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Abstract

Hyperbolic graph convolutional networks (HGCNs) have
demonstrated representational capabilities of modeling
hierarchical-structured graphs. However, as in general GCNs,
over-smoothing may occur as the number of model layers in-
creases, limiting the representation capabilities of most current
HGCN models. In this paper, we propose residual hyperbolic
graph convolutional networks (R-HGCNs) to address the over-
smoothing problem. We introduce a hyperbolic residual con-
nection function to overcome the over-smoothing problem,
and also theoretically prove the effectiveness of the hyper-
bolic residual function. Moreover, we use product manifolds
and HyperDrop to facilitate the R-HGCNs. The distinctive
features of theR-HGCNs are as follows: (1) The hyperbolic
residual connection preserves the initial node information in
each layer and adds a hyperbolic identity mapping to prevent
node features from being indistinguishable. (2) Product man-
ifolds in R-HGCNs have been set up with different origin
points in different components to facilitate the extraction of
feature information from a wider range of perspectives, which
enhances the representing capability of R-HGCNs. (3) Hy-
perDrop adds multiplicative Gaussian noise into hyperbolic
representations, such that perturbations can be added to al-
leviate the over-fitting problem without deconstructing the
hyperbolic geometry. Experiment results demonstrate the ef-
fectiveness of R-HGCNs under various graph convolution
layers and different structures of product manifolds.

Introduction
Hyperbolic graph convolutional networks (HGCNs) have
been an emerging research topic due to its superior representa-
tion capabilities of modeling hierarchical graphs [Chami et al.
2019, Dai et al. 2021]. Different from Euclidean spaces with
a polynomial expanding space volume, hyperbolic spaces
increase exponentially growth of space volume with radius,
which is well-suited to the geometry of hierarchical data. Ben-
efiting from this property, great progress has been made by
generalizing Euclidean methods to hyperbolic spaces such as
hyperbolic graph convolutional networks [Chami et al. 2019,
Dai et al. 2021], hyperbolic image embeddings [Khrulkov
et al. 2020], and hyperbolic word embeddings [Nickel and
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Kiela 2017, 2018]. However, the over-smoothing issue im-
peding the development of deep HGCNs, over-smoothing
means node features becomes indistinguishable after passing
through a large number of graph convolution layers. It proved
that graph convolution is a special form of Laplacian smooth-
ing [Li, Han, and Wu 2018] . Smoothing on nodes can reduce
intra-class differences, while over-smoothing makes model
less discriminative with indistinguishable node features.

In this paper, we propose residual hyperbolic graph convo-
lutional networks (R-HGCNs) to address the over-smoothing
problem. Specifically, we introduce a hyperbolic residual con-
nection function and use product manifolds and HyperDrop
into HGCNs. The details are as follows: (1) The hyperbolic
residual connection transmits the initial node information
to each layer to prevent node features from being indistin-
guishable, and the hyperbolic identity mapping prevents per-
formance degradation caused by deepening the models. (2)
Product manifolds pick different origin points on different
components, which makes the same input have different em-
bedding results in different components, giving them the
ability to view the graph structure from different perspectives.
This enhances the representational ability ofR-HGCNs. (3)
HyperDrop adds multiplicative Gaussian noise on hyperbolic
neurons to alleviate the over-fitting issue, inheriting the in-
sight of training with noise and preserving the hyperbolic
geometry, Extensive experiments demonstrate the effective-
ness of R-HGCNs under various graph convolution layers
and different structures of product manifolds. The contribu-
tions of this paper are summarized as follows:

• We propose R-HGCN, a product manifold based deep
hyperbolic graph convolutional network that makes up
for the deficiency of existing HGCNs for capturing long-
range relationships in graphs.

• We design hyperbolic residual connection that addresses
the over-smoothing issue while deepening HGCNs and
theoretically prove the effectiveness of the hyperbolic
residual connection.

• We propose to use product manifolds with different origin
points in different components, which enablesR-HGCNs
to extract more comprehensive features from the data.

• We develop HyperDrop, a regularization method tailored
for hyperbolic representations. It can improveR-HGCNs’
generalization ability, alleviating the over-fitting issue.
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Related Work
Graph convolutional networks typically embed graphs in
Euclidean spaces since Euclidean spaces are the most com-
monly used and easy to calculate. Many researchers have
noticed that Euclidean spaces have limitations while mod-
eling data with hierarchical structure. Sa et al.[De Sa et al.
2018] claimed that it is not possible to embed trees into
Euclidean spaces with arbitrarily low distortion, even in an
infinite-dimensional Euclidean space. Meanwhile, trees can
be embedded into a two-dimensional hyperbolic space with
arbitrarily low distortion. Such a surprising fact benefits from
the pretty property of hyperbolic spaces: unlike the volume of
a ball in Euclidean space, which expands polynomially with
radius, the volume of space in hyperbolic space grows expo-
nentially with radius. [Liu, Nickel, and Kiela 2019]. Thus,
hyperbolic spaces are commonly viewed as a smooth version
of tree and more suitable to model hierarchical data.

Several works discovered that graphs, e.g., biological net-
works and social networks, exhibit a highly hierarchical struc-
ture [Krioukov et al. 2010, Papadopoulos et al. 2012]. Kri-
oukov et al.[Krioukov et al. 2010] proved that the typical
properties such as power-law degree distribution and strong
clustering in such graphs are closely related to the curvature
of hyperbolic spaces. Based on the above observations, gen-
eralizing GCNs from Euclidean spaces to hyperbolic spaces
have been an emerging research topic. Liu et al.[Liu, Nickel,
and Kiela 2019] and Chami et al.[Chami et al. 2019] first
bridged the research gap and concurrently proposed HGCNs.
Following the above works, many advanced techniques are
proposed to improve HGCNs. Dai et al.[Dai et al. 2021] dis-
covered that performimg graph convolution in tangent space
will distort the global structure of hyperbolic spaces because
tangent space is only a local approximation of hyperbolic
manifolds. Yao et al.[Yao, Pi, and Chen 2022] designs a Hy-
perbolic Skipped Knowledge Graph Convolutional Network
to capture the network structure characteristics in hyperbolic
knowledge embeddings. Liu et al.[Liu and Lang 2023] pro-
pose a Multi-curvature Hyperbolic Heterogeneous Graph
Convolutional Network (McH-HGCN) based on type triplets
for heterogeneous graphs.

Preliminaries
Hyperbolic Manifold. A Riemannian manifold or Rieman-
nian space (M, g) is a real and smooth manifoldM equipped
with a positive-definite metric tensor g. It is a topological
space that is locally homeomorphic to an Euclidean space at
each point ~x ∈M, and the local Euclidean space is termed
the tangent space T~xM.

Lorentz Model. A d-dimensional Lorentz model (Ld, g)
is defined by the manifold Ld = {~x = [x0, x1, · · · , xd] ∈
Rd+1 : 〈~x, ~x〉L = −1, ~x0 > 0} where the Lorentz inner
product is defined as

〈~x, ~y〉L = ~x>g~y = −x0y0 +
d∑
i=1

xiyi, (1)

and the metric tensor g = diag([−1, 1, · · · , 1]) where
diag(·) denotes a diagonal matrix.

Exponential and logarithmic maps. Mappings between
Riemannian manifold and their tangent spaces are termed
exponential and logarithmic maps. Let ~x be a point on the
Lorentz manifold L, T~xL be the tangent space at ~x, and ~v
be a vector on the tangent space T~xL. The exponential map
exp~x(~v) that projects ~v onto the manifold L is defined as

exp~x(~v) = cosh(‖~v‖L)~x+ sinh(‖~v‖L)
~v

‖~v‖L
, (2)

where ‖~v‖L =
√
〈~v,~v〉L is the norm of ~v. The logarithmic

map, inverse to the exponential map at ~x, is given by

log~x(~y) =
arcosh(−〈~x, ~y〉L)√
〈~x, ~y〉2L − 1

(~y + 〈~x, ~y〉L~x). (3)

Parallel Transport. The generalization of parallel transla-
tion to non-Euclidean geometry is termed parallel transport.
For two points ~x, ~y ∈ L on the Lorentz model, the parallel
transport of a tangent vector ~v ∈ T~xL on the tangent space at
~x to the tangent space T~yL at ~y, along a smooth curve on the
Lorentz model, is defined as

P~x→~y(~v) = ~v − 〈log~x(~y), ~v〉L
dL(~x, ~y)2

(
log~x(~y) + log~y(~x)

)
. (4)

Method
We propose residual hyperbolic graph convolutional networks
(R-HGCNs) to address the over-smoothing problem and en-
hance the representational ability of HGCNs.

Let G = (V, E) denote a graph with a vertex set V and
an edge set E . X ∈ Rn×d denotes the node features that
typically lie in Euclidean spaces. n is the number of nodes,
and d is the dimension of the node features.

Residual Hyperbolic Graph Convolution
Lorentz Operations. Due to the strict manifold constraint
of the Lorentz model, basic operations (matrix multiplica-
tion, vector addition, etc) are non-trivial to be generalized
to Lorentz representations. Based on the maps mentioned
above, we define the following operations.
Definition 1 (Lorentz matrix-vector multiplication). Let W
be a (d + 1) × (d + 1) real matrix and ~x ∈ L be an input
in the Lorentz model. Then we define the Lorentz matrix-
multiplication as

W ⊗ ~x := exp~o
(
W log~o(~x)

)
, (5)

where exp(·) and log(·) are defined as Eqs (2) and (3).

Definition 2 (Lorentz scalar multiplication). The Lorentz
scalar multiplication of a scale ξ and ~x ∈ L on the Lorentz
model is defined as

ξ � ~x := exp~o
(
ξlog~o(~x)

)
. (6)

Definition 3 (Lorentz vector addition). The Lorentz vector
addition of ~x, ~y ∈ L on the Lorentz model is defined as

~x⊕ ~y := exp~x(P~o→~x(log~o(~y))), (7)

where P~o→~x(·) is the parallel transport operator defined in
Eq (4).
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Definition 4 (Lorentz activation function). For ~x ∈ L, the
Lorentz activation function on the Lorentz model is defined
as

σL(~x) := exp~o
(
σ(log~o(~x))

)
, (8)

where σ(·) can be any activation function such as ReLU(·).

Residual Hyperbolic Graph Convolution. Since the input
of a hyperbolic graph convolutional network is required to
be hyperbolic, we construct the initial Lorentz node features
H(0) ∈ Rn×(d+1) whose i-th row H

(0)
i being the Lorentz

feature of the i-th node is generated by

H
(0)
i = exp~o

(
[0,Xi]

)
=
[
cosh

(
‖Xi‖2

)
, sinh

(
‖Xi‖2

) Xi

‖Xi‖2

]
,

(9)

where Xi denotes the i-row of X . Such a construction is
based on the fact that [0,Xi] ∈ Rd+1 can be viewed as
a tangent vector on the tangent space at the origin point,
satisfying 〈~o, [0,Xi]〉L = 0 where ~o = [1, 0, · · · , 0] is the
origin point of the Lorentz model.

The performance of a hyperbolic graph convolutional net-
work declines as the number of graph convolution layers
increases, that is called over-smoothing issue [Li, Han, and
Wu 2018]. This is because the graph convolution is proved
to be a special form of Laplacian smoothing, making node
features tend to be indistinguishable after extensive graph
convolutions[Li, Han, and Wu 2018]. Inspired by [Chen et al.
2020], we design hyperbolic residual connection and hy-
perbolic identity mapping to tackle this issue. The residual
hyperbolic graph convolution operator hgc(·) is defined as

hgc(H) = σL

((
(1− β)I + βW

)
⊗ H̄

)
,

H̄ =
(
(1− α)� (Ã⊗H)

)
⊕
(
α�H0

)
,

(10)

where ⊗, �, and ⊕ are the Lorentz matrix-vector multiplica-
tion (Definition 1), the Lorentz scalar multiplication (Defini-
tion 2), and the Lorentz vector addition (Definition 3). Here
σL(·) is the Lorentz activation function (Definition 4). α and
β are hyper-parameters to control the weight of hyperbolic
residual connection and hyperbolic identity mapping.

Formally, at the `-th layer, residual hyperbolic graph con-
volution performs like

H(`) = hgc(H(`−1))

= σL

((
(1− β`)I + β`W

(`)
)
⊗ H̄

)
,

H̄ =
(
(1− α`)� (Ã⊗H(`−1))

)
⊕
(
α` �H(0)

)
,

(11)
where hgc(·) takes the node features H(`−1) from the

previous layer, and outputs the node features H(`) at the `-th
layer.

Compared to the convolution operator in vanilla GCNs, i.e.
H(`) = σ(ÃH(`−1)W ), hgc(·) relieves over-smoothing
issue through two modifications: (1) hyperbolic residual con-
nection adds information paths from initial node features to
each graph convolution layer, such that no matter how deep a
hyperbolic graph convolutional network is, the node features

at the top layer still combine initial node features avoid be-
coming indistinguishable; (2) hyperbolic identity mapping
ensures that a deep hyperbolic graph convolutional network
is not worse than a shallow model. In the extreme case where
the values of β are set to be zero after the i-th layer, the model
degenerates to an i-layer GCN no matter how deep it is.

Effectiveness of Hyperbolic Residual Connection
This section is meant to theoretically explain the efficiency of
our network architecture. Inspired by [Cai and Wang 2020],
we first define a hyperbolic version of “Dirichlet energy" for
tracking node embeddings as follows. The Dirichlet energy
of a function measures the "smoothness" of a unit norm func-
tion. The indistinguishable parameters leading to the over-
smoothing issue result in small Dirichlet energy. For details
of formulas and proofs in this section, see the supplementary
material.

Definition 5 Dirichlet energy E(f) of a scalar function f ∈
Ld ⊂ Rd+1 on the graph G is defined as

E(f) = logo(f)T ∆̃ logo(f),

where ∆̃ = Id+1 − D̃−
1
2 ÃD̃−

1
2 , Ã = A + Id+1, D̃ = D +

Id+1, while A and D are the adjacency and degree matrices
ofG. For a vector field F(d+1)×c = (f1, . . . , fc), its Dirichlet
energy is

E(F ) = tr(logo(F )T ∆̃ logo(F )).

Note that the defined Dirichlet energy always pulls back
the node embedding in Lorentz space to its tangent space at
the origin point.

If the hyperbolic graph convolution operator hgc(·) as in
(10) has no original input, i.e. H̄ = P̃ ⊗H therein, then

E(H(l)) ≤ (1− λ)2‖(1− βl)I + βlW
(l)‖22E(H(l−1)),

(12)
where 0 < λ < 2 is the smallest non-zero eigenvalue of ∆̃
and ‖X‖2 denotes the maximal singular value of X . Note
that ‖X‖2 = max‖u‖2=1 ‖Xu‖2 for any matrix X . Hence
by the triangle inequality,

‖((1− βl)I + βlW
(l))u‖2 ≤ 1− βl + βl‖W (l)u‖2. (13)

Actually ‖Xu‖2 for any weight matrix X may be esti-
mated by

Lemma 1 If X = (Xij) is a n × n weight matrix, i.e.∑n
j=1Xij = 1, Xij ≥ 0, then for any u ∈ Rn with

‖u‖2 = 1, ‖Xu‖2 ≤
√
n.

Hence combined with (12) and (13), we easily prove
that in HGCNs without initial input, we have E(H(l)) ≤
d(1 − λ)2E(H(l−1)). Thus if the graph G does not have
enough expansion, say (1− λ) < 1√

d
, then HGCNs would

be exponentially over-smoothing as the number of layers
increases.

The above result suggests us add an initial input as in
hgc(·),

H̄ =
((

(1− αl)� (P̃ ⊗H(l−1))
)
⊕
(
αl �H(0)

))
,
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seeking to interfere the decreasing of Dirichlet energy, which
is the motivation ofR-HGCNs.

We investigate in details the interference of initial input.
For simplicity we assume that the features in process all have
positive entries so that ReLU does not affect the evaluation
of Dirichlet energy. Thus utilizing the same argument as in
the proof of (12) in the case with initial input, we have

E(H(l)) = (yl logo(z))T ∆̃(yl logo(z)), (14)

with yl = (1 − βl)I + βlW
(l) and z =

expz1(αlPo→z1(logo(H
(0)))) the last equality of

which is due to linearity of parallel transport, and
z1 = expo((1− αl) logo(P̃ ⊗H(l−1))) = expo(z2).

By definition of parallel transport, we have

Po→z1(logo(H
(0)))

= logo(H
(0))− 〈logo(z1), logo(H

(0))〉L
dL(o, z1)

(z2 + logz1(o))

(15)

Further by definition,

z1 = cosh((1− αl)‖P̃ logo(H
(l−1)))‖L)o

+
sinh((1− αl)‖P̃ logo(H

(l−1))‖L)

‖P̃ logo(H
(l−1))‖L

P̃ logo(H
(l−1))

(16)

Also by definition, expz1(x) = cosh(‖x‖L)z1+ sinh(‖x‖L)
‖x‖L x.

Then again by the property of parallel transport, we have

z = θl logo(H
(0)) + φlP̃H

(l−1) + ψlo, (17)

where θl, φl, ψl are coefficients depending on αl, βl and the
Lorentzian norm of the above 3 vectors. Noting that θl only
depends on αl and H(0), the effect of logo(H

(0)) is always
not negligible. Also (z = (z0, . . . ))

logo(z) =
arcosh(z0)√

z20 − 1
(z − z0o),

which removes z0 from z and re-scale it by a large factor.
Then altogether we have

E(H(l)) = (θ̃l logo(H
(0)) + φ̃lP̃H

(l−1) + ψ̃lo)
T ∆̃(· · · )

= θ̃2l E(H(0)) + · · · ,
(18)

where θ̃l is negligible similarly. Thus we prove that in R-
HGCNs with initial input, the Dirichlet energy E(H(l)) will
be bounded away from zero even if the Dirichlet energy in
the corresponding HGCNs without initial input decrease to
zero.

Product Manifold
We use the product manifold of the Lorentz models as embed-
ding space. The Lorentz components of the product manifold
are independent of each other.

The product manifold is the Cartesian product of a se-
quence of Riemannian manifolds, each of which is called
a component. Given a sequence of the Lorentz models
Ld11 , · · · ,L

dj
j , · · · ,L

dk
k where dj denotes the dimension of

the j-th component, the product manifold is defined as
L = Ld11 ×· · ·×L

dj
j ×· · ·×L

dk
k . The coordinate of a point ~x

on L is written as ~x = [~x1, · · · , ~xj , · · · ~xk] where ~xj ∈ L
dj
j .

Similarly, the coordinate of a tangent vector ~v ∈ T~xL is
written as ~v = [~v1, · · · , ~vj , · · · , ~vk] where ~vj ∈ T~xj

Ldjj . For
~x, ~y ∈ L and ~v ∈ T~xL, the exponential and logarithmic maps
on L are defined as

exp~x(~v) = [exp~x1
(~v1), · · · , exp~xj

(~vj), · · · , exp~xk
(~vk)],

(19)
log~x(~y) = [log~x1

(~y1), · · · , log~xj
(~yj), · · · , log~xk

(~yk)].
(20)

Different from ordinary product manifolds, we use L =
(Ld)o1 × (Ld)o2 × · · · × (Ld)ok , where (Ld)oi are copies
of d-dimensional Lorentz spaces with randomly prescribed
origin points oi ∈ Ld. This gives R-HGCNs the ability to
extract node features from a wider range of different perspec-
tives. Mathematically, such construction of product manifolds
is inspired by the general construction of manifolds using
Euclidean strata with different coordinates.

Hyperbolic Dropout
Hyperbolic Dropout(HyperDrop) adds multiplicative Gaus-
sian noise on Lorentz components to regularize the HGCNs
and alleviate the over-fitting issue. Concretely, let L = Ld11 ×
· · ·×Ldjj ×· · ·×L

dk
k denote a product manifold of k Lorentz

models where dj denotes the dimension of the j-th Lorentz
component. Given an input~l = [~l1, · · · ,~lj , · · ·~lk] ∈ L on the
product manifold where ~lj ∈ L

dj
j , HyperDrop is formulated

as
~y = [~y1, · · · , ~yj , · · · , ~yk],

~yj = ξj � fθj (~lj),

ξj ∼ N (1, σ2),

(21)

where ξj is the multiplicative Gaussian noise drawn from the
Gaussian distribution N (1, σ2). Following [Srivastava et al.
2014], we set σ2 = η/(1− η) where η denotes drop rate. �
denotes the Lorentz scalar multiplication that is the general-
ization of scalar multiplication to the Lorentz representations,
defined in Definition 2. fθj (·) could be any realization of a
desirable function, such as a neural network with parameters
θj .

It is noted that we sample ξj from the Gaussian distribution
instead of the Bernoulli distribution used in the standard
dropout for the following reason. If ξj is drawn from the
Bernoulli distribution and happens to be 0 (with a probability
of η) at the `-th neural network layer, the information flow
of the j-th Lorentz component will be interrupted, leading to
the deactivation of the j-th Lorentz component after the `-th
neural network layer. In contrast, ξj drawn from a Gaussian
distribution with mean value 1 is exactly equal to 0 is a small
probability event. Thus, the j-th Lorentz component always
works.
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We may interpret HyperDrop from a Bayesian perspective.
For convenience, we take a single Lorentz model and the
Lorentz linear transformation as an example, i.e. ~y = ξ�fθ(~l)
and fθ(~l) = ~l ⊗ θ. We have

~y = ξ � (~l ⊗ θ), ξ ∼ N (1, σ2) (22)

equal to

~y = ~l⊗M ,

with mr,c = ξθr,c, and ξ ∼ N (1, σ2),
(23)

where ⊗ denotes the Lorentz matrix-vector multiplication
as defined in Definition 1, M is the matrix with mr,c as
entries, and θ is the matrix with θr,c as entries. Eq (23) can
be interpreted as a Bayesian treatment that the posterior dis-
tribution of the weight is given by a Gaussian distribution
i.e. qφ(mr,c) = N (θr,c, σ

2θ2r,c). The HyperDrop sampling
procedure Eq (22) can be interpreted as rising from a repa-
rameterization of the posterior on the parameter M as shown
in Eq (23).

Residual Hyperbolic Graph Convolutional Network
We then investigate our architecture of R-HGCN and its
effect of preventing over-smoothing. In fact, we always com-
bine R-HGCN with initial input. Note that our model is
of the form L = (Ld)o1 × (Ld)o2 × · · · × (Ld)ok , where
(Ld)oi are copies of d-dimensional Lorentz spaces with
random prescribed origin points oi ∈ Ld. Then for any
x = (x1, . . . , xk) ∈ L, its Dirichlet energy is defined as

E(x) = max
1≤i≤k

(logoi(xi)
T ∆̃ logoi(xi)) := max

1≤i≤k
Ei(xi).

(24)
Then by the similar argument with the proof of (12), we can
estimate Ei(H

(l)
i ) separately and then opt for the maximal

among them, which may be better behaved than any single
component due to possible fluctuation.

Network Architecture. Let L = (Ld)o1 × (Ld)o2 × · · · ×
(Ld)ok denote the product manifold of k Lorentz models
where dj is the dimension of the j-th Lorentz model. The
initial node features H(0) on the product manifold of Lorentz
models are given by (~o = [~o1, · · · , ~oj , · · · , ~ok])

H(0) = [H1,(0), · · · ,Hj,(0), · · · ,Hk,(0)],

H
j,(0)
i = exp~o

(
[0,Xi]

)
,

(25)

where H
j,(0)
i ∈ R(dj+1) denotes the i-th row of the node

features Hj,(0) ∈ Rn×(dj+1) on the j-th Lorentz component.
The graph convolution on the product manifold of the

Lorentz models combined with HyperDrop is realized by
instantiating f(·) in Eq (21) as the hyperbolic graph convolu-
tion operator hgc(·) , i.e. Eq (11) becomes

H(`) = [H1,(`), · · · ,Hj,(`), · · · ,Hk,(`)],

H
j,(`)
i = ξji � hgc(Hj,(`−1)),

ξji ∼ N (1, σ2),

(26)

Datasets PUBMED CITESEER CORA AIRPORT
Classes 3 6 7 4
Nodes 19, 717 3, 327 2, 708 3, 188
Edges 44, 338 4, 732 5, 429 18, 631

Features 500 3, 703 1, 433 4

Table 1: Dataset statistics.

where Hj,(`) ∈ Rn×(dj+1) is the node features on the j-th
Lorentz component at the `-th layer. Hj,(`)

i ∈ R(dj+1) is
the i-th row (i.e., the i-th node) of Hj,(`). � denotes the
Lorentz scalar multiplication defined in Definition 2. ξji is
the random multiplicative noise drawn from the Gaussian
distributionN (1, σ2). We set σ = η/(1−η) where η denotes
the drop rate. The node features at the last layer can be used
for downstream tasks. Taking the node classification task as
an example, we map node features to the tangent spaces of the
product manifolds, and send tangent representations to a fully-
connected layer followed by a softmax for classification.

Experiments
Experiments are performed on the semi-supervised node clas-
sification task. We first evaluate the performance ofR-HGCN
under different configurations of models, including various
graph convolution layers and different structures of prod-
uct manifolds. Then, we compare with several state-of-the-
art Euclidean GCNs and HGCNs, showing that R-HGCN
achieves competitive results. Further, we compare with Drop-
Connect[Wan et al. 2013], a related regularization mathod
for deep GCNs.

Datasets and Baselines
We use four standard commonly-used citation network graph
datasets : PUBMED, CITESEER, CORA and AIRPORT [Sen
et al. 2008]. Dataset statistics are summarized in Table 1.
Experiment details see in the supplementary material.

Validation Experiments
Here we demonstrate the effectiveness of theR-HGCN and
our regularization method under different model configura-
tions. For R-HGCN, increasing the number of hyperbolic
graph convolution layers almost always brings improvements
on three datasets.

The criterion for judging the effectiveness of HyperDrop
is to test whether the performance ofR-HGCN is improved
with the help of HyperDrop. In Table ??, we report the perfor-
mance of HyperDrop with various graph convolution layers
and structures of product manifolds on PUBMED, CITESEER
CORA and AIRPORT. We observe that in most experiment,
HyperDrop improves the performance ofR-HGCN. For ex-
ample, on CORA,R-HGCN[2×8] obtains 1.7%, 0.7%, 0.3%
and 0.2% gains with 4, 8, 16 and 32 layers. The stable im-
provements demonstrate that HyperDrop can effectively im-
prove the generalization ability ofR-HGCN.

We also compareR-HGCN with a deep Euclidean method,
GCNII. The hyperbolic residual connection and hyperbolic
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Datasets Methods 4 layers 8 layers 16 layers 32 layers
Original HyperDrop Original HyperDrop Original HyperDrop Original HyperDrop

PUBMED

GCNII 79.3± 0.3 79.9± 0.3 79.9± 1.7 80.0± 1.9
P-HGCN[2×8] 79.1± 0.2 79.8± 0.3 80.0± 0.1 80.3± 0.1 79.1± 0.2 79.2± 0.3 79.2± 0.3 79.5± 0.4
P-HGCN[4×4] 79.0± 0.2 79.5± 0.2 79.8± 0.1 80.1± 0.3 79.9± 0.3 80.0± 0.2 79.8± 0.4 80.3± 0.3
P-HGCN[8×2] 79.0± 0.2 79.4± 0.2 79.7± 0.2 79.9± 0.2 80.0± 0.3 80.1± 0.3 80.1± 0.2 80.3± 0.4
P-HGCN[16×1] 78.7± 0.3 79.2± 0.3 79.4± 0.1 79.9± 0.2 79.3± 0.3 79.5± 0.4 79.2± 0.2 80.1± 0.4

CITESEER

GCNII 69.3± 2 70.6± 1.4 70.5± 1.3 70.8± 1.6
P-HGCN[2×8] 71.4± 0.2 72.0± 0.4 72.1± 0.2 72.3± 0.3 71.9± 0.5 71.9± 0.7 72.1± 0.6 72.3± 0.7
P-HGCN[4×4] 71.4± 0.2 72.0± 0.4 71.9± 0.3 72.2± 0.3 71.5± 0.5 71.7± 1.0 71.4± 0.2 71.9± 0.7
P-HGCN[8×2] 71.2± 0.8 70.4± 0.9 68.6± 0.8 71.1± 0.7 72.0± 0.2 71.9± 0.9 72.0± 0.1 72.0± 0.5
P-HGCN[16×1] 71.3± 0.3 72.4± 0.3 71.9± 0.3 72.5± 0.5 72.2± 0.4 72.3± 0.4 72.3± 0.6 72.5± 0.9

CORA

GCNII 76.6± 2.4 79.4± 1.4 81.3± 1.0 81.5± 1.4
P-HGCN[2×8] 80.3± 0.7 82.0± 0.5 81.5± 0.2 82.2± 0.4 81.8± 0.2 82.1± 0.2 81.9± 0.3 82.1± 0.1
P-HGCN[4×4] 80.3± 0.8 81.7± 0.5 81.3± 0.2 81.9± 0.4 81.7± 0.2 81.9± 0.2 81.6± 0.5 82.1± 0.7
P-HGCN[8×2] 77.9± 0.8 80.8± 0.8 80.2± 0.9 81.5± 0.3 81.7± 0.2 81.8± 0.2 81.9± 0.5 82.3± 0.8
P-HGCN[16×1] 79.4± 0.8 81.9± 0.7 80.4± 0.4 82.5± 0.4 81.6± 0.6 81.5± 0.5 81.6± 0.7 81.4± 0.6

AIRPORT

GCNII 88.9± 0.5 89.1± 0.3 89.2± 0.4 89.6± 0.7
P-HGCN[2×8] 88.9± 0.4 89.1± 0.2 89.2± 1.0 89.4± 0.9 89.1± 0.3 89.3± 0.5 89.7± 0.2 90.0± 0.4
P-HGCN[4×4] 88.6± 0.6 89.0± 0.2 89.3± 0.4 89.4± 0.3 89.6± 0.1 89.6± 0.2 89.7± 0.1 90.2± 0.7
P-HGCN[8×2] 88.7± 0.2 88.7± 0.4 89.3± 0.5 89.6± 0.7 89.4± 0.2 89.8± 0.5 89.6± 0.4 89.7± 0.7
P-HGCN[16×1] 88.5± 0.7 88.6± 0.4 88.6± 0.3 88.5± 0.5 88.7± 0.2 88.9± 0.5 89.0± 0.3 89.2± 0.5

Table 2: Comparisons on various graph convolution layers and different structures of 16-dimensional product manifolds 
w and w/o HyperDrop. We also compare with a related work GCNII using 16-dimensional embedding space. Mean 
accuracy (%) and standard deviation are reported. P-HGCN[d×m] denotes the P-HGCN with a product manifold of m 
d-dimensional Lorentz models.

Methods PUBMED CITESEER CORA

E
uc

lid
ea

n

GCN[Kipf and Welling 2017] 79.1± 0.3 71.2± 0.6 81.3± 0.5
GAT[Veličković et al. 2017] 77.7± 0.2 70.9± 0.4 82.4± 0.6
GraphSage[Hamilton, Ying, and Leskovec 2017] 77.3± 0.3 67.8± 1.1 77.3± 0.8
SGC[Wu et al. 2019] 69.3± 0.0 78.9± 0.0 80.9± 0.0
APPNP[Klicpera, Bojchevski, and Günnemann 2019] 80.1± 0.2 71.6± 0.4 83.7± 0.5
GCNII(8)[Chen et al. 2020] 79.9± 0.3 72.4± 0.9 83.5± 0.7

H
yp

er
bo

lic

HGCN [Chami et al. 2019] 80.3± 0.3 - 79.9± 0.2
H2HGCN[Dai et al. 2021] 79.9± 0.5 - 82.8± 0.4
κ GCN [Bachmann, Bécigneul, and Ganea 2020] 78.3± 0.6 70.7± 0.5 80.0± 0.6
LGCN [Zhang et al. 2021] 78.6± 0.7 71.9± 0.7 83.3± 0.7
P-HGCN[16×1](8) 79.4± 0.1 71.9± 0.3 80.4± 0.4
P-HGCN[16×1](8)+HyperDrop 79.9± 0.2 72.5± 0.5 82.5± 0.4
P-HGCN[2×8](8) 80.0± 0.1 72.1± 0.2 81.5± 0.2
P-HGCN[2×8](8)+HyperDrop 80.3± 0.1 72.3± 0.3 82.2± 0.4

Table 3: Mean accuracy (%) and standard deviation on PUBMED, CITESEER, and CORA. We set the dimensions of embedding
spaces to 16 for all methods and the number of graph convolution layers to 8 (number in parentheses) for deep models, i.e.,
GCNII and P-HGCN. P-HGCN[d×m] denotes the P-HGCN with a product manifold of m d-dimensional Lorentz models.

identity mapping in R-HGCN are inspired by GCNII. The
main difference betweenR-HGCN and GCNII is,R-HGCN
performs graph representation learning in hyperbolic spaces
while GCNII is in Euclidean spaces. As shown in Table ??,
R-HGCN shows superiority compared to GCNII. Actually,
R-HGCN is only baseline model we developed for evalu-
ating the effectiveness of HyperDrop, and we give up extra
training tricks for clear evaluations. For example, in Section ,
R-HGCN obtains the same mean accuracy 83.5% as GCNII

with 8 layers on CORA while using HyperDrop and Drop-
Connect[Wan et al. 2013] together. DropConnect is used in
other hyperbolic graph convolutional networks, such HGCN
[Chami et al. 2019] and LGCN [Zhang et al. 2021]. We claim
that the superior performance ofR-HGCN compared to GC-
NII benefits from the representing capabilities of hyperbolic
spaces while dealing with hierarchical-structure data. It con-
firms the significance of hyperbolic representation learning.
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Layers P-HGCN[2×8] P-HGCN[4×4] P-HGCN[8×2] P-HGCN[16×1]
with IRC w/o IRC with IRC w/o IRC with IRC w/o IRC with IRC w/o IRC

2 78.9± 0.4 78.9± 0.2 79.0± 0.3 78.8± 0.3 78.8± 0.3 78.9± 0.4 78.7± 0.2 78.6± 0.4
4 79.1± 0.4 79.3± 0.2 79.0± 0.2 79.0± 0.6 79.2± 0.3 78.7± 0.4 79.2± 0.3 78.6± 0.4
8 80.3± 0.0 78.6± 0.2 80.2± 0.2 79.1± 0.2 80.1± 0.1 78.5± 0.6 79.8± 0.2 76.1± 3.5

16 79.2± 0.3 29.8± 11.1 80.0± 0.2 60.1± 7.8 80.1± 0.3 60.1± 7.8 79.5± 0.4 49.9± 2.1

Table 4: Testing accuracy (%) comparisons on different layers and model structures w and w/o hyperbolic residual connec-
tion(HRC). P-HGCN[d×m] denotes the P-HGCN with a product manifold of m d-dimensional Lorentz models.

Methods PUBMED CITESEER CORA
w/o dropout 79.4± 0.1 71.9± 0.3 80.3± 0.4

DropConnect 79.7± 0.3 71.9± 0.3 83.0± 0.6
HyperDrop 79.9± 0.2 72.5± 0.5 82.5± 0.4

Both 79.9± 0.3 72.7± 0.5 83.5± 0.9

Table 5: Comparisons of HyperDrop and DropConnect.

Ablation Experiments
We conducted ablation experiments on the PUBMED dataset
to observe the effect of our proposed hyperbolic residual
connection on R-HGCN performance in different dimen-
sion selection approaches, respectively. As can be seen from
Tabel 4, without the hyperbolic residual connection, the for-
tunate performance of the model shows a different degree
of decrease respectively. Moreover, as the number of model
layers increases, the decline in model performance is more
pronounced. The experimental results prove that hyperbolic
residual connection has a great helpful effect on the model
performance.

Performance Comparisons
The comparisons with several state-of-the-art Euclidean
GCNs and HGCNs are shown in Table 3. We have three
observations. First and most importantly, compared with
other HGCNs that are typically shallow models, R-HGCN
shows better results on PUBMED and CITESEER. Through,
on PUBMED, HGCN also achieves the best accuracy, 80.3%.
Note that HGCN uses extra link prediction task as pre-
training model whileR-HGCN does not use this training trick
for a clear evaluation of HyperDrop; and the performance of
HGCN decreases when the link prediction pre-training is not
used. On CORA, LGCN achieves the highest mean accuracy
83.3% among HGCNs. Note that both HGCN and LGCN
utilize DropConnect [Wan et al. 2013] technique for training.
As shown in Section ,R-HGCN obtains 83.5% mean accu-
racy on CORA while also using DropConnect, that is 0.2%
higher than that of LGCN. Second, bothR-HGCN[16×1] and
R-HGCN[2×8] benefit from HyperDrop on three datasets. It
proves HyperDrop alleviates over-fitting issue in hyperbolic
graph convolutional network and improves the generaliza-
tion ability of R-HGCN on the test set. Third, compared
with Euclidean GCNs,R-HGCN combined with HyperDrop
achieves the best results on PUBMED and CITESEER. It con-
firms the superiority of hyperbolic representation learning
while modeling graph data.

Comparisons with DropConnect

Table 5 shows the performance of HyperDrop and DropCon-
nect[Wan et al. 2013] on PUBMED, CITESEER, and CORA
using a 16-dimensionalR-HGCN. Since there is no dropout
method tailed for hyperbolic representations before Hyper-
Drop, some works [Chami et al. 2019, Zhang et al. 2021]
use DropConnect as a regularization. DropConnect is one of
variants of dropout methods that randomly zeros out elements
of the Euclidean parameters in model, and it can be used in
hyperbolic graph convolutional network as the parameters in
hyperbolic graph convolutional network are Euclidean.

For DropConnect, we search the drop rate from 0.1 to
0.9 and report the best results. DropConnect obtains im-
provements on PUBMED and CORA but not on CITESEER.
In contrast, HyperDrop achieves stable improvements on
three datasets, and higher mean accuracy on PUBMED and
CITESEER compared to DropConnect. HyperDrop and Drop-
Connect are two dropout methods that the former works on
hyperbolic representations and the latter works on Euclidean
parameters. They can work together effectively for a better
generalization ofR-HGCN. As the results on CITESEER and
CORA show, using HyperDrop and DropConnect together
has better performance than using only HyperDrop or Drop-
Connect individually.

Conclusion
In this paper, we have proposedR-HGCN, a product mani-
fold based residual hyperbolic graph convolutional network
for overcoming the over-smoothing problem. The residual
connections can prevent node representations from being in-
distinguishable by hyperbolic residual connection and hyper-
bolic identity mapping. The product manifold with different
origin points also provides a wider range of perspectives of
data. A novel hyperbolic dropout method, HyperDrop, is
proposed to alleviate the over-fitting issue while deepening
models. Experiments have demonstrated the effectiveness
of R-HGCNs under various graph convolution layers and
different structures of product manifolds.
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