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Abstract

A principal way of addressing constrained optimization prob-
lems is to model them as problems on Riemannian man-
ifolds. Recently, Riemannian meta-optimization provides a
promising way for solving constrained optimization problems
by learning optimizers on Riemannian manifolds in a data-
driven fashion, making it possible to design task-specific con-
strained optimizers. A close look at the Riemannian meta-
optimization reveals that learning optimizers on Riemannian
manifolds needs to differentiate through the nonlinear Rie-
mannian optimization, which is complex and computation-
ally expensive. In this paper, we propose a simple yet ef-
ficient Riemannian meta-optimization method that learns to
optimize on tangent spaces of manifolds. In doing so, we
present a gradient-free optimizer on tangent spaces, which
takes parameters of the model along with the training data
as inputs, and generates the updated parameters directly. As a
result, the constrained optimization is transformed from Rie-
mannian manifolds to tangent spaces where complex Rie-
mannian operations (e.g., retraction operations) are removed
from the optimizer, and learning the optimizer does not need
to differentiate through the Riemannian optimization. We em-
pirically show that our method brings efficient learning of the
optimizer, while enjoying a good optimization trajectory in a
data-driven manner.

Introduction
We study the problem of Riemannian optimization (also
known as optimization with manifold constraints), where the
goal is to minimize an objective function in the form:

min
X∈M

L(X) ,
1

n

n∑
i=1

f(X,yi) . (1)

Here, X is the parameter of the interest that should com-
ply with the geometry of the Riemannian manifoldM, and
yi denotes the training data. Such Riemannian optimiza-
tion problems are pervasive in the machine learning com-
munity with a variety of applications. For example, princi-
pal component analysis (PCA) is modeled as an optimiza-
tion problem on Grassmann manifolds (Yuan and Lamperski
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2019), and similarity learning is solved by searching solu-
tions on symmetric positive definite (SPD) manifolds (Gao
et al. 2020a; Karlinsky et al. 2019). Due to the nonlinear
search spaces of Riemannian manifolds, solving the Rie-
mannian optimization problems is challenging, and the op-
timizer should preserve the enforced manifold constraints.

Conventional optimization algorithms designed in Eu-
clidean spaces (e.g., stochastic gradient descent) cannot be
directly applied to the Riemannian setting, as their updat-
ing schemes will not preserve the manifold constraints. The
gradient-based Riemannian optimization algorithms make
use of Riemannian operations, such as retraction and or-
thogonal projection, to ensure that the algorithms remain
faithful to the geometry of manifolds. State-of-the-art algo-
rithms in this regard include Riemannian stochastic gradi-
ent descent (Bonnabel 2013), Riemannian variance reduc-
tion algorithms (Kasai, Sato, and Mishra 2018; Sato, Ka-
sai, and Mishra 2019; Zhang, Reddi, and Sra 2016; Zhang,
Zhang, and Sra 2018), and Riemannian adaptive optimiza-
tion algorithms (Kumar, Mhammedi, and Harandi 2018; Ka-
sai, Jawanpuria, and Mishra 2019) to name a few.

Recently, Riemannian meta-optimization provides a
promising way to solve the Riemannian optimization prob-
lems (Gao et al. 2020b). Riemannian meta-optimization
leverages the meta-learning technique to learn to optimize
on manifolds in a data-driven fashion. Therein, learnable
Riemannian optimizers that preserve the manifold con-
straints are built, and the method trains the optimizer to per-
form gradient-based Riemannian optimization on the man-
ifolds. This method not only reduces human involvements
of designing optimizers by hand but also achieves promis-
ing performances across various tasks. Despite the success
and as will be shown shortly, the process of training the op-
timizer on manifolds is complex and computationally ex-
pensive, as it requires to differentiate through the complex
gradient-based Riemannian optimization.

Similar to many meta-learning algorithms (Finn, Abbeel,
and Levine 2017; Andrychowicz et al. 2016; Baik, Hong,
and Lee 2020; Li, Wang, and Yu 2020), Riemannian meta-
optimization is modeled as a bi-level optimization process
(i.e., using an inner and an outer loop). In the inner loop,
the optimizer is utilized to iteratively update Riemannian
parameters of the model. In the outer loop, the optimizer
is trained by minimizing the loss of the model, where we
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need to unroll and differentiate through the optimization tra-
jectory in the inner loop to compute the meta-gradient with
respect to parameters of the optimizer. To preserve the non-
linear Riemannian geometry in each optimization step, the
learnable Riemannian optimizer is equipped with Rieman-
nian operations (e.g., retraction operations) that usually con-
tain nonlinear matrix functions, such as matrix power, ma-
trix inversion, eigenvalue decomposition, and singular de-
composition. Differentiating through such matrix functions
inevitably leads to heavy computational loads. It is thus de-
sirable that a scheme efficiently learning the Riemannian op-
timizers should be established.

To this end, we propose a simple yet efficient Riemannian
meta-optimization method that learns a gradient-free opti-
mizer on tangent spaces of manifolds. As the tangent spaces
are Euclidean spaces, finding the evolution of optimization
on tangent spaces can utilize optimization schemes in
linear spaces, not requiring the iterative application of the
retraction operations. The gradient-free optimizer takes
optimization parameters (mapped to tangent spaces) and
training data as inputs, and directly generates updated
parameters, which frees up the algorithm from computing
gradients with respect to the parameters of the model.
In this way, we transform the challenging optimization
problems from manifolds to linear spaces, and thus learning
the optimizer does not need to differentiate through the
complex Riemannian optimization. Besides, by sidestep-
ping the retraction and gradient computation in the inner
loop, our method avoids a exploding gradient issue that
caused by computing products of Hessian and gradients
of the retraction (as required in learning the optimizer on
manifolds), leading to computational efficiencies and stabil-
ities. We empirically show that our gradient-free optimizer
can be trained efficiently and learn a good optimization
trajectory in a data-driven manner. The code is available
at https://github.com/XiaomengFanmcislab/Learning-a-
Gradient-free-Riemannian-Optimizer-on-Tangent-Spaces

In summary, our contributions are two-fold. (1) We pro-
pose a simple yet efficient Riemannian meta-optimization
method that learns the optimizer on tangent spaces. Com-
pared with learning the optimizer on manifolds, our method
is efficient and computationally cheaper. (2) We present a
learnable gradient-free optimizer, which does not require to
compute gradients of parameters of the model, significantly
reducing computation cost.

Preliminaries
Riemannian Manifold
A manifold M is a locally Euclidean space and can be
understood as a generalization of the notion of surface to
higher dimensions (Absil, Mahony, and Sepulchre 2009).
The tangent space toM atX is denoted by TXM. TXM is
a Euclidean space that contains all tangent vectors toM at
X . Commonly encountered Riemannian manifolds include
the Grassmann manifold (Huang, Wu, and Van Gool 2018),
the Stiefel manifold (Huang et al. 2018), and the SPD man-
ifold (Dong et al. 2017), which has the subspace constraint,
the orthogonal column constraint, and the SPD matrix con-

straint, respectively.

Gradient-based Riemannian Optimization
Gradient-based optimization is the workhorse of machine
learning algorithms. In general, the Riemannian gradient-
descent update is given by

X(t+1) = ΓX(t)

(
− ξ(t)πX(t)(∇(t)

X )
)
, (2)

where X(t) is the estimated parameter at time t, ∇(t)
X is the

Euclidean gradient with respect toX(t) in the ambient space
calculated at time t, and ξ(t) is the stepsize. πX(t) and ΓX(t)

are two important operations in the Riemannian optimiza-
tion, named the orthogonal projection and the retraction, re-
spectively. The orthogonal projection πX(∇X) : Rn →
TX(M) transforms ∇X into the tangent space TXM. The
retraction operation ΓX(P ) : TXM → M,P ∈ TXM
maps vectors from the tangent space into the manifold with
a rigidty condition (Absil, Mahony, and Sepulchre 2009).

Gradient-free Optimizer
Problem Definition
Minimizing the empirical risk in Riemannian optimization
problems most often takes the form:

min
X∈M

L(X) ,
1

n

n∑
i

f(X,yi), (3)

where f(·) : M×Y → R is the loss function, X ∈ M is
the parameters of interest on the Riemannian manifoldM,
and {yi}ni=1 are the training data. To solve Eq. (3), Gao et
al. proposed to learn a Riemannian optimizer to search so-
lutions along the manifold (Gao et al. 2020b). Although it
reduces a large number of human involvements to design the
optimizer by hand, this method is prone to be complex and
computationally expensive due to the need of differentiating
through complex Riemannian optimization.

In this paper, we formulate the Riemannian optimization
problem as searching solutions along the tangent space,

min
P∈TXM

L(P ) ,
1

n

n∑
i

f(ΓX(P ),yi), (4)

whereP is the parameter on a tangent space TXM. We pro-
pose a simple yet efficient Riemannian meta-optimization
method that learns the optimizer on the tangent space to
solve Eq. (4). In the following sections, we will detail our
method.

Learning a Gradient-free Optimizer
In our method, we update the parameter P (t) on the tangent
space TXM iteratively as:

P (t+1) = P (t) − η(t), (5)

where η(t) ∈ TXM is an update vector on the tangent
space. After T optimization steps, the parameter on the tan-
gent space is

P (t+T ) = P (t) −
T−1∑
i=0

η(t+i), (6)
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Figure 1: The illustration of optimization on tangent spaces.

and we can utilize the retraction operation to obtain the up-
dated Riemannian parameterX(t+T+1),

X(t+T+1) = ΓX(P (t+T )). (7)

In this way, we only use one retraction operation in updating
T steps. Note that, the optimization may contain multiple
tangent spaces, as shown in Figure 1.

We utilize the meta-learning technique to learn the opti-
mizer to perform such optimization on tangent spaces. Con-
ventional meta-optimization methods usually train recur-
rent networks to perform optimization (Andrychowicz et al.
2016; Ravi and Larochelle 2017). This is done by taking the
gradients of parameters as inputs to the recurrent networks.
Unfortunately, existing solutions cannot be directly applied
to our setting, as the gradients with respect to the parameter
on tangent spaces is complex and requires derivatives of the
retraction. As alluded to earlier, opting to include the deriva-
tives of the retraction may lead to complex computation.

To solve this problem, we introduce a gradient-free opti-
mizer that regards the optimization as a forward process. We
utilize the neural network to learn a function hθ(·) that takes
both the parameter P (t) and training data {yi}ni=1 as inputs,
and directly generates η(t), that is,

η(t) = hθ
(
P (t), {yi}

n
i=1,S

(t−1)
)
, (8)

where θ is the learnable parameter of our optimizer, and
S(t−1) is the optimization state at time t − 1. Our goal is
to learn the parameter θ to perform good Riemannian opti-
mization.

Generalized Matrix LSTM (gmLSTM) Meta-
optimization methods show that the optimizer parameterized
by LSTM are capable of learning to perform optimiza-
tion (Andrychowicz et al. 2016; Ravi and Larochelle 2017).
Considering inputs of our optimizer contain parameters
on tangent spaces with the matrix structure, conventional
LSTM cannot be directly applied to our setting, which
may inevitably destroy the matrix structure. In this paper
and inspired by the work of (Gao et al. 2020b), we further
introduce a generalized matrix LSTM (gmLSTM) model for
various Riemannian manifolds based on a transformation
operation. The transformation operation ΦW (·) projects
inputs to targets that lies in the same domain as the inputs,
and W is the learnable parameter. For example, on SPD
manifolds, the input P ∈ Rd×d is a symmetric matrix, and
the transformation is designed as ΦW (P ) = W>PW ,

Figure 2: The architecture of our gradient-free optimizer.

where W ∈ Rd×d preserves the symmetric property.
On the Stiefel and Grassmann manifolds, the input is a
matrices P ∈ Rd×p, and the transformation is formulated
as ΦW (P ) = W>P , where W ∈ Rd×d. For gmLSTM,
we replace the vector multiplication in conventional LSTM
with the transformation operation, and the gmLSTM model
is denoted as

H(t),C(t) = gmLSTM(P (t),S(t−1)), (9)

where S(t−1) = [C(t−1),H(t−1)] denotes the state of gmL-
STM, containing the memory cellC(t) and the outputH(t).

Optimizer Designing We first utilize two convolutional
layers to process the training data,

Q
(t)
1 =

(
conv2

(
conv1({yi}

n
i=1)

))
, (10)

where conv1 and conv2 denote two convolutional layers
with the ReLU activation function. Then, we utilize a trans-
formation operation ΦW 1

to fuse Q(t)
1 and P (t), and ex-

tract optimization information of P (t) on the training data
{yi}ni=1, that is

Q
(t)
2 = ΦW 1(Q

(t)
1 + P (t)). (11)

Based on the optimization information Q(t)
2 and the opti-

mization state S(t−1), we utilize two gmLSTM models to
calculate a stepsize ξ(t) and a search direction T (t) on the
tangent space. The step-size ξ(t) is calculated byH

(t)
1 ,C

(t)
1 = gmLSTM1

(
Q

(t)
2 ,S(t−1)

)
,

ξ(t) = w>l H
(t)
1

, (12)

where gmLSTM1 is a gmLSTM model, and wl is a learn-
able parameter. Suppose the tangent space is TXM, we
compute the search direction T (t) according to

H
(t)
2 ,C

(t)
2 = gmLSTM2

(
Q

(t)
2 ,S(t−1)

)
,

T (t) = πX

(
ΦW s(H

(t)
2 )
) , (13)

where gmLSTM2 is the other gmLSTM model, and ΦW s

is a transformation operation. Finally, the update vector η(t)

on the tangent space is computed by

η(t) = ξ(t)T (t), (14)
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Figure 3: The computational graph of training our optimizer.

and the optimization state of the optimizer is updated by

S(t) = [H
(t)
1 ⊗H

(t)
2 ,C

(t)
1 ⊗C

(t)
2 ]. (15)

The architecture of our optimizer is shown in Figure 2.
In total, the learnable parameter θ of our optimizer con-
tains parameters of the two convolutional layers conv1 and
conv1, parametersW 1 andW s of two transformation oper-
ations ΦW 1 and ΦW s , parameters of two gmLSTM models
gmLSTM1 and gmLSTM2, and the parameter wl.

Optimizer Training Similar to existing meta-
optimization methods (Andrychowicz et al. 2016; Ravi
and Larochelle 2017), we utilize two optimization loops to
train our optimizer, that is, using an inner loop and an outer
loop. In the inner loop, given the tangent space TX(t)M
and the initial parameter P (t) ∈ TX(t)M, our optimizer
updates P (t) in T steps,

P (t+T ) = P (t) −
T−1∑
l=0

hθ

(
P (t+l), {yi′}

n
i′=1,S

(t−1+l)

)
. (16)

In the outer loop, we utilize the retraction opera-
tion to project P (t+T ) to the manifold, X(t+T+1) =

ΓX(t)(P (t+T )), and train our optimizer by minimizing the
following meta-objective

min
θ
J (θ) ,

1

m

m∑
j=1

L(X
(t+T+1)
j ) =

1

mn

m∑
j=1

n∑
i=1

f

(
Γ
X

(t)
j(

P
(t)
j −

T−1∑
l=0

hθ
(
P

(t+l)
j , {yi′}

n
i′=1,S

(t−1+l)
j

))
,yi

)
,

(17)
where m is the batchsize in the outer loop (i.e., the
meta-objective involves m individual Riemannian parame-
ters of the model). Then, we compute a Riemannian gra-
dient ∇(t+T+1)

X of L(X
(t+T+1)
j ) to identify a new tan-

gent space TX(t+T+1)M and the parameter P (t+T+1) =

πX(t+T+1)(∇(t+T+1)
X ) on the new tangent space. Training

our optimizer is shown in Figure 3.
To update the optimizer, the meta-gradient with respect to

θ of the meta-objective in Eq. (17) is computed as

dJ
dθ

=

〈
dJ

dX(t+T+1)
,
∂X(t+T+1)

∂P (t+T )
·

(
− ∂η(t+T−1)

∂θ
−

t∑
k=2( k−1∏

l=1

(
1− ∂η(t+T−l)

∂P (t+T−l)

)∂η(t+T−k)

∂θ

))〉
,

(18)
where the index j of different parameters on tangent spaces
is ignored.

Comparison with Learning the Optimizer on Rieman-
nian Manifolds. Existing Riemannian meta-optimization
learns to optimize on Riemannian manifolds (Gao et al.
2020b), where its optimizer updates the Riemannian param-
eter by X(t+1) = ΓX(t)

(
−gφ

(
∇(t)

X ,S(t−1)
))

. Compared
with this optimization scheme, our optimizer does not re-
quire neither the retraction operation ΓX(t) nor gradient
computation ∇(t)

X with respect to Riemannian parameters
X(t), reducing much computation cost.

The optimizer gφ of Gao et al. is learned by minimizing
the following meta-objective

min
φ
J (φ) =

m∑
j=1

a+T∑
t=a

L
(
X

(t+1)
j

)

=

m∑
j=1

a+T∑
t=a

n∑
i=1

f

(
Γ
X

(t)
j

(
− gφ

(
∇(t)

Xj
,S

(t−1)
j

))
,yi

)
.

(19)

By denoting Y (t) = −gφ
(
∇(t)

X ,S(t−1)) and unrolling the
optimization trajectory in the inner loop from t = a to t =
a+ T , the meta-gradient with respect to φ is

dJ
dφ

=

a+T∑
t=a

〈
dJ
dX(t)

,

(
t∑

k=1

(
∂X(k)

∂Y (k−1)
· ∂Y

(k−1)

∂φ

t∏
l=k+1( ∂X(l)

∂X(l−1)
+

∂X(l)

∂Y (l−1)
· ∂Y (l−1)

∂∇X(l−1)
· ∇2X(l−1)

)))〉
,

(20)

where the index j of different Riemannian parameters is also
ignored. Comparing Eq. (18) with Eq. (20), Gao et al. have
to differentiate through the complex Riemannian optimiza-
tion, including computing derivatives ∂X(l)

∂X(l−1) and ∂X(l)

∂Y (l−1)

of retraction operations, and computing Hessian matrices
∇2X(l−1), over all optimization steps. The retraction op-
erations contain complex matrix functions, such as matrix

7380



(a) (b)

Figure 4: Maximum eigenvalues of derivatives of retrac-
tion operations and Hessian matrices in a texture cluster-
ing task on SPD manifolds (Kylberg 2011). We compute
the derivatives of retraction operations and Hessian matri-
ces, and calculate the maximum eigenvalue of each matrix.
We can find that, all eigenvalues in (a) and more than three
quarters eigenvalues in (b) are greater than one.

meta-gradient

Hessian

Hessian

gradient

gradient

Gao et al. Our Method

Manifold Tangent 
space

(a) (b)                             (c)

optimizer

loss
BP

gradient

retraction

loss

meta-gradient

loss

retractiongradientoptimizer

loss
BP

gradient

retraction

optimizer

optimizer

Figure 5: Comparison between Gao et al. (Gao et al. 2020b)
and our method. (a) Gao et al. learn optimizers on manifolds,
and its meta-gradient involves products of Hessian matrices
and derivatives of retraction operations, where⊗ denotes the
matrix multiplication and R′ denotes derivatives of retrac-
tion operations. (b) Gao et al. suffers from the exploding
gradient issue, while our method does not. (c) We learn op-
timizers on tangent spaces, and our meta-gradient is stabler.

power, matrix inversion, eigenvalue decomposition, and sin-
gular decomposition, making calculating derivatives of re-
traction operations and Hessian matrices computationally
expensive. In contrast, training our optimizer only requires
to differentiate through the forward process of our optimizer
(a simple network) and compute the derivative ∂X(t+T+1)

∂P (t+T ) of
one retraction operation in the outer loop, which is simpler
and computationally cheaper.

Remark From Eq. (20), we can find the meta-gradient of
Gao et al. has products of the Hessian ∇2X(l−1) and prod-
ucts of derivatives of the retraction operations ∂X(l)

∂X(l−1) and
∂X(l)

∂Y (l−1) . It is widely known (e.g., (Pascanu, Mikolov, and
Bengio 2013; Metz et al. 2019) ) that the meta-gradient may
grow exponentially with the increase of the number T of op-
timization steps in the inner loop, if the maximun eigenval-

ues or singular values of the Hessian matrices or derivatives
of the retraction operations are larger than one. Actually, as
the nonlinearity of the Riemannian optimization, the max-
imun eigenvalues or singular values of both them are usually
larger than one. We provide an example of a clustering task
on SPD manifolds, as shown in Figure 4. Thus, training the
optimizer in Gao et al. has the exploding gradient issue, as
shown in Figure 5 (a) and (b). In contrast, in Eq. (18), the
meta-gradient of our method does not involve products of
Hessian and products of derivatives of retraction operations,
since our optimizer sidesteps the retraction operations and
gradients with respect to parameters of the model in the in-
ner loop. Thus, our method refrains the exploding gradient
issue, as shown in Figure 5 (b) and (c).

Related Work
Riemannian optimization problems can be effectively solved
by gradient-based Riemannian optimization algorithms.
Bonnabel (Bonnabel 2013) proposed the first Riemannian
stochastic gradient descent algorithm. After that, many ef-
forts have been made to design powerful Riemannian opti-
mizers by hand. For example, several algorithms generalized
accelerated or momentum techniques from Euclidean spaces
to Riemannian manifolds (Liu et al. 2017; Zhang and Sra
2018; Kumar, Mhammedi, and Harandi 2018), some algo-
rithms studied reducing the variance of stochastic Rieman-
nian gradients (Zhang, Reddi, and Sra 2016; Sato, Kasai, and
Mishra 2019; Kasai, Sato, and Mishra 2018; Zhang, Zhang,
and Sra 2018), and some algorithms developed Rieman-
nian adaptive optimization (Kumar, Mhammedi, and Ha-
randi 2018; Kasai, Jawanpuria, and Mishra 2019; Bécigneul
and Ganea 2019). Besides, two works (Lezcano-Casado and
Martınez-Rubio 2019; Casado 2019) transformed optimiza-
tion problems from Stiefel manifolds into Euclidean spaces.
Compared with the two works, our method can be applied
to various manifolds, and our optimizer is gradient-free and
learned via a data-driven manner, which is computational
cheap, not requiring gradients with respect to parameters.

Recently, Gao et al. (Gao et al. 2020b) proposed a Rie-
mannian meta-optimization method that utilizes the meta-
learning technique to learn the optimizer on SPD mani-
folds, reducing human involvements to design the optimizer
by hand. Therein a matrix LSTM model is introduced to
process Riemannian gradients. To be specific, the matrix
LSTM is trained to produce search directions using the gra-
dient information for the SPD manifold. Compared with it,
our method can be applied to various manifolds and is a
gradient-free optimizer. As alluded to before, our method
works on tangent spaces to avoid the retraction operations
and computing the gradients of the Riemannian parameters
in the inner loop. In this case, our method reduces much
computational cost of learning the optimizer and sidesteps
the exploding gradient issue of Gao et al.

Experiments
In this section, we evaluate our method from three per-
spectives, that is, the convergence, accuracy and efficiency.
We compare our optimizer with state-of-the-art Rieman-
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RSGD RSGDM RSVRG RSRG RASA Gao et al. Ours

Figure 6: Plots for the PCA task (in the log scale).

nian optimizers: RSGD (Bonnabel 2013), RSGDM (Kumar,
Mhammedi, and Harandi 2018), RSVRG (Zhang, Reddi,
and Sra 2016), RSRG (Kasai, Sato, and Mishra 2018),
RASA (Kasai, Jawanpuria, and Mishra 2019), and Gao et
al. (Gao et al. 2020b). RSGD, RSGDM, RSVRG, RSRG,
and RASA are hand-designed optimizers, and Gao et al.
learn optimizers on manifolds. We replace the original mL-
STM model in Gao et al. with the gmLSTM model to eval-
uate its performance on various manifolds. Following (Gao
et al. 2020b), hyperparameters of all optimizers are tuned to
achieve the best performance.

Convergence Analysis
In this section, we analyze the convergence of the learned
optimizer. We conduct experiments on three tasks: PCA,
face recognition, and clustering, modeled on the Grassmann
manifold G(p, d), Stiefel manifold St(p, d), and SPD mani-
fold Sd++, respectively.

PCA on the Grassmann Manifold Principal component
analysis aims to learn an orthogonal projectionX ∈ G(p, d)
that minimizes the sum of squared residual errors between
projected results and the original data.

We utilize the MNIST dataset to evaluate our optimizer.
We resize images to 784-dimensional vectors and aim to
learn 128-dimensional representations. We train the opti-
mizer on the training set and evaluate its performance on
both the training and test sets. Experimental results are
shown in Figure 6. Compared with hand-designed optimiz-
ers, our optimizer has a fast convergence and lower optima,
no matter on the training or test sets. Gao et al. also learn
a Riemannian optimizer. Compared with it, our optimizer
achieves comparable performance, showing that a gradient-
free optimizer can also be trained to achieve good perfor-
mance in a data-driven manner.

Face Recognition on the Stiefel Manifold The orthogo-
nality constraint has been widely used to extract discrimi-
native features, and parameters with the orthogonality con-
straint are forced on Stiefel manifolds. Here, we conduct the
experiment on the face recognition task, where a linear clas-
sifier with the orthogonality constraint is used.

In this experiment, we use the YaleB dataset (Lee, Ho,
and Kriegman 2005) to evaluate our optimizer. We train the
optimizer on the training set, and its performance is shown
in Figure 7. We plot the loss curve in the log scale. We
can find that, the learned optimizers of Gao et al. and our
method have faster convergences and better optimas than

RSGD RSGDM RSVRG RSRG RASA Gao et al. Ours

Figure 7: Plots for the face recognition task (in the log scale).

RSGD RSGDM RSVRG RSRG RASA Gao et al. Ours

Figure 8: Plots for the clustering task (in the log scale).

hand-designed optimizers, as the learned optimizers can ex-
ploit the underlying data distribution and learn a good op-
timization trajectory in a data-driven manner. RSRG and
RSVRG finally converge to loss values of−4.42 and−3.63,
Gao et al. converges to the loss of −4.72, while our opti-
mizer converges to the best optima, −5.41.

Clustering on the SPD Manifold We also conduct exper-
iments on the clustering task of SPD representations. We
evaluate our optimizer on the Kylberg texture dataset (Kyl-
berg 2011). Following the work of (Kumar, Mhammedi, and
Harandi 2018), we extract a 5 × 5 covariance descriptor to
represent each image. We train the optimizer on the training
set, and its performance on both the training and test sets
is shown in Figure 8. The results show our optimizer again
achieves the best performance.

Accuracy Analysis
We evaluate the performance of the solved classifier in the
face recognition task and centers in the clustering task. In the
face recognition task, we utilize the training set to solve the
classifier and then compute the accuracy on the test set. In
the clustering task, we regard the centers as category pro-
totypes and compute distances between test samples and
prototypes for classification. Results are shown in Table 1.
Learnable optimizers achieve better performance, surpass-
ing hand-designed optimizers, since they can find good op-
timas in a data-driven manner. Our method has the highest
accuracy, which achieves 90.2% and 86.1% on the two tasks,
1.2% and 0.9% higher than Gao et al. This shows that our
optimizer can arrive at a better optima.

Efficiency Analysis
Meta-gradients We measure norms of meta-gradients of
our method and Gao et al. (Gao et al. 2020b) in the cluster-
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Figure 9: Meta-gradients of our method and Gao et al. (Gao et al. 2020b) in the clustering task.

Method Face Recognition Clustering
RSGD 79.4 85.1

RSGDM 79.6 85.0
RSVRG 79.6 80.3
RSRG 78.0 83.9
RASA 80.2 85.2

Gao et al. 89.0 85.2
Ours 90.2 86.1

Table 1: Accuracy (%) of the solved classifier and centers.

Training strategy Mean Variance
Ours-5 0.92 1.10
Ours-10 1.94× 101 4.34× 102

Ours-20 2.13× 101 1.25× 103

Gao et al.-5 1.27× 104 3.47× 108

Gao et al.-10 1.08× 105 2.52× 1010

Gao et al.-20 6.09× 105 2.28× 1011

Table 2: Mean and variance of meta-gradients in clustering.

ing task with different optimization steps T in the inner loop.
Results are shown in Figure. 9, and means and variances of
the meta-gradients are shown in Table 2, where ‘Ours-5’ de-
notes our method with the optimization steps in the inner
loop as 5, and ‘Gao et al.-5’ means the method of (Gao et al.
2020b) with the optimization steps in the inner loop as 5,
i.e., T = 5. We can find that meta-gradients of Gao et al.
change sharply and have large norms. With the increase of
optimization steps in the inner loop, meta-gradients of Gao
et al. grows rapidly, which confirms our analysis. They have
to set a small number of optimization steps in the inner loop
to alleviate this issue, but this leads to biased meta-gradients
and training oscillations. In contrast, meta-gradients of our
method are stabler and have much smaller norms, show-
ing that our method can avoid the exploding gradient issue.
Even when the step of the inner loop is T = 20, the mean
of our meta-gradient is 2.13 × 101, much smaller than that
1.27 × 104 of Gao et al. at T = 5. Besides, the variance of
our meta-gradient is much smaller than that of Gao et al.,
showing that training our optimizer is stabler.

Training Time We measure the training time of our
method and Gao et al. (Gao et al. 2020b) with the same num-
ber of optimization steps in the outer loop, which is set as
100. Results are shown in Table 3. In the Table, the method
with a large number of optimization steps in the inner loop

Training strategy PCA Face Recognition Clustering
Ours-5 61.3 71.5 1365.6
Ours-10 110.8 135.9 1392.1
Ours-20 208.4 272.8 1419.0

Gao et al.-5 139.1 184.3 3000.5
Gao et al.-10 510.1 665.7 6058.8
Gao et al.-20 1876.6 2508.6 11979.2

Table 3: Training time (seconds) on the three tasks.

requires much training time, while it has unbiased gradients.
Compared with Gao et al., our method requires less training
time, especially with a large number of optimization steps in
the inner loop. When T = 20, our method requires 208.4,
272.8, and 1419.0 seconds on the three tasks, while Gao
et al. requires 1876.6, 2508.6, and 11979.2 seconds, more
time-consuming than our method. The reason is that, our
optimizer is a forward process in linear spaces, not requir-
ing Riemannian operations, and learning our optimizer does
not need to differentiate through the complex Riemannian
optimization. Thus, based on the analyses of training time
and meta-gradients, training our optimizer is more efficient.

Conclusion
In this paper, we have presented a simple yet efficient
method to learn optimizers for Riemannian optimization.
Our optimization scheme that transforms the search space
from nonlinear manifolds to linear tangent spaces can avoid
complex retraction operations, being much easier to imple-
ment. Our gradient-free optimizer regards the optimization
process as a forward function and does not need to com-
pute gradients with respect to Riemannian parameters, re-
ducing much computation cost. Besides, our method can
avoid exploding gradient issue of learning the optimizer on
Riemannian manifold by sidestepping the retraction opera-
tions and gradient computation in the inner loop. We empir-
ically demonstrate that training our optimizer is more effi-
ciently, and it has smaller and stabler meta-gradients. Mean-
while, experiments on three tasks show that our gradient-
free optimizer learned in a data-driven manner can achieve
state-of-the-art performance for Riemannian optimization.
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