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Abstract

To solve optimization problems with nonlinear constrains, the
recently developed Riemannian meta-optimization methods
show promise, which train neural networks as an optimizer to
perform optimization on Riemannian manifolds. A key chal-
lenge is the heavy computational and memory burdens, be-
cause computing the meta-gradient with respect to the opti-
mizer involves a series of time-consuming derivatives, and
stores large computation graphs in memory. In this paper, we
propose an efficient Riemannian meta-optimization method
that decouples the complex computation scheme from the
meta-gradient. We derive Riemannian implicit differentiation
to compute the meta-gradient by establishing a link between
Riemannian optimization and the implicit function theorem.
As a result, the updating our optimizer is only related to
the final two iterations, which in turn speeds up our method
and reduces the memory footprint significantly. We theoreti-
cally study the computational load and memory footprint of
our method for long optimization trajectories, and conduct
an empirical study to demonstrate the benefits of the pro-
posed method. Evaluations of three optimization problems
on different Riemannian manifolds show that our method
achieves state-of-the-art performance in terms of the conver-
gence speed and the quality of optima.

Introduction
In science and engineering, many tasks are modeled as
optimization problems with nonlinear constraints (Absil,
Mahony, and Sepulchre 2009), including principal com-
ponent analysis (Liu et al. 2017) and matrix completion
with orthogonality constraints (Dai, Milenkovic, and Ker-
man 2011), and similarity learning with positive definite
constraints (Harandi, Salzmann, and Hartley 2017). The pri-
mary way to address optimization problems with nonlin-
ear constraints is to formulate them on Riemannian man-
ifolds, and utilize Riemannian optimization algorithms to
maintain faithful to the geometry of constraints. Bonnabel
(Bonnabel 2013) proposed Riemannian stochastic gradient
descent algorithm, and Kasai et al. (Kasai, Jawanpuria, and
Mishra 2019) proposed Riemannian adaptive optimization
algorithms.
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Figure 1: We measure the time and memory consumption
of the Riemannian meta-optimization method (Gao et al.
2020) and our method. The method (Gao et al. 2020) has
heavy computational and memory burdens with the in-
crease of the number of steps in the inner-loop. In contrast,
our method reduces computational cost and memory foot-
print significantly. This is because the method (Gao et al.
2020) differentiates through the whole inner-loop optimiza-
tion to compute the meta-gradient, which involves a series
of time-consumption derivatives and stores a large compu-
tation graph, while our meta-gradient computation is only
related to the final two iterations.

Recently, Riemannian meta-optimization methods (Gao
et al. 2020; Fan et al. 2021) have shown promise in solving
Riemannian optimization problems. In contrast to previous
hand-designed Riemannian optimizers, Riemannian meta-
optimization methods utilize meta-learning to automatically
learn an optimizer in a data-driven fashion. Concretely, the
conventional Riemannian gradient descent is formulated as

X(t+1) = ΓX(t)

(
−ξ · πX(t)(∇X(t))

)
.

Here, X(t) represents the Riemannian parameter of interest
evaluated at time t, ∇X(t) is the gradient of the loss with
respect to X(t), and ξ is the stepsize. ΓX(t)(·) and πX(t)(·)
are the Riemannian operations that are used to obtain the
update Riemannian parameter and search direction, respec-
tively. Riemannian meta-optimization methods aim to im-
prove the speed and quality of the solution by rewriting the
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optimization as

X(t+1) = ΓX(t)

(
gϕ(∇X(t),S(t−1))

)
,

where gϕ(·) is a mapping that corrects the gradient based on
the distribution of data, and S(t−1) is the optimization state
at time t − 1. The mapping gϕ(·) is a neural network that
needs to be learned, parameterized by ϕ. The Riemannian
meta-optimization methods not only can obtain a promising
Riemannian optimizer via exploring the underlying data dis-
tribution but also reduce human involvements in designing
the optimizer.

Despite the success, training such Riemannian optimizers
brings heavy computational and memory burdens. Existing
Riemannian meta-optimization methods are cast as bi-level
optimization procedures, and use inner-loop and outer-loop
optimization stages to train the optimizer (Metz et al. 2019;
Chen et al. 2020). The inner-loop is similar to a traditional
Riemannian optimization process, where the learnable op-
timizer updates Riemannian parameters for the target task
iteratively. In the outer-loop, the optimizer is trained by min-
imizing the loss of updated Riemannian parameters, where
computing the meta-gradient with respect to the optimizer
needs to differentiate through the whole computation graph
of the inner-loop. This causes a lot of memory to store the
computational graph of the entire inner-loop , and involves
time-consuming Hessian matrices and derivatives of Rie-
mannian operations (e.g., retraction operation) in the entire
inner-loop, as shown in Figure 1.

To address this issue, we propose an efficient Riemannian
meta-optimization method that decouples the meta-gradient
computation from the inner-loop optimization. Specifically,
we derive Riemannian implicit differentiation for Rieman-
nian meta-optimization by connecting Riemannian opti-
mization with implicit function theorem (Lorraine, Vicol,
and Duvenaud 2020; Rajeswaran et al. 2019). Through the
Riemannian implicit differentiation, computing the meta-
gradient with respect to the optimizer in our method is in-
dependent of the entirety of the inner-loop optimization,
and is only related to the final two iterations of it, reducing
the memory and computational complexity significantly. We
demonstrate theoretically and empirically that our method
only needs a small constant memory and computational cost,
regardless of the length of the optimization trajectory in
the inner-loop. This is because our method does not need
to store and differentiate through the whole inner-loop op-
timization. Moreover, evaluations of three tasks on differ-
ent Riemannian manifolds show that our method can learn
a competitive (and even better) Riemannian optimizer with
faster convergence speed and lower loss values than existing
Riemannian optimization methods. The code is available at
https://github.com/XiaomengFanmcislab/I-RMM.

In summary, our contributions are two-fold.
(1) We propose an efficient Riemannian meta-

optimization method that avoids to store and differen-
tiate through the entirety of the inner-loop optimization.
Compared with existing Riemannian meta-optimization
methods, our method not only requires far less computa-
tional resources but also learns a better optimizer.

(2) We derive Riemannian implicit differentiation for
Riemannian meta-optimization, through which the meta-
gradient computation is only related to the final two itera-
tions of the inner-loop optimization, instead of the whole
procedure.

Related Work
Riemannian Optimization
Luenberger (Luenberger 1972) proposed the first Rieman-
nian gradient descent (RGD) approach that formulates the
constrained optimization problems on Riemannian mani-
folds and utilizes Riemannian operations to preserve con-
straints on the manifold. After that, many efforts have been
made to develop more powerful Riemannian optimization
method. Bonnabel (Bonnabel 2013) extended RGD to the
stochastic setting, Zhang and Sra (Zhang and Sra 2018)
proposed accelerated optimization methods on Riemannian
manifolds, Liu et al. (Liu et al. 2017) developed Riemannian
stochastic variance reduced gradient (RSVRG) algorithm,
and Kasai et al. (Kasai, Sato, and Mishra 2018) introduced
adaptive optimization approaches in Riemannian manifolds.

Recently, Riemannian meta-optimization methods pro-
vide a promising way to address Riemannian optimization
problems. Gao et al. (Gao et al. 2020) introduced a ma-
trix LSTM as the optimizer that takes the gradient as input
and generates stepsize and search directions for symmetric
positive definite manifolds. However, training the optimizer
brings the exploding gradient problem. To solve this issue,
they proposed a gradient-free optimizer on tangent spaces
for Riemannian optimization (Fan et al. 2021), which re-
moves gradients computation with respect to Riemannian
parameters in the inner-loop optimization. Despite the suc-
cess, existing Riemannian meta-optimization methods bring
heavy computational and memory burdens, since they store
and differentiate through their whole inner-loop optimiza-
tion. In contrast, our Riemannian meta-optimization method
uses Riemannian implicit differentiation and only differen-
tiates through the final two iterations of the inner-loop opti-
mization, reducing the memory and computational cost sig-
nificantly.

Implicit Differentiation
Implicit differentiation has been well applied to bi-level
optimization problems, such as hyperparameter optimiza-
tion (Lorraine, Vicol, and Duvenaud 2020; Gudovskiy et al.
2021) and meta-learning (Rajeswaran et al. 2019). By uti-
lizing the implicit function theorem (Larsen et al. 1996;
Bengio 2000), implicit differentiation is usually used to ef-
ficiently compute the gradient with respect to outer-loop
parameters, which avoids differentiating through the inner-
loop optimization. While implicit differentiation is success-
ful in many applications, it has not yet been applied to meta-
optimization (learning to optimize) (Andrychowicz et al.
2016) to the best of our knowledge. A possible reason is
that, their scheme that uses the final step to compute outer-
loop gradients is not suitable for the meta-optimization for-
mulation, which makes computing meta-gradients infeasi-
ble. In our method, we derive novel implicit differentia-
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tion for meta-optimization by using the final two iterations
rather than only the last one iteration. Besides, we extend the
implicit differentiation to Riemannian manifolds, through
which we can efficiently solve challenging Riemannian op-
timization problems.

Analysis of Riemannian Meta-Optimization
Riemannian Meta-Optimization
A smooth Riemannian manifold M is a topological space
that is locally Euclidean space (Absil, Mahony, and Sepul-
chre 2009). For a point X ∈ M, its tangent space is de-
noted by TXM, being the set of all tangent vectors to M
at X . Due to the nonlinear nature of Riemannian manifolds,
gradient-based Riemannian optimization uses retraction and
orthogonal projection to preserve the manifold constraints.
The retraction operation ΓX(P ) : TXM → M,P ∈
TXM is a smooth mapping from the tangent space TXM
onto the manifoldM with a local rigidity condition (Absil,
Mahony, and Sepulchre 2009). The orthogonal projection
πX(∇X) transforms an arbitrary Euclidean gradient ∇X
into the tangent space TXM.

Riemannian meta-optimization methods utilize neural
networks to parameterize a Riemannian optimizer gϕ, where
ϕ is the parameter of neural networks. The optimizer auto-
matically produces the stepsize ξ(t) and the search direction
η(t) for optimization,

ξ(t),η(t) = −gϕ(∇X(t),S(t−1))

Y (t) = −ξ(t)η(t)

X(t+1) = ΓX(t)

(
Y (t)

) , (1)

where ∇X(t) is the gradient of the loss with respect to the
Riemannian parameter, Y (t) is the update vector on the tan-
gent space, and S(t−1) is the optimization state at time t−1.
Existing Riemannian meta-optimization methods are mod-
eled as a bi-level optimization procedure to train the opti-
mizer, where inner-loop and outer-loop optimization stages
are used. In the inner-loop, the Riemannian parameter is up-
dated via Eq. (1). Suppose there are T steps in the inner-
loop, in one iteration of the outer-loop, the optimizer is
trained by minimizing the meta-objective

min
ϕ
J (ϕ) ≜ LV (X

(T )), (2)

where LV (X
(T )) is the loss function of the updated Rie-

mannian parameter X(T ) on validation data. In this case,
the parameter ϕ of the Riemannian optimizer is updated by

ϕ← ϕ− dLV

dϕ
. (3)

Heavy Computation and Memory Burden
In the outer-loop, the meta-gradient dLV

dϕ is calculated to up-
date the parameter ϕ of the optimizer. We use d to denote
the total derivative and ∂ denote partial derivative. The meta-
gradient is given by

dLV

dϕ
=

dLV

dX(T )

dX(T )

dϕ
, (4)

where dLV

dX(T ) is computed using differentiation easily. The

derivative dX(T )

dϕ needs to differentiate through the whole
inner-loop optimization, that is,

dX(T )

dϕ
=

T∑
k=1

(
∂X(k)

∂Y (k−1)
· ∂Y

(k−1)

∂ϕ

T∏
l=k+1( ∂X(l)

∂X(l−1)
+

∂X(l)

∂Y (l−1)
· ∂Y (l−1)

∂∇X(l−1)
· ∇2X(l−1)

))
.

(5)
The computational graph is shown in Figure 1.

Apparently, Eq. (5) includes products of Hessian matri-
ces ∇2X(l−1) and partial derivatives ∂X(l)

∂X(l−1) and ∂X(l)

∂Y (l−1)

of the retraction operation, over all inner-loop optimiza-
tion steps. Differentiating through the retraction operation
and calculating Hessian matrix impose heavy computational
loads. Furthermore, Eq. (5) depends on the whole inner-loop
optimization path explicitly, which is completely stored in
memory. The time and space complexity of Eq. (5) is pro-
portional to the inner-loop optimization length (which will
be proved in the next section). Therefore, choosing the inner-
loop optimization length faces a well-known dilemma(Metz
et al. 2019; Wu et al. 2018; Chen et al. 2020): a short op-
timization length results in instability and poor-quality op-
timizers, while a long optimization length inevitably causes
intractable computational and memory burdens.

Our Method
In this paper, we derive Riemannian implicit differentiation
for computing the meta-gradient, which does not store and
differentiate through the whole inner-loop optimization, re-
ducing much memory and time consumption.

Riemannian Implicit Differentiation
The target of Riemannian implicit differentiation is to com-
pute the meta-gradient dLV

dϕ implicitly, which is independent
of the whole procedure of the inner-loop. Suppose that the
exact solution X∗ is obtained after a optimization steps in
the inner-loop, i.e., dLT

dX∗ = 0, and LT is the loss function on
the training data. We have

d

dϕ

(
dLT

dX∗

)
=

d2LT

dX∗dX∗⊤
dX∗

dϕ
= 0. (6)

We assume that the loss function LT (·) is a strictly convex
function. Then the Hessian matrix of the loss function LT (·)
is a symmetric positive definite matrix, d2LT

dX∗dX∗⊤ ̸= 0, and
thus the derivative Jacobian dX∗

dϕ = 0. Recall that in Rie-
mannian meta-optimization, the meta-gradient with respect
to parameter ϕ of our optimizer is given by

dLV

dϕ
=

dLV

dX∗
dX∗

dϕ
. (7)

Substituting dX∗

dϕ = 0 into Eq. (7) makes computing the
meta-gradient dLV

dϕ infeasible.
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To solve this issue, we utilize X∗′
that is the Riemannian

parameter after a− 1 steps in the inner-loop to compute the
meta-gradient,

dLV

dϕ
=

dLV

dX∗′
dX∗′

dϕ
. (8)

The derivative Jacobian dX∗′

dϕ is computed by the Rieman-
nian implicit differentiation in Theorem 1.
Theorem 1. If X∗ is the exact solution in the inner-loop,
the derivative Jacobian dX∗′

dϕ can be computed implicitly by

dX∗′

dϕ
= −

( ∂X∗

∂X∗′ +
∂X∗

∂Y ∗′
∂Y ∗′

∂∇X∗′∇2X∗′
)−1

· ∂X
∗

∂Y ∗′ ·
∂Y ∗′

∂ϕ
.

(9)

Proof. From the chain rule, the derivative dX∗

dϕ is given by

dX∗

dϕ
=

∂X∗

∂X∗′
dX∗′

dϕ
+

∂X∗

∂Y ∗′
dY ∗′

∂ϕ
, (10)

where

dY ∗′

dϕ
=

∂Y ∗′

∂ϕ
+

∂Y ∗′

∂∇X∗′∇2X∗′ dX∗′

dϕ
. (11)

We substitute Eq.(11) into Eq.(10), and have

dX∗

dϕ
=

[
∂X∗

∂X∗′ +
∂Y ∗′

∂∇X∗′∇2X∗′ dX∗′

dϕ

]
dX∗′

dϕ
+

∂X∗

∂Y ∗′
∂Y ∗′

∂ϕ
.

(12)
Due to the derivative dX∗

dϕ equals to 0, we have

dX∗′

dϕ
= −

( ∂X∗

∂X∗′ +
∂X∗

∂Y ∗′
∂Y ∗′

∂∇X∗′∇2X∗′)−1

· ∂X
∗

∂Y ∗′ ·
∂Y ∗′

∂ϕ
.

The derived implicit derivative Jacobian dX∗′

dϕ only de-
pends on the final two iterations of the inner-loop opti-
mization, rather than the whole inner-loop procedure. The
term ∂X∗

∂X∗′ and ∂X∗

∂Y ∗′ are derivatives of the retraction op-
eration. It is notable that the implicit derivative Jacobian
dX∗′

dϕ in Theorem 1 needs a matrix inversion (over the

combination of Jacobian and Hessian matrix
(

∂X∗

∂X∗′ +

∂X∗

∂Y ∗′
∂Y ∗′

∂∇X∗′∇2X∗′
)−1

). This is non-trivial to compute,
matrix inversion can become intractable for big matrices.
In order to address this problem, we utilize Neumann se-
ries (Liao et al. 2018; Shaban et al. 2019) to rewrite the in-
verse as( ∂X∗

∂X∗′ +
∂X∗

∂Y ∗′
∂Y ∗′

∂∇X∗′ ∇
2X∗′

)−1

=

∞∑
k=0

(
I −

( ∂X∗

∂X∗′ +
∂X∗

∂Y ∗′
∂Y ∗′

∂∇X∗′ ∇
2X∗′

))k

.

(13)

We can approximate the inverse by the first K terms in
this infinite sum. Then, we utilize Jacobian-vector product

and Hessian-vector product (Baydin et al. 2018; Chris-
tianson 1992; Griewank and Walther 2008) to compute
Eq. (13) instead of computing Jacobian and Hessian ma-
trix directly. Specifically, we initialize two intermediate vari-
able v0 and p0 as the identity matrix. For every iterations
(i = 0, · · · ,K − 1), we update the intermediate vectors as
follows:v(i+1) = v(i) − v(i) ∂X

∗

∂X∗′ − v(i) ∂X
∗

∂Y ∗′
∂Y ∗′

∂∇X∗′∇2X∗′

p(i+1) = p(i) + v(i+1)

.

(14)
After the K iterations, the derivative Jacobian is given by

dX∗′

dϕ
= −p(K) ∂X

∗

∂Y ∗′ ·
∂Y ∗′

∂ϕ
. (15)

Because the intermediate variables v and p keep being
the vector in the aforementioned iterations, Eq. (14) and
Eq. (15) only needs to compute Jacobian-vector product and
Hessian-vector product that is much easier than the original
formula in Eq. (9). Substituting Eq. (15) into Eq. (8), the
meta-gradient is

dLV

dϕ
= − dLV

dX∗′ p
(K) ∂X

∗

∂Y ∗′ · ∂Y
∗′

∂ϕ
. (16)

Implemention

Optimizer Architecture Due to the matrix structure of
Riemannian parameters, parameterizing the Riemannian op-
timzer by conventional neural network may inevitably de-
stroy the matrix structure. In this paper, the generalized ma-
trix LSTM (gmLSTM) (Fan et al. 2021) is used to parame-
terize the Riemannian optimizer. We leverage two gmLSTM
models to compute search direaction η and stepsize ξ, re-
spectively.

Algorithm 1 Parameter Warmup stage

Require: Initial Riemannian parameter X , the empty pa-
rameter pool Φ, the maximum size of parameter pool L,
and threshold of the gradient norm ϵ.

1: Randomly select a hand-designed Riemannian opti-
mization method from RSGD, RSGDM, RSRG, and
RASA.

2: while the size of current parameter pool Φ is not reach
the maximum size L do

3: Compute the loss LT (X) on training data.
4: Compute the gradient∇X .
5: if ∥∇X∥ ≤ ϵ then
6: Push the parameter X into the parameter pool Φ.
7: end if
8: Update the parameter X by using the selected hand-

designed optimizer.
9: end while

10: Return parameter pool Φ.
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Algorithm 2 Training our optimizer

Require: Initial optimization state S(0) = 0, initial param-
eters ϕ of our optimizer, maximum iteration T of the
inner-loop, maximum iteration Υ of the outer-loop, and
hyperparameter B to update the parameter pool.

1: τ = 0.
2: while τ ≤ Υ do
3: if τ mod B then
4: Construct the parameter pool Φ by using the

warmup scheme in algorithm 1.
5: end if
6: Randomly select X(0) from the parameter pool Φ,

and set t = 0.
7: while t ≤ T do
8: Compute the loss on training dataset LT (X

(t)).
9: Compute the gradient∇X(t) = dLT

dX(t) .
10: Update X(t) by our optimizer gϕ via Eq. (1).
11: t← t+ 1.
12: end while
13: Compute the loss on validation dataset LV (X

(T−)).
14: Compute the implicit gradient by Eq. (16).
15: Update parameter of our optimizer ϕ by Eq. (3).
16: τ ← τ + 1.
17: end while
18: Return the parameter ϕ of our optimizer.

Parameter Warmup Actually, it is difficult to optimize
the Riemannian parameter from scratch to an exact solu-
tion utilizing an untrained Riemannian optimizer. In order
to handle this issue, we introduce a warmup scheme that
stores some good solutions as initial Riemannian parame-
ters in advance. Specifically, before training the Riemannian
optimizer, we utilize a hand-designed Riemannian optimizer
such as RSGD to obtain solutions whose gradient norms are
smaller than a small threshold, and put them into a parameter
pool. In the training stage, we randomly sample initial Rie-
mannian parameters from the parameter pool to learn our
optimizer. The process of the proposed warmup scheme is
summarized in Algorithm 1.

Training In each step of the outer-loop, we randomly se-
lect a Riemannian parameter from the parameter pool and
denote it as X(0). In practice, the number of iterations in
the inner-loop to obtain the exact solution is unknown, and
it may be different for different initialization and tasks. For
simplicity, we set a fixed number T in the inner-loop, and use
our Riemannian optimizer to update X(0) for T iterations to
obtain an approximate solution X(T ). Then, the optimizer is
updated by using X(T ) and X(T−1) via Eq. (16). To avoid
overfitting, after B steps in the outer-loop, we update the
parameter pool by utilizing another hand-designed Rieman-
nian optimizer (e.g. RSGDM) to put new initial parameters
into it. The training process of the optimizer is summarized
in Algorithm 2.

Complexity
Computational Complexity
Some works (Griewank and Walther 2008) show that the
time of computing gradients or Jacobian-vector products of
a differentiable function in time is no more than a factor of
5 of the time it takes to compute that function itself, and the
time of computing Hessian-vector products is also no more
than 5 times of time to compute the gradient. In the compu-
tational complexity, we only keep the highest term for sim-
plicity.

By utilizing the above two principles, for a parameter with
the size of p × d , the computational complexity of the im-
plicit meta-gradient on the Grassmann manifold is no more
than O((10K+5)p3+(125K+105)p2d+(10K+5)pd2),
while the computational complexity of the work (Gao et al.
2020) is O(5T 2p3 + ( 1252 T 2 + 75

2 T + 5)p2d+ 5T 2pd2).
As to a parameter with the size of p×d on the Stiefel man-

ifold, the computational complexity of the implicit meta-
gradient is no more than O((90K + 90)p2d + (35K +
25)pd2+(30K+15)d3), while the computational complex-
ity of the work (Gao et al. 2020) is O((45T 2 + 45T )p2d +
( 352 T 2 + 15

2 T )pd2 + 15T 2d3).
For a parameter with the size of d × d on the SPD man-

ifold, the computational complexity of our implicit meta-
gradient is no more than O((585K + 300)d3), while the
computational complexity of the work (Gao et al. 2020) is
O(( 5852 T 2 − 95

2 T + 55)d3).
Apparently, the computational complexity of our method

is independent of the maximum iteration T of the inner-
loop, while that of Riemannian meta-optimization approach
quadratically related with T . Thus, with the increase of it-
eration steps in the inner-loop, training time of existing
Riemannian meta-optimization methods increases siginifi-
cantly, while the time consumption of our method to calcu-
late the meta-gradient is constant and very small. Though
our method is linearly related to iteration of approximate
Neumann series K, K is far less than T . Thus, our approach
reduced computational time siginificantly compared to ex-
isting Riemannian meta-optimization approach.

Memory Cost
Because the implicit meta-gradient only depends on the fi-
nal two steps of inner-loop optimization, the memory cost
of our implicit Riemannian meta-optimization is O(4dp +
H), where H is the size of parameters of our Rieman-
nian optimizer. The memory cost of the Riemannian meta-
optimization method (Gao et al. 2020) is O(3Tdp + H),
since this method stores the whole inner-loop optimization
in computing the meta-gradient by Eq.(5).

Experiments
Setting
In this section, we compared our optimizer with
hand-designed optimizers: RSGD (Bonnabel 2013),
RSVRG (Zhang, Reddi, and Sra 2016), RSRG (Kasai,
Sato, and Mishra 2018), RSGDM (Kumar, Mhammedi, and
Harandi 2018), and RASA (Kasai, Jawanpuria, and Mishra
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Inner Loop Steps 5 45 85 125 165 205 245 250

RMM 3.80× 10−1 1.74× 101 6.00× 101 1.27× 102 2.20× 102 3.38× 102 4.78× 102 4.88× 102

GF-RMM 3.01× 10−1 1.26 2.35 3.41 4.45 5.50 7.31 7.40

Ours 2.90× 10−1 1.22 2.14 3.21 4.45 4.99 5.87 6.18

Table 1: Training time (seconds) comparisons on the PCA task.

Inner Loop Steps 5 45 85 125 165 205 245 250

RMM 4.64× 103 5.71× 103 6.78× 103 8.24× 103 9.32× 103 1.08× 104 1.19× 104 1.20× 104

GF-RMM 5.28× 103 6.58× 103 7.90× 103 9.20× 103 1.05× 104 1.18× 104 1.19× 104 1.20× 104

Ours 4.55× 103 4.55× 103 4.55× 103 4.55× 103 4.55× 103 4.55× 103 4.55× 103 4.55× 103

Table 2: Training memory (MB) comparisons on the PCA task.

RSGD RSGDM RSVRG RSRG RASA RMM GF-RMM Ours

Figure 2: Plots for the PCA task (in the log scale).

2019). These works were achieved the best performance
by tuning their hyperparameters. We also compared our
optimizer with the Riemannian meta-optimization method
(RMM) (Gao et al. 2020) and gradient-free Riemannian
meta-optimization method (GF-RMM) (Fan et al. 2021).
Experiments were conducted on three tasks: principal
component analysis (PCA) on the Grassmann manifold,
face Recognition on the Stiefel Manifold, and clustering on
the SPD manifold, detailed as follows.

PCA on the Grassmann Manifold. PCA aims to learn an
orthogonal matrix X that linearly projects original data to
lower-dimensional data. We used MNIST dataset to evaluate
our method on the PCA task.

Face Recognition on the Stiefel Manifold. We modeled
the face recognition using a linear classifier with the orthog-
onality constraint. We utilized the YaleB dataset (Lee, Ho,
and Kriegman 2005) to conduct this experiment.

Clustering on the SPD Manifold. We also conducted ex-
periments on the clustering task of SPD representations by
utilizing the Kylberg texture dataset (Kylberg 2011).

Efficiency Analysis
Training time We compared our training time of each
outer-loop step with that of Riemannian meta-optimization
methods RMM (Gao et al. 2020) and GF-RMM (Fan et al.
2021) for different number of optimization steps in the inner-
loop. Results on the three tasks are shown in Table 1, Ta-

RSGD RSGDM RSVRG RSRG RASA RMM GF-RMM Ours

Figure 3: Plots for the face recognition task (in the log scale).

ble 3, and Table 5. For RMM, its training time is highly re-
lated to the number of optimization steps in the inner-loop,
and a large number of optimization steps leads to high time
consumption. In contrast, the training time of our method is
a small constant value, independent of the number of op-
timization steps in inner-loop. Thus, our method reduces
much time consumption. For example, when T = 525,
RMM requires a factor of 350 times of our method on
face recognition task. Although GF-RMM avoids the time-
consumption retraction in optimization, it still requires more
time than ours. Our method allows us to set a large number
of optimization steps in the inner-loop, leading to an opti-
mizer with better performance and training stability.

Training memory We evaluated the memory consump-
tion of our method, and results are shown in Table 2, Ta-
ble 4, and Table 5. Similar to the results of training time,
the training memory of our method is less than the com-
pared methods RMM and GF-RMM, independent of number
of optimization steps of the inner-loop. For example, when
T = 525, the compared methods requires a factor of 3.5
times of our method on the face recognition task.

Convergence Analysis
We evaluated the convergence performance of our optimizer
on the three tasks. On the PCA and clustering tasks, we
trained our optimizer on the training set and evaluated it
on both the training and test sets. On the face recognition
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Inner Loop Steps 5 85 165 245 325 405 485 525

RMM 1.80× 10−1 2.72× 101 9.86× 101 2.15× 102 3.77× 102 5.84× 102 8.27× 102 9.68× 102

GF-RMM 9.19× 10−2 1.03 2.26 3.36 4.47 5.56 6.53 7.10

Ours 4.00× 10−2 4.50× 10−1 8.50× 10−1 1.55 1.94 2.05 2.43 2.72

Table 3: Training time (seconds) comparisons on the face recognition task.

Inner Loop Steps 5 85 165 245 325 405 485 525

RMM 2.80× 103 3.76× 103 4.72× 103 5.68× 103 6.64× 103 7.60× 103 8.56× 103 9.04× 103

GF-RMM 2.75× 103 3.75× 103 4.75× 103 5.75× 103 6.75× 103 7.75× 103 8.75× 103 9.25× 103

Ours 2.60× 103 2.60× 103 2.60× 103 2.60× 103 2.60× 103 2.60× 103 2.60× 103 2.60× 103

Table 4: Training memory (MB) comparisons on the face recognition task.

Inner loop steps Training time Training memory

RMM Ours RMM Ours

25 1.19× 102 1.06× 102 7.33× 102 6.67× 102

35 1.69× 102 1.45× 102 7.57× 102 6.67× 102

45 2.26× 102 1.91× 102 7.89× 102 6.67× 102

55 2.63× 102 2.31× 102 8.17× 102 6.67× 102

65 3.20× 102 2.70× 102 8.45× 102 6.67× 102

75 3.53× 102 3.13× 102 8.73× 102 6.67× 102

Table 5: Training memory (MB) and time (seconds) com-
parisons on the clustering task.

RSGD RSGDM RSVRG RSRG RASA RMM Ours

Figure 4: Plots for the clustering task (in the log scale).

task, we trained and evaluated our optimizer on the train-
ing set. Experimental results on the three tasks are shown
in Figure 2, Figure 3, and Figure 4. Our learned optimizer
achieves better performance than hand-designed optimizers,
in respect of the convergence speed and the final loss value
on both seen training data and unseen test data. This shows
the effectiveness of our learned optimizer that capture under-
lying data structures to obtain a better optimization trajec-
tory. Compared with the RMM and GF-RMM, our method
performs competitively and even surpasses them.

Accuracy Analysis
We evaluated the accuracy performance of the solved linear
classifier in the face recognition task and the solved centers

Method Face Recognition Clustering
RSGD 79.4 85.1

RSGDM 79.6 85.0
RSVRG 79.6 80.3
RSRG 78.0 83.9
RASA 80.2 85.2
RMM 89.0 85.2

GF-RMM 90.2 -
Ours 95.1 86.7

Table 6: Accuracy (%) of solved classifiers and centers.

in the clustering task. Specifically, in the face recognition
task, we solved the classifier on the training set using our
learned optimizer, and measured the accuracy of the test set.
In the clustering task, we regarded the solved centers as cat-
egory prototypes and then computed distance between test
data and prototypes for classification. Results are shown in
Table 6. The performance of the solved classifier and proto-
types by our optimizer surpasses all compared Riemannian
optimizers. This shows that our method arrives at a better
optima and has a good generalization ability.

Conclusion

In this paper, we have presented an efficient Riemannian
meta-optimization method by deriving the Riemannian im-
plicit differentiation. The proposed method provides an an-
alytic expression for meta-gradient that only depends on the
final two optimization steps in the inner-loop. Our method
avoids saving and differentiating through the whole inner-
loop procedure, which reduces computation and memory
cost significantly. We demonstrate theoretically and empiri-
cally that our method only needs a small constant memory
and computational cost. Noticeably, compared with existing
Riemannian meta-optimization methods on the face recog-
nition task, our method achieves better performance using
less than 0.0025 time and 0.28 time GPU memory consump-
tion. Furthermore, experiments on three tasks demonstrate
that our method can learn a good optimization trajectory.
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