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Abstract

Most video anomaly detection methods discriminate events
that deviate from normal patterns as anomalies. How-
ever, these methods are prone to interferences from event-
irrelevant factors, such as background textures and object
scale variations, incurring an increased false detection rate.
In this paper, we propose to explicitly learn event-relevant
factors to eliminate the interferences from event-irrelevant
factors on anomaly predictions. To this end, we introduce a
causal generative model to separate the event-relevant factors
and event-irrelevant ones in videos, and learn the prototypes
of event-relevant factors in a memory augmentation module.
We design a causal objective function to optimize the causal
generative model and develop a counterfactual learning strat-
egy to guide anomaly predictions, which increases the influ-
ence of the event-relevant factors. The extensive experiments
show the effectiveness of our method for video anomaly de-
tection.

Introduction
Video anomaly detection aims to automatically discrimi-
nate abnormal events that do not conform to normal pat-
terns (Chandola et al. 2009; Luo et al. 2021). Most cur-
rent methods (Chen et al. 2022; Yao et al. 2022; Chang
et al. 2022) tackle the task by using deep neural networks
to discriminate events that deviate from the learned pat-
terns as anomalies, and have achieved a good performance.
However, these methods are prone to interferences from
event-irrelevant factors in videos, which tends to increase
the false detection rate. For example, event-irrelevant fac-
tors, such as background textures and object scale variations
shown in Figure 1, may interfere with the baseline video
anomaly detection method HF2-VAD (Liu et al. 2021b).
Event-relevant factors, e.g., the appearances and motions of
objects in Figures 1a and 1b, are the causes of anomalies.
Existing methods unconsciously mix up event-relevant fac-
tors with event-irrelevant factors into a single abstract rep-
resentation of an input video. They tend to extract an overly
simplistic representation which favors event-irrelevant fac-
tors due to “shortcut learning” (Geirhos et al. 2020), and thus
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event-irrelevant factors dominate anomaly predictions. Fur-
thermore, the lack of annotated anomalies poses increasing
challenges on capturing the concept of event-relevant factors
for existing methods.

In this paper, we propose to explicitly learn event-relevant
factors to eliminate the interferences from event-irrelevant
factors on anomaly predictions. The basic idea is to in-
crease the influence of event-relevant factors on anomaly
predictions and decrease the influence of event-irrelevant
factors. Specifically, we introduce a causal generative model
to separate the event-relevant factors and event-irrelevant
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Figure 1: Examples of interferences from event-irrelevant
factors. Frames with abnormal objects in orange boxes have
large interferences of (a) background textures and (b) object
scale variations. The score maps are normalized frame pre-
diction errors in our method and the method HF2-VAD.
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factors in videos, and use a memory augmentation module
to learn the prototypes of event-relevant factors. We design
a causal objective function to optimize the causal genera-
tive model and develop a counterfactual learning strategy to
guide anomaly predictions, which increases the influence of
event-relevant factors on anomaly predictions. During coun-
terfactual learning, we generate counterfactual samples as
pseudo-anomalies which help the anomaly predictions ben-
efit from the learned event-relevant factors without extra an-
notated anomalies.

We evaluate our method on three datasets: ShanghaiTech
(Luo, Liu, and Gao 2017), CUHK Avenue (Lu, Shi, and Jia
2013), and UCSD Ped2 (Mahadevan et al. 2009). We ex-
tend the evaluation metrics to small data scenarios, where
only a small portion of training samples is available dur-
ing training. In traditional big data scenarios, existing meth-
ods are likely to benefit from a performance gain by cap-
turing inherent dataset biases without learning the causes
(i.e., event-relevant factors) of anomalies. Their results are
unstable, because the learned dataset biases seldom hold in
an open world (e.g. previously unseen scenes). To this end,
we perform additional evaluations in small data scenarios to
simulate the use of anomaly detection methods in an open
world. In big data scenarios, where all of the training sam-
ples are available during training, our method outperforms
the baseline method HF2-VAD (Liu et al. 2021b) by learning
event-relevant factors. In small data scenarios, where only
10% of the training samples are available during training,
our method performs comparatively or even surpasses the
baseline method HF2-VAD (Liu et al. 2021b) which uses all
of the training samples. The experimental results verify the
effectiveness of our method.

Our contributions are summarized as follows. (1) To our
best knowledge, we are the first to explicitly learn event-
relevant factors to eliminate the interferences from event-
irrelevant factors on anomaly predictions. (2) We introduce
a causal generative model to separate the event-relevant fac-
tors and event-irrelevant ones in videos and develop a coun-
terfactual learning strategy to guide anomaly predictions
without annotated anomalies. (3) The improvements of ex-
perimental results in both big and small data scenarios vali-
date the effectiveness of our method.

Related Work
Video Anomaly Detection. This paper focuses on unsu-
pervised anomaly detection where the training set provides
only normal events, so we review the related deep methods
in this section. Most existing methods can be categorized
into two classes, namely, reconstruction-based methods and
classification-based methods.

Reconstruction-based methods assume that reconstruc-
tion models trained only on normal events fail to recon-
struct anomalies well so that anomalies are discriminated
via larger reconstruction errors (Hou et al. 2021). Hasan
et al. (Hasan et al. 2016) first introduced deep convolu-
tional autoencoders to reconstruct normal events for video
anomaly detection. A series of works on improving au-
toencoder structures were subsequently proposed for recon-
structing video events better, such as convolutional LSTM

autoencoders (Luo et al. 2017; Song et al. 2020), 3D convo-
lutional autoencoders (Sun et al. 2021), two-stream autoen-
coders (Li, Chang, and Liu 2021), and so on. These methods
studied overparameterized autoencoders and may wrongly
generalize their reconstruction capacity to anomalies. To ad-
dress the problem, some works proposed to use additional
loss terms (e.g., adversarial losses (Abati et al. 2019) and
contrastive losses (Huang et al. 2021)) to constrain the latent
space of autoencoders to limit their capacity. Other works
introduced a restricted memory space to directly replace
the latent space, such as the memory-augmented deep au-
toencoder (MemAE) (Gong et al. 2019), multi-level mem-
ory modules in an autoencoder with skip connections (ML-
MemAE-SC) (Liu et al. 2021b), and so on.

Classification-based methods assume that classifiers
trained only on normal events fail to classify anomalies into
any known class so that anomalies are discriminated via
lower classification confidence scores (Pang et al. 2021).
Early works argued that all normal events come from one
class, and used one or more one-class classifiers for anomaly
detection. For example, Sabokrou et al. (Sabokrou et al.
2018) applied an end-to-end generative architecture to con-
struct a one-class classifier for discriminating anomalies. Xu
et al. (Xu et al. 2017) extracted deep appearance and mo-
tion features and combined three one-class SVMs to com-
pute anomaly scores. Recent methods believed that normal
events in complex scenarios come from multiple classes, and
a one-versus-rest SVM (Ionescu et al. 2019) was introduced
to classify normal samples into multiple classes for discrim-
inating anomalies that do not conform to any class. Further-
more, some works (Georgescu et al. 2021) collected some
anomaly examples to construct binary classifiers for enhanc-
ing the performance of anomaly detection.

Although both reconstruction-based and classification-
based methods perform well on existing datasets, they are
prone to interferences from event-irrelevant factors, be-
cause the extracted deep representations for reconstruction
or classification in these methods inevitably mix up event-
relevant factors with event-irrelevant factors. In contrast, our
method separates the event-relevant factors and the event-
irrelevant factors in videos and increases the influence of
event-relevant factors on anomaly predictions to eliminate
the interferences. We apply our method to the baseline
method HF2-VAD (Liu et al. 2021b) to improve the per-
formance of video anomaly detection by explicitly learning
event-relevant factors.
Causal Generative Models. Recent works have introduced
causality into generative models to form causal generative
models for learning the causal relationships by represen-
tation learning (Ding et al. 2022). These methods disen-
tangle task-relevant and task-irrelevant factors, and estab-
lish causal relationships between task-relevant factors and
model predictions for domain adaptations (Zhang et al.
2021; Yuan et al. 2022), out-of-distribution predictions (Liu
et al. 2021a), and causal explanations (O’Shaughnessy et al.
2020; Holzinger et al. 2022), etc. Most existing methods
learn task-relevant and task-irrelevant factors under the same
constraints, and are likely to lose information or capture
misinformation, because different types of factors have dif-
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Figure 2: The architecture of our causal generative model.

ferent characteristics. Task-relevant factors are often known
and typical while task-irrelevant factors are unknown and
diverse. Therefore, we present a causal generative model to
learn them under different constraints. We augment task-
relevant (i.e., event-relevant) factors by using a memory
module and leave the task-irrelevant (i.e., event-irrelevant)
factors unconstrained. Our model provides fitting represen-
tations for different types of factors.

Method
We propose a causal generative model to separately model
the event-relevant factors and event-irrelevant ones, and de-
sign a causal objective function to optimize the causal gen-
erative model. We further perform a counterfactual learning
strategy to guide anomaly predictions.

Causal Generative Model
Given an input video sample X, we use a predictor f to
compute its anomaly score y = f(X) ∈ [0, 1] for anomaly
detection. A causal generative model is used to learn two
vector representations zr and zr of X, and we expect to
capture event-relevant and event-irrelevant factors into the
two representations, as shown in Figure 2. The representa-
tion zr is augmented by using a memory module to record
prototypical event-relevant factors for reducing the noise in-
fluence. Due to the rare and unbounded natures of abnor-
mal events, the memory module with finite elements only
records prototypical factors of normal events, and abnormal
events are discriminated according to the deviations from
the prototypes (Gong et al. 2019; Liu et al. 2021b). We use
memory variables M = [m1,m2, · · · ,mN ]⊤ and a corre-
sponding address variable a ∈ {1, 2, · · · , N} for augmen-
tation. We also use an additional independent representation
zr to represent event-irrelevant factors. (zr, zr) constitutes
the low-dimensional representations of the data distribution
p(X) through a generative mapping g, where p(g(zr, zr)) ≈
p(X). We construct a variational auto-encoder (VAE) to
encode event-relevant and event-irrelevant factors indepen-

dently from the input sample X and model its data distribu-
tion p(X).
Variational Auto-Encoder. The standard VAE (Kingma
and Welling 2013) assumes that each sample X corresponds
to a low-dimensional latent variable z that is sampled from
a Gaussian distribution, and forms a generative model as

p(X) =

∫
z

p(z)p(X|z)dz. (1)

The directed acyclic graph (DAG) describing the standard
VAE is shown in Figure 3a. We modify the standard VAE
by adding a memory module. As illustrated in Figure 3b, the
VAE with a memory module forms a generative model

p(X|M) =
∑
a

p(a|M)

∫
z

p(z|ma)p(X|z,ma)dz, (2)

where a is the address variable, M = [m1,m2, · · · ,mN ]⊤

denotes the memory variables, and ma is the a-th memory
variable. As shown in Figure 3c, we further modify the VAE
with a memory module by decoupling the latent variable
z into two representations zr and zr to form a generative
model

p(X|M) =
∑
a

p(a|M)

∫
zr

∫
zr

p(zr)p(zr|ma)

× p(X|zr, zr,ma)dzrdzr.

(3)

The variational lower bound of our VAE model is

log p(X|M) ≥Ea,zr,zr∼q(·|M,X)[log p(X, zr, zr, a|M)

− log q(a, zr, zr|X,M)],

q(a, zr, zr|X,M) = q(a|M,X)q(zr|ma,X)q(zr|X).
(4)

The components of our VAE include the memory variables
M, the address variable a, and the two representations zr
and zr. The components and their variational posteriors in
Eq. (4) are described as follows.
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Figure 3: (a) A directed acyclic graph (DAG) describing the
standard Variational Auto-Encoder (VAE). (b) A DAG de-
scribing the memory-augmented VAE. (c) A DAG describ-
ing our VAE.

The memory variables M are treated as model parame-
ters, and are randomly initialized. Their values are updated
by using the gradient of the objective. The address variable
a is used to select a memory variable ma from the mem-
ory. a is sampled from a variational posterior distribution
q(a|X,M). We use the encoder of our VAE to encode X as a
vector e, and compute the similarity S between the encoded
vector e and memory variables. q(a|X,M) is parameterized
as a categorical distribution of the softmax over S, given by

q(a|X,M) =
exp(S(e,ma)∑N

j=1 exp(S(e,mj))
,

where S(e,ma) =
em⊤

a

∥e∥∥ma∥
.

(5)

Once the posterior q(a|X,M) is computed, we sample a and
retrieve ma from M in a purely deterministic way. The prior
of a is considered as a flat categorical distribution p(a) =
1/N .

We make assumptions about the priors and posteriors of
the representations zr and zr as follows: (1) For the represen-
tation zr, we model a conditional Gaussian prior p(zr|ma)
and an approximate conditional posterior q(zr|X,M). (2)
For the representation zr, we model a Gaussian prior p(zr)
and an approximate conditional posterior q(zr|X).
Optimization Strategy. The objective of our VAE is to
faithfully represent the data distribution of X. The approx-
imated conditional posterior q in the VAE is learned from
the encoder to generate (a, zr, zr) with the inputs of X
and M. A generative mapping from (a, zr, zr) to X is es-
tablished in the decoder. We maximize the evidence lower
bound (ELBO) to train the encoder and decoder. According
to the log-likelihood bound in Eq. (4), the loss function of
the VAE has four terms:

Lvae =Ea,zr,zr∼q [log p(X|a, zr, zr)]
+ Ea∼q[KL (q(a|M,X)∥p(a))]
+ Ea∼q[KL (q(zr|X,ma)∥p(zr|ma))]

+ KL (q(zr|X)∥p(zr)) ,

(6)

where the first term is the expected reconstruction errors,
and the last three KL(·∥·) terms are used to approximate the

posteriors of all latent variables in the VAE. We compute
backpropagation gradients and use the gradient descent al-
gorithm to jointly optimize network parameters and memory
variables. Different from standard VAEs, our method intro-
duces a discrete latent variable a, which means that simply
backpropagating gradients does not work well. Hence, we
use the Gumbel-max relaxation-based approach (Maddison,
Mnih, and Teh 2017; Jang, Gu, and Poole 2017) to compute
the gradients of a in Eq. (5).

Causal Objective Function
We define the causal relationships among VAE components
M, a, zr, zr, X and y, and introduce the causal objective
function to increase the causal influence of zr on y. Since we
focus on unsupervised anomaly detection without any anno-
tated anomalies during training, we measure the causal influ-
ence on the predicted anomaly score y instead of the ground-
truth anomaly label. The anomaly score y is acquired from
a pre-trained anomaly predictor f .

The directed acyclic graph (DAG) in Figure 3c describes
the causal relationships among M, a, zr, zr, X and y. Causal
links from M, zr and a to X denote our memory-augmented
generative process, and the causal link from X to y denotes
the anomaly prediction process. The roles of the two repre-
sentations zr and zr are different: the causal link X → y
only uses features that are controlled by zr. This means that
interventions on both zr and zr will raise changes of X but
only interventions on zr will raise changes of y. We increase
the causal influence of zr on y to achieve this goal. Re-
cent works (Pearl 2009; O’Shaughnessy et al. 2020) intro-
duce the information flow to measure the causal influence
of the learned representation on the output of the predictor.
Inspired by these works, we increase the causal influence by
maximizing the information flow from zr to y.
Definition 1 [Information flow from U to V in a directed
acyclic graph (Ay and Polani 2008)]. Let U and V be disjoint
subsets of nodes. The information flow from U to V is given
by

I(U → V ) :=

∫
U

p(u)

∫
V

p(v|do(u))

× log
p(v|do(u))∫

u′ p(u′)p(v|do(u′))du′ dV dU,

(7)

where do(u) denotes an intervention that fixes u to a value
regardless of the values of its parents in the causal model.
Since zr and zr are independent when satisfying properties
of the VAE evidence lower bound, the information flow from
zr to y coincides with the mutual information between zr
and y. That is

I(zr → y) = I(zr; y) = Ezr,y

[
log

p(zr, y)

p(zr)p(y)

]
. (8)

We refer readers to supplementary materials for the proof of
Eq. (8). As we expect to maximize the causal influence of
zr on y, the causal objective function is converted to a loss
function Lce = −I(zr; y). We optimize it together with the
learning of our VAE model, and the loss function is

Lgen = Lvae + λceLce, (9)
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where λce is a trade-off parameter and is set to 0.001.

Counterfactual Learning Strategy
The event-relevant factors are captured into the representa-
tion zr by using the causal generative model with the pre-
trained anomaly predictor. We introduce a counterfactual
learning strategy to finetune the anomaly predictor based on
the learned factors. We generate counterfactual samples as
pseudo-anomalies to improve the predictor so that it can pay
more attention to event-relevant factors to correct the false
predictions caused by event-irrelevant factors.

Given an input sample X, we use an encoder of our VAE
to obtain its representations zr and zr, and reconstruct X
as g(zr, zr) via a decoder. We perform interventions on zr
to generate counterfactual samples g(do(zr), zr). Inspired
by the works of (Mothilal, Sharma, and Tan 2020; Haldar,
John, and Saha 2021), a counterfactual sample g(do(zr), zr)
for a normal sample X is defined as such a sample that
g(do(zr), zr) is not predicted to be normal through the pre-
dictor f (i.e., f(g(do(zr), zr)) > ϵ for some threshold ϵ of
the anomaly score), and g(do(zr), zr) is sufficiently close
to g(zr, zr) (i.e., d(g(do(zr), zr), g(zr, zr)) ≤ κ for some
threshold κ of the distance). The optimization objective is

min d(g(do(zr), zr), g(zr, zr)),

s.t. f(g(do(zr), zr)) > ϵ,
(10)

where d(·, ·) is a distance measure function. In addition to
generating counterfactual samples, we also perform inter-
ventions on the representation zr to generate some normal
samples for finetuning. We relax the optimization objective
in Eq. (10), and design a loss function Lcsg for generating
counterfactual samples and finetuning the predictor, given
by

Lcsg = Lpre + λdisLdis, (11)

where λdis is a trade-off parameter and is set to 0.5. In Eq.
(11), Lpre is the anomaly prediction loss function, ensur-
ing that the generated counterfactual samples g(do(zr), zr)
are predicted as abnormal (i.e., f(g(do(zr), zr)) > ϵ) and
the generated samples g(zr, do(zr)) are predicted as normal
(i.e., f(g(zr, do(zr))) ≤ ϵ). Ldis is the distance loss func-
tion for minimizing the distance between g(do(zr), zr) and
g(zr, zr).
Anomaly Prediction Loss. We generate triplet sam-
ples {g(zr, zr), g(zr, do(zr)), g(do(zr), zr)} to construct
the anomaly prediction loss function, where g(zr, zr) is an
anchor (normal) sample, g(zr, do(zr)) is the positive (nor-
mal) one and g(do(zr), zr) is the negative (abnormal) one.
The anomaly prediction loss Lpre is

Lpre =f
(
g(zr, zr)

)
+max

(
0,

∥∥∥f(g(zr, zr))− f
(
g(zr, do(zr))

)∥∥∥2

2

−
∥∥∥f(g(zr, zr))− f

(
g(do(zr), zr)

)∥∥∥2

2
+ ϵ

)
.

(12)

where ϵ is a margin parameter. The first term f(g(zr, zr)) is
used to penalize the wrong prediction of reconstructed nor-
mal samples. The second term is a triplet loss function for

closing the gap between f(g(zr, zr)) and f(g(zr, do(zr)))
as well as pushing f(g(zr, zr)) and f(g(do(zr), zr)) away.
Distance Loss. The distance between g(do(zr), zr) and
g(zr, zr) can be measured in the representation space, as the
abstract representation zr captures the event-relevant factors.
We simply use an L2-norm to form the distance loss function

Ldis = ∥do(zr)− zr∥22. (13)

Experiments
Datasets. We conduct experiments on three common
benchmark datasets, including ShanghaiTech (Luo, Liu, and
Gao 2017), CUHK Avenue (Lu, Shi, and Jia 2013), and
UCSD Ped2 (Mahadevan et al. 2009). The ShanghaiTech
dataset collects over 270k normal training frames and 130
abnormal events. It has 13 scenes with complex light con-
ditions and camera angles. The CUHK Avenue dataset con-
tains 35k frames in a single scene, and collects a total of 47
abnormal events, including throwing objects, loitering, and
running. The UCSD Ped2 dataset collects about 5k frames
of a pedestrian walkway. It contains 12 abnormal events.
Implementation Details. We select the baseline anomaly
detection model HF2-VAD (Liu et al. 2021b) as our predic-
tor, and modify the predictor slightly to make it applicable
to our method. Since the predictor should generate a nor-
malized anomaly score y ∈ [0, 1], we adopt the z-score nor-
malization strategy and clamp the outputs of HF2-VAD into
the range [0, 1]. HF2-VAD takes both RGB and optical-flow
frames cropped by object bounding boxes as inputs. Since
we focus on visual factors captured from RGB frames, we
only use RGB frames as the input X ∈ R32×32×15 to our
causal generative model. We follow HF2-VAD to set both
the height and width of X to 32 and set the channel number
to 15 (i.e., 5 RGB frames). We keep the hyperparameters
in our anomaly predictor the same as the baseline method
HF2-VAD to make fair comparisons.

In our causal generative model, we use the ResNet-18 (He
et al. 2016) as the backbone to construct the encoder and
decoder. The output of the encoder is flattened, and two in-
dependent fully-connected layers are used to generate the
encoded vector e ∈ R32 and the parameters µn,σn ∈ R128

of the conditional posterior q(zr|X). The memory bank M
has 64, 64 and 256 memory variables for the CUHK Av-
enue, UCSD Ped2 and ShanghaiTech datasets, respectively.
We concatenate the retrieved memory variable ma ∈ R32

and the encoded vector e, and use a fully-connected layer
to generate the parameters µc,σc ∈ R32 of the poste-
rior q(zr|X,ma). zr and zr sampled from their posteriors
are concatenated, and then fed into the decoder to gener-
ate g(zr, zr). The decoder has a symmetrical structure of
the encoder. For counterfactual sample generation, we ran-
domly initialize two intervening vectors ∆zr ∈ R32 and
∆zr ∈ R32 for each input sample X, and add them to the
representations zr and zr as interventions do(zr) = zr+∆zr
and do(zr) = zr +∆zr. The vector ∆zr is updated together
with network parameters in a similar way as the memory
variables. The intervening vector ∆zr is not updated. The
margin parameter ϵ is set to 1 in the ShanghaiTech dataset
and is set to 0.5 in the CUHK Avenue and UCSD Ped2
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Method SHTech CUHK
Avenue

UCSD
Ped2

Conv-AE (Hasan et al. 2016) - 70.2 90.0
ConvLSTM-AE (Luo et al. 2017) - 77.0 99.1
Frame-Pred. (Liu et al. 2018) 72.8 85.1 95.4
MemAE (Gong et al. 2019) 71.2 83.3 94.1
Object-Centric (Ionescu et al. 2019) 78.7 87.4 94.3
MNAD-P (Park et al. 2020) 70.5 88.5 97.0
Any-Shot (Doshi and Yilmaz 2020) 71.6 86.4 97.8
HF2-VAD (Liu et al. 2021b) 76.2 91.1 99.3
STCEN (Hao et al. 2022) 73.8 86.6 96.9
BDPN (Chen et al. 2022) 78.1 90.3 98.3
Ours 78.6 91.5 99.4

Table 1: Comparisons of frame-level performance (AUROC
↑, %) under Setting-A (big data scenarios). A higher AU-
ROC value indicates a better performance.

datasets.
We use PyTorch (Paszke et al. 2017) to train our model

and adopt the Adam optimizer (Kingma and Ba 2015) with
β1 = 0.9 and β2 = 0.999 to optimize it. The batch
size, epoch number and initialized learning rate are set to
(128, 80, 1e-4) and (128, 40, 8e-5) for training the causal
generative model and finetuning the predictor, respectively.
The learning rate is decayed by 0.8 after every 40 epochs.
Evaluation Metric. We compute frame-level anomaly
scores, and plot the receiver operating characteristic (ROC)
curve according to the scores. The area under the receiver
operating characteristic (AUROC) is computed for evalua-
tion. A higher AUROC indicates a better performance. We
calculate the AUROC based on all the frames in each dataset
rather than the averaging video-level AUROC.

We train and test our model under two settings, big and
small data scenarios. (1) Setting-A (big data scenarios): the
model is trained and tested on the specific target dataset.
Most existing methods follow this setting, where all train-
ing samples are used for training. (2) Setting-B (small data
scenarios): the model is trained on a sub-dataset and is tested
on the whole test dataset. We perform evaluations under this
setting to simulate the use of anomaly detection methods in
an open world, where only a small portion of training sam-
ples is used for training. We randomly select 10% of the
training samples to form sub-datasets of the three datasets,
and all samples in each sub-dataset come from one scene in
each dataset.
Results. Table 1 reports the AUROC performance of
our method compared with state-of-the-art methods under
Setting-A. We do not compare our method with existing top-
performing methods (Georgescu et al. 2021; Acsintoae et al.
2022) because they use extra annotated anomalies while we
focus on deep unsupervised anomaly detection. The perfor-
mance of all compared methods is taken from their original
paper or from the work of (Georgescu et al. 2021). From Ta-
ble 1, we can see that our method outperforms the baseline
method HF2-VAD (Liu et al. 2021b) on the three datasets,
gaining improvements of 2.4%, 0.4% and 0.1% in terms of
the AUROC evaluation. Compared with the method Object-

Method SHTech CUHK
Avenue

UCSD
Ped2

Conv-AE (Hasan et al. 2016) 50.7 69.4 67.0
MemAE (Gong et al. 2019) 51.5 81.5 74.3
Object-Centric (Ionescu et al. 2019) 72.7 80.6 92.9
HF2-VAD (Liu et al. 2021b) 73.8 82.2 98.4
Ours 76.4 87.8 99.2

Table 2: Comparisons of frame-level performance (AUROC
↑, %) under Setting-B (small data scenarios). A higher AU-
ROC value indicates a better performance.

Method SHTech CUHK
Avenue

B0 Baseline (HF2-VAD) 73.8 82.2
B1 +VAE+CSG 74.2 85.3
B2 +MVAE+CSG 72.6 83.5
B3 +VAE-T+CSG 75.0 85.0
B4 +MVAE-T+CSG-CE 74.1 85.8
B5 +MVAE-T+CSG2 75.2 85.9
Ours +MVAE-T+CSG 76.4 87.8

Table 3: Ablation study performance (AUROC ↑, %) on the
ShanghaiTech and CUHK Avenue datasets.

Centric (Ionescu et al. 2019), our method has achieved a
slightly worse result on the ShanghaiTech dataset. The prob-
able reason is that our causal generative model focuses on
visual factors captured from RGB frames without consider-
ing the optical-flow images used in Object-Centric. Never-
theless, our method outperforms Object-Centric on the other
two datasets with large AUROC improvements of 4.1% and
5.1%, which verifies the effectiveness of our method.

Table 2 reports the AUROC performance under Setting-B.
We re-train models of all compared methods for evaluation
in the small data scenarios. In Table 2, our method obtains
significant improvements of 2.6%, 5.6% and 0.8% com-
pared with the state-of-the-art baseline method HF2-VAD
(Liu et al. 2021b) on the three datasets. The performance
of all compared methods drops significantly from big data
scenarios in Table 1 to small data scenarios in Table 2. Dif-
ferently, our method achieves comparable AUROC results of
76.4% and 99.2% compared with the results of 76.2% and
99.3% of the baseline method HF2-VAD trained on the full
ShanghaiTech and UCSD Ped2 datasets. On the CUHK Av-
enue dataset, our method achieves 96% of the AUROC per-
formance of the baseline method (96% = 87.8%/91.1%).
This demonstrates that learning event-relevant factors can
work stably in small data scenarios.

We show two qualitative results in Figure 4. Blue win-
dows show ground-truth labels of anomalies, and yellow/red
curves represent the anomaly scores computed by the pre-
trained/finetuned predictor under Setting-B (small data sce-
narios). The scores are normalized through the min-max nor-
malization. The finetuned predictor’s scores (red) match bet-
ter with the anomaly annotations even under the interfer-
ences of event-irrelevant factors of the occlusion and ob-
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Figure 4: Qualitative results on the ShanghaiTech datasets.
Frames in white/blue windows are the ground-truth nor-
mal/anomaly events. Yellow/red curves represent the
anomaly scores computed by the pre-trained/finetuned pre-
dictor. Anomaly scores in the finetuned predictor match well
with the ground-truth annotations under the interferences
of event-irrelevant factors of the occlusion and object scale
variation.

ject scale variation, indicating good discrimination of our
method. More Visualization results of event-irrelevant fac-
tors can be found in supplementary materials.
Ablation Study. We conduct an ablation study on the
ShanghaiTech and CUHK Avenue datasets to compare the
contributions of different components in our method. The
experimental results under Setting-B are shown in Table 3.
Our baseline method is the pre-trained HF2-VAD (Liu et al.
2021b). “+VAE”, “+MVAE”, “+VAE-T” and “+MVAE-T”
denote that we use the standard VAE shown in Figure
3a, the memory-augmented VAE shown in Figure 3b, the
standard VAE with two representations zr and zr, and the
memory-augmented VAE with two representations zr and
zr shown in Figure 3c, respectively, as the causal genera-
tive model. “+CSG” means that we use the counterfactual
sample generation for finetuning the predictor. When the
causal generative model only has one representation (i.e.,
“+VAE”, “+MVAE”), the L2-norms containing the inter-
ventions do(zr) in Eq. (12) and Eq. (13) are set to 0 dur-
ing finetuning. “-CE” indicates removing the loss function
LCE. “+CSG2” means that we replace the intervention type
do(z) = z+∆(z) with do(z) = dropout(z, p) in the coun-
terfactual sample generation, where the dropout probability
p is computed by using a two-layer fully-connected network
p = softmax(MLP(∆(z))).

Setting Time (h) Speed (fps) AUROC↑ (%)
Setting-A 48.0 270.3 78.6
Setting-B 6.1 270.3 76.4

Table 4: The training time (Time), inference speed (Speed)
and AUROC values of our method on the ShanghaiTech
dataset under Setting-A and Setting-B.

From Table 3, we can see that: (1) The causal relation-
ships established by the memory M, representation zr and
representation zr benefit learning event-relevant factors, be-
cause when discarding any one of them (B1, B2 and B3), we
see a drop of the AUROC performance. (2) When removing
the loss function LCE for capturing event-relevant factors
(B4), a decrease of the AUROC from 76.4% and 87.8% to
74.1% and 85.8% is obtained on the two datasets. The per-
formance drops show that maximizing the information flow
can increase the causal influence. (3) The intervention type
do(z) = z+∆(z) is more beneficial for generating counter-
factual samples for finetuning the predictor compared with
the intervention type in “+CSG2” (B5).
Computation Efficiency. As shown in Table 4, we list
the training time, inference speed and AUROC values on
the ShanghaiTech dataset under Setting-A and Setting-B.
Our method achieves a comparable result in less time un-
der setting-B compared with the result under setting-A. Our
method also achieves the real-time inference speed of video
anomaly detection. The experiment results are obtained on
a single NVIDIA RTX3090 GPU and an Intel i9-10900X
CPU, and we do not consider the pre-processing time of the
object detection and optical flow estimation.

Conclusion
We have presented a novel method that can eliminate the in-
terferences from event-irrelevant factors on anomaly predic-
tions by explicitly learning event-relevant factors in videos.
We design a variational auto-encoder with two independent
representations as the causal generative model. The causal
generative can separately model the event-relevant factors
and event-irrelevant ones. A causal objective function is
used to optimize the causal generative model, which can
maximize the causal influence of event-relevant factors on
anomaly predictions. We further develop a counterfactual
learning strategy that can help the anomaly predictions bene-
fit from the learned event-relevant factors without annotated
anomalies by generating counterfactual samples as pseudo-
anomalies. Experimental results in different settings demon-
strate the effectiveness of our method.

A future extension of our work is to introduce an extra ex-
plainer with generic knowledge to explain the real causes of
anomalies from the learned event-relevant factors, therefore
improving the interpretability of our model.
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