vehicle into
GPT-4o. We also specify the desired output format to obtain
raw data that captures the object-level risks associated with
the scene. Step 2. The raw data generated by GPT-4o is then
processed by GPT-4o-mini. This model is used to organize
the data and create diversity question-answer pairs that cover
different aspects of the object-level risks identified. The spe-
cific prompts and data samples are provided in the appendix.



METHOD Language Score Accuracy mAP ↑BLUE1 ↑ BLUE4 ↑ CIDEr ↑ ROUGE L ↑ exist ↑ level ↑ cate ↑ object ↑
Bunny-Llama3 62.74 39.86 244.10 59.89 58.34 77.77 69.13 71.31 0

Ours w/o Interactor 68.13 45.86 313.43 62.40 68.79 85.45 78.53 81.75 14.95
Ours w/o Selection 68.45 47.13 331.88 63.71 68.89 89.24 79.28 83.45 14.43

Full 70.42 49.08 344.55 65.02 70.07 89.87 83.87 83.94 15.68

Table 3: Results on ORA dataset.

METHOD BLUE1 ↑ BLUE4 ↑ ROUGE L ↑ ACC ↑
OPT-1.3B 69.8 40.4 62.6 60.4

OPT-1.3B + st 64.4 36.0 47.4 63.8
OPT-6.7B 67.4 38.4 62.4 61.1

Ours 67.4 48.6 67.5 74.4

Table 4: Results on NuScenes-MQA.

METHOD CIDEr ↑ ROUGE L ↑ METEOR ↑
OmniDrive 68.6 32.6 38.0

OmniDrive w/o online 69.0 32.7 38.2
Ours 103.9 38.5 40.1

Table 5: Results on OmniDrive-NuScenes.

Experiments
Implementation
We employ EVA-02-L (Fang et al. 2023) as the image en-
coder and a re-trained SparseBEV (Liu et al. 2023a) (exclud-
ing future frames and validation set) as the BEV encoder. For
the large language model, we utilize LLaMA3-8B (Touvron
et al. 2023). A 2-layer MLP with ReLU activation functions
is used to map feature dimensions. In the selection opera-
tion, cosine similarity is used as the similarity metric, and a
2-layer cross-attention is employed in the interaction opera-
tion. When selecting top-k tokens, we set k = 90 for image
features and k = 300 for BEV features.

During the single-view and multi-view alignment pre-
training stage, we adopt the same strategies as LLava-
Next (Liu et al. 2024a), including optimizer, learning rate,
and batch size, training for 2 epochs. We use 32 Tesla A100
80G to train 3 days. For task-specific instruction tuning
stage, we use the AdamW (Loshchilov and Hutter 2017) op-
timizer, setting the learning rate to 1 × 10−5 and a batch
size of 8. To promote training stability and convergence, we
implement a cosine annealing learning rate schedule with
a warm-up period. For this stage, we use 8 Tesla A100 80G
GPUs, and the training is conducted over a period of 8 hours.

Matrics
For caption task such as scene description and risk assess-
ment, we employ commonly used language-based metrics
to evaluate word-level sentence similarity, including BLEU,
ROUGE L, and CIDEr. Notable, for data in NuScenes-
MQA (Inoue et al. 2024) with tagged parts and OmniDrive-

METHOD MAE ↓ ACC ↑ mAP ↑ BLUE4 ↑
Video-LLama 12.77 24.8 12.85 25.3
BEV-InMLLM 9.07 32.48 20.71 35.2
Ours w/o top-k 5.09 43.81 13.01 46.69

Ours 4.33 52.71 16.66 69.85

Table 6: Results on NuInstruct.

METHOD ACC ↑
MSMDFusion+MCAN 60.4
CenterPoint+MCAN † 59.5

OmniDrive 59.2
Ours 58.4

Table 7: Results on NuScenes-QA. † represent use Lidar in-
fomation.

NuScenes (Wang et al. 2024a), we compute the Accuracy
metric. For grounding tasks, we use the mAP metric to
evaluate how well the predicted bounding boxes match the
ground truth. For Visual Question Answering (VQA) tasks
conducted on the NuScenes-QA (Qian et al. 2024) dataset,
we differentiate between the types of questions to select ap-
propriate evaluation metrics. Questions pertaining to object
categories are assessed using the Accuracy metric, which
measures the proportion of correctly identified categories.
In contrast, questions related to spatial attributes such as dis-
tance and displacement are evaluated using the Mean Abso-
lute Error (MAE), which quantifies the average magnitude
of errors in distance or displacement predictions.

For open-loop driving, we follow standard practices by
utilizing the implementation provided by VAD (Jiang et al.
2023) to evaluate planning within 1, 2, and 3-seconds time
horizons. We use two widely accepted metrics to assess per-
formance: the L2 error, calculated by comparing the pre-
dicted trajectory of the self-vehicle with the ground truth tra-
jectory at corresponding way-points, and the collision rate,
determined by checking for any intersections between the
self-vehicle and other entities in the scene.

Main Results
We evaluated our method on NuScenes-MQA (Inoue et al.
2024) in Table 4 and OmniDrive-NuScenes (Wang et al.
2024a) in Table 5, and observed significant improvements
across various metrics. Specifically, in the NuScenes-MQA



dataset, ACC measures the average accuracy of yes/no ques-
tions, classification tasks, and counting tasks under correct
category conditions. Our approach achieves a 10.6% im-
provement over the previous state-of-the-art (SoTA) meth-
ods. In the OmniDrive-NuScenes dataset, we evaluated
caption-based metrics, demonstrating a 51.4% improvement
in CIDEr.

As shown in Table 3, for the object-level risk assess-
ment dataset, our evaluation is divided into three compo-
nents: the language score evaluate the quality of risk ex-
planation. Accuracy measures the precision of risk informa-
tion (categories, levels, objects, and presence), where cate-
gories, levels, and objects are evaluated only when the ex-
ists is correctly. mAP evaluates the localization of the maxi-
mum risk targets. We evaluated both the baseline model and
our model with different added modules, and our complete
model achieved optimal performance.

Furthermore, we utilized the NuInstruct (Ding et al. 2024)
dataset to assess our method’s capability to handle multi-
view information, where we also observed notable improve-
ments across all metrics. The results are shown in Table 6.
Specifically, we compute the average MAE for distance,
speed, count and motion. We calculate the average ACC for
loset object, status and is in the same road. For the risk tasks,
we employ the mAP metric, and for the reasoning tasks, we
use BLUE4. Our approach achieves SoTA performance in
MAE, ACC, and BLUE4, with a 20.23% improvement in the
ACC metric and 98.44% improvement in the BLUE4 met-
ric. We also achieve comparable performance in the mAP
metric.

For the VQA task on NuScenes-QA shown in Table 7, we
also have achieved comparable performance. These experi-
mental results robustly demonstrate the effectiveness of our
proposed method.

Ablation Studies
As shown in Table 8, we conducted ablation studies on
the NuScenes-QA (Qian et al. 2024) and OmniDrive-
NuScenes (Wang et al. 2024a) datasets to validate the effec-
tiveness of our proposed module. And in Table 3, we present
the impact of different modules on reasoning abilities under
perception-limited conditions.

Experimental results demonstrate the critical role of our
training strategy and dataset in enhancing the grounding
task performance. When we incorporated BEV representa-
tions, there was a noticeable improvement in the ground-
ing task’s performance. However, this addition had a rela-
tively minor impact on captioning tasks, indicating that BEV
benefits are more pronounced in grounding than in caption-
ing. Moreover, integrating the interactor component without
the top-k operation yielded substantial improvements across
various evaluation metrics. This enhancement is attributed to
the effective integration of instruction-guided information,
which considerably boosts performance. The top-k opera-
tion, which aggregates information more efficiently, further
optimizes the system’s capabilities. Its inclusion facilitates a
more nuanced understanding by the Large Language Model
(LLM), leading to the best overall performance of our com-
plete model.

Model ACC ↑ CIDEr ↑ BLUE4 ↑ mAP ↓
Base 64.2 70.2 36.4 0

+ TS 71.9 92.1 36.8 10.41
+ BEV 73.3 93.6 36.7 11.66
+ Interactor 74.1 101.2 41.69 13.01
+ Selection 74.4 103.9 49.08 16.66

Table 8: Ablation study on OmniDrive-NuScenes,
NuScenes-MQA and NuInstruct datasets. TS repre-
sents our three stage training strategy.

(a) Turn right at night

(b) Go straight at the crossing

Figure 5: Qualitative results with planning. The red line
represents the ground truth path, while the blue line indi-
cates the path predicted by our method. These results were
obtained without ego status.

Parameter Analyzation. We analyzed the impact of the
value of k on model performance. As shown in Table 10,
the optimal performance was achieved when k = 90 . We
attribute this to the redundancy present in the data. There is a
significant amount of information in the visual tokens that is
irrelevant to the instructions. We utilized a selection module
to extract the k most relevant visual tokens. However, a value
of k that is too small leads to the loss of key information,
while a value that is too large fails to mitigate redundancy.

Open-loop Planning
We compare our method with previous SoTA approaches in
Table 9. We adopt a distinct encoding scheme for ego sta-
tus: firstly, we convert all units from meters to centimeters
and round to the nearest integer to facilitate tokenization by
the language model. Subsequently, ego status is input to the
large language model in a linguistic format (e.g. “Given the
ego status: lateral velocity is 0 cm/s; longitudinal velocity
is 418 cm/s; lateral acceleration is 5 cm/s2; longitudinal
acceleration is 93 cm/s2; The ego car will TURN LEFT.
Output planning results.”).

As described in BEV-Planner (Li et al. 2024), encod-
ing ego status can significantly enhance the performance of
all methods. Therefore, we conducted experiments focus-
ing on both ego status and high-level commands. Signifi-
cantly, for our approach, encoding ego status substantially



METHOD HIGH LEVEL EGO STATUS L2 (m) ↓ COLLISION (%) ↓
COMMEND BEV Planner 1s 2s 3s AVG 1s 2s 3s AVG

UniAD ✓ ✗ ✗ 0.59 1.01 1.48 1.03 0.16 0.51 1.64 0.77
✓ ✓ ✓ 0.20 0.42 0.75 0.46 0.02 0.25 0.84 0.37

VAD-Base ✓ ✗ ✗ 0.69 1.22 1.83 1.25 0.06 0.68 2.52 1.09
✓ ✓ ✓ 0.17 0.34 0.60 0.37 0.04 0.27 0.67 0.33

BEV-Planner ✓ ✗ ✗ 0.30 0.52 0.83 0.55 0.10 0.37 1.30 0.59
✓ ✓ ✓ 0.16 0.32 0.57 0.35 0.00 0.29 0.73 0.34

OmniDrive
✗ ✗ ✗ 1.15 1.96 2.84 1.98 0.80 3.12 7.46 3.79
✓ ✗ ✗ 0.40 0.80 1.32 0.84 0.04 0.46 2.32 0.94
✓ ✓ ✓ 0.14 0.29 0.55 0.33 0.00 0.13 0.78 0.30

Ours
✗ ✗ ✗ 0.3 0.65 1.14 0.7 0.14 0.49 1.03 0.55
✓ ✗ ✗ 0.29 0.6 1.03 0.64 0.1 0.2 0.51 0.27
✓ ✓ ✓ 0.14 0.3 0.55 0.33 0.07 0.14 0.32 0.18

Table 9: Comparsions on the open-loos planning. For a fair comparison, we refer to the reproduced results in BEV-Planner. The
bold numbers represent the highest accuracy. The optimal results are highlighted in bold.

k BLUE4 ↑ CIDEr ↑ ROUGE L ↑ ACC ↑ mAP ↑
30 14.2 105.3 38.5 57.3 13.01
60 13.1 98.9 38.3 54.8 11.6
90 16.9 103.9 38.5 57.4 16.66

120 15.3 102.2 38.6 56.8 12.5

Table 10: Parameter analyze on OmniDrive-NuScenes,
NuScenes-QA and NuInstruct datasets

improve planning performance, whereas high-level com-
mands offer limited improvements in planning performance.
Upon analysis, we consider that in the nuScenes (Caesar
et al. 2019) scenario, the driving behavior (high-level com-
mends) choices available in most scenarios are unique, and
our model is capable of fully perceiving the current scene to
make current plans.

Our method achieves a new SoTA performance in colli-
sion rate and reaches comparable in L2 error. Additionally,
our method attains SoTA performance even without incor-
porating high-level commands and ego status. When em-
ploying high-level commands but omitting ego status, our
method also achieves SoTA performance in collision rate
and demonstrates comparable results in L2 error.

Qualitative Results
We visualized the planning results of open-loop driving
without ego status to better understand the effectiveness of
our approach. As shown in Figure 5, our method, while pro-
ducing higher L2 errors after the training phase, demon-
strates notable improvements in the quality of the planning
paths generated. For example, as shown in Figure 5 (a), a
larger steering angle enables the ego vehicle to complete
turns more quickly. In Figure 5 (b), in the scenario with
a traffic light at an intersection, the model decelerates and
stops when the light is red. However, when the light is green,

the model accelerates through the intersection, which differs
from the ground truth.

The qualitative results reveals that our approach consis-
tently generates paths that are more reasonable and practical
compared to previous methods. This enhanced path genera-
tion capability is not merely a theoretical improvement but
translates into significant practical benefits. Overall, while
the L2 error did not show a significant decrease, the quali-
tative improvements in path planning and the substantial re-
duction in collision occurrences underscore the effectiveness
and practicality of our method in open-loop driving scenar-
ios.

Conclusion
In this paper, we propose a framework to integrate
world-knowledge and perception ability. By combining a
instruction-guided interaction module, our approach effec-
tively fuses multi-view video data with natural language in-
structions, leading to enriched visual representations. Then,
we collected and refined a large-scale multi-modal dataset
that includes 2 million natural language QA pairs, 1.7 mil-
lion grounding data. The risk assessment data validates the
performance of our approach under perception-limited con-
ditions. Extensive experiments across tasks such as VQA,
open-loop driving, and detection demonstrate the effec-
tiveness, comprehensiveness, and generalization of our ap-
proach.
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