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Abstract

In this paper, we aim to construct a deep neural network
which embeds high dimensional symmetric positive definite
(SPD) matrices into a more discriminative low dimensional
SPD manifold. To this end, we develop two types of basic lay-
ers: a 2D fully connected layer which reduces the dimension-
ality of the SPD matrices, and a symmetrically clean layer
which achieves non-linear mapping. Specifically, we extend
the classical fully connected layer such that it is suitable for
SPD matrices, and we further show that SPD matrices with
symmetric pair elements setting zero operations are still sym-
metric positive definite. Finally, we complete the construc-
tion of the deep neural network for SPD manifold learning by
stacking the two layers. Experiments on several face datasets
demonstrate the effectiveness of the proposed method.

Introduction
Symmetric positive definite (SPD) matrices have shown
powerful representation abilities of encoding image and
video information. In computer vision community, the SPD
matrix representation has been widely employed in many
applications, such as face recognition (Pang, Yuan, and Li
2008; Huang et al. 2015; Wu et al. 2015; Li et al. 2015),
object recognition (Tuzel, Porikli, and Meer 2006; Jaya-
sumana et al. 2013; Harandi, Salzmann, and Hartley 2014;
Yin et al. 2016), action recognition (Harandi et al. 2016),
and visual tracking (Wu et al. 2015).

The SPD matrices form a Riemannian manifold, where
the Euclidean distance is no longer a suitable metric. Pre-
vious works on analyzing the SPD manifold mainly fall
into two categories: the local approximation method and
the kernel method, as shown in Figure 1(a). The local
approximation method (Tuzel, Porikli, and Meer 2006;
Sivalingam et al. 2009; Tosato et al. 2010; Carreira et al.
2012; Vemulapalli and Jacobs 2015) locally flattens the
manifold and approximates the SPD matrix by a point of
the tangent space. The kernel method (Harandi et al. 2012;
Wang et al. 2012; Jayasumana et al. 2013; Li et al. 2013;
Quang, San Biagio, and Murino 2014; Yin et al. 2016) em-
beds the manifold into a higher dimensional Reproducing
Kernel Hilbert Space (RKHS) via kernel functions. On new
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Figure 1: The comparison between our method and previous
methods on analyzing the SPD manifold. (a) Previous meth-
ods either locally flatten the SPD manifold via tangent space
approximation, or embed the manifold into a higher dimen-
sional reproducing kernel Hilbert space. (b) Our method
aims to find a non-linear mapping that projects high dimen-
sional SPD matrices into a lower dimensional SPD mani-
fold.

spaces, both methods convert the SPD matrix into a vec-
tor and learn a corresponding discriminative representation.
However, both local approximation and kernel methods face
two problems. First, the SPD matrices are high dimensional,
which brings the problem of high computational cost. Sec-
ond, the vectorization operation on SPD matrices might give
rise to the distortion of the manifold geometrical structure.

To overcome the two problems mentioned above, we fo-
cus on learning a non-linear mapping which projects high di-
mensional SPD matrices to a low dimensional discriminative
SPD manifold, as shown in Figure 1(b). Recently, the deep
neural network has shown strong capability of describing
complex non-linear maps and been successfully applied on
many vision tasks, such as image classification (Krizhevsky,
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Sutskever, and Hinton 2012; Simonyan and Zisserman 2014;
Szegedy et al. 2015; He et al. 2016) and face recogni-
tion (Sun, Wang, and Tang 2015; Taigman et al. 2015;
Schroff, Kalenichenko, and Philbin 2015; Parkhi, Vedaldi,
and Zisserman 2015). Motivated by these achievements of
deep networks, we advocate modeling the non-linear map-
ping which reduces the dimensionality of high dimensional
SPD matrices via a deep neural network.

To achieve this goal, two key issues need to be addressed:
dimension reduction and non-linear operation. We introduce
two basic layers, i.e., the 2D fully connected layer and the
symmetrically clean layer, to realize dimension reduction
and non-linear operation, respectively. The 2D fully con-
nected layer reduces the dimensionality of the SPD matri-
ces via a linear mapping, and the symmetrically clean layer
sets the symmetric pairs of elements in the SPD matrix as
zeros to add non-linearity to the mapping. The two layers
should ensure that the output matrices are symmetric pos-
itive definite. We thus provide the necessary and sufficient
condition for the 2D fully connected layer, and prove that
the symmetrically clean layer keeps the symmetry and pos-
itive definite properties of SPD matrices. Based on the two
layers, the deep neural network for SPD manifold learning is
constructed and evaluated on the face recognition tasks. Our
network has several advantages compared with the tradi-
tional methods on analyzing the SPD manifold. First, learn-
ing discriminative representations in new learned low di-
mensional SPD space brings low computational cost. Sec-
ond, our method works on the original SPD matrix instead
of the vectorization form, which makes full use of the man-
ifold geometrical structure.

This work is, to the best of our knowledge, the first to ex-
ploit the deep neural network to analyze the SPD manifold.
The contributions of the paper are two-fold: (1) We propose
an non-linear operation on the SPD manifold, and prove
that SPD matrices with symmetrically clean operation are
still symmetric positive definite. (2) The proposed deep neu-
ral network is able to project high dimensional SPD matri-
ces to a low dimensional discriminative SPD manifold, and
achieves good performances on the face recognition task.

Related Work

In this section, we briefly review several SPD manifold re-
lated work including two aspects: SPD manifold metrics and
representative work of learning discriminative functions by
these metrics.

Let’s define the manifold of n × n SPD matrices as S
+
n .

The SPD matrix to the matrix space is similar as positive
number to the real number space. A straightforward metric
is the Frobenius norm between SPD matrices which is an
extension of the Euclidean measure, but several undesirable
effects may occur since the Frobenius norm ignores the man-
ifold geometrical structure, such as the swelling of diffusion
tensors (Arsigny et al. 2006; Pennec, Fillard, and Ayache
2006). To overcome the problem, several metrics on Rie-
mannian manifold are introduced. The Affine Invariant Met-
ric (AIM) proposed by (Pennec, Fillard, and Ayache 2006)

is defined as

δA(A,B) = ‖ log(A−1/2BA−1/2)‖F

=
( n∑

i=1

(log λi)
2
)1/2

,
(1)

where ‖·‖F denotes the Frobenius norm of a matrix, log(·) is
the matrix logarithm operator, A,B ∈ S

+
n and λi is the gen-

eralized eigenvalue of A and B, i.e., det(λiA−B) = 0. Al-
though the AIM is invariant to affine transformations, it is a
high computational burden in practice (Arsigny et al. 2007).
To reduce the computation cost, the Stein Metric (SM) is
studied and introduced by Sra (2012):

δS(A,B) = log det
(A+B

2

)
− 1

2
log det(AB). (2)

The δS has several similar properties as δA and is less expen-
sive to compute (Cherian et al. 2013). Furthermore, Harandi,
Salzmann, and Hartley (2014) proved that the length of any
curve is the same under δS and δA up to a scale of 2

√
2.

Another metric on S
+
n is the Log-Euclidean Metric (LEM)

which is considered by endowing the SPD manifold a Lie
group structure (Arsigny et al. 2006; 2007). The LEM is
given by

δL(A,B) = ‖ log(A)− log(B)‖F . (3)

Different from δA and δS , δL is a bi-invariance metric, i.e.,
δL(A,B) = δL(B,A). Since LEM only needs matrix log-
arithm and Euclidean operations, its computation cost is
much less than the AIM and the SM.

Based on these metrics, a few works are proposed to learn
discriminative functions on the SPD manifold. One repre-
sentative work is (Vemulapalli and Jacobs 2015). Their work
first flattens the manifold by projecting SPD matrixes to the
tangent space at the point of the identity matrix with the
matrix logarithm operator log(·) for local approximation,
and then performs the information theoretic metric learn-
ing method for the corresponding vectors of the points on
the tangent space. They further conduct experiments on face
and object datasets, and obtain good performances.

To consider the local manifold structure of manifold
data points, the kernel method embeds the SPD manifold
into a higher dimensional RKHS via a kernel function and
learns discriminative functions on the new space. Based on
the LEM, the Covariance Discriminative Learning (CDL)
(Wang et al. 2012) employs a new kernel function and con-
ducts partial least squares or linear discriminant analysis in
the new space. Besides, many attempts focus on sparse rep-
resentation and dictionary learning on SPD matrix with ap-
propriate kernels, such as Riemannian Sparse Representa-
tion (RSR) (Harandi et al. 2012; 2016) and online dictio-
nary learning (Zhang et al. 2015) based on the SM, and Log-
Euclidean Kernel (LEK) (Li et al. 2013) and Manifold Ker-
nel Sparse Representation (MKSR) (Wu et al. 2015) based
on the LEM. Yin et al. (2016) further proposed a sparse sub-
space clustering method for the SPD manifold via an LEM
based kernel.

To handle the problems of high computation cost and
manifold geometrical structure distortion which methods
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mentioned above face, two works are proposed to reduce
the dimensionality of the SPD matrix. Harandi, Salzmann,
and Hartley (2014) learned a linear mapping which projects
the high dimensional SPD manifold into a lower one. The
objective function of the learning method encodes the infor-
mation of intra-class and inter-class distances based on the
AIM and the SM. Similarly, Huang et al. (2015) learned a
discriminative metric for the SPD manifold. The metric is
achieved by reducing the dimensionality of the logarithm of
the SPD matrix via a linear mapping. Different from these
two works, our method aims at learning a non-linear map-
ping for SPD matrices via a deep network to facilitate chal-
lenging scenarios.

Deep Manifold Learning of SPD Matrices
Although the layers of the neural network for SPD mani-
fold learning is similar to the classical neural network, deep
manifold learning of SPD matrices is not straightforward,
because each layer of the proposed network takes an SPD
matrix as the input and the output must be still an SPD ma-
trix. To achieve this, two types of layers are introduced: one
is a 2D fully connected layer for dimensionality reduction of
the SPD matrix, and the other is a symmetrically clean layer
to ensure the non-linearity of the mapping.

2D Fully Connected Layer
The classical fully connected layer is used for 1D vector,
and we extend the layer to make it applicable to 2D ma-
trices and name the new layer 2D Fully Connected Layer.
Let X ∈ R

m1×n1 and Y ∈ R
m2×n2 be the input and out-

put matrices, respectively. We use X1,X2, ...,Xm1
to rep-

resent the m1 rows of X , and X1,X2, ...,Xn1 to represent
the n1 columns of X for simplicity. Figure 2 shows that the
2D fully connected layer is constructed in two steps. First,
the neurons in each row Xi are fully connected to n2 new
neurons via the parameter of Ui ∈ R

n1×n2 , which thus gen-
erates a new matrix Z ∈ R

m1×n2 :

X =

⎡
⎢⎢⎣

X1

X2

...
Xm1

⎤
⎥⎥⎦ → Z =

⎡
⎢⎢⎣

X1U1

X2U2

...
Xm1

Um1

⎤
⎥⎥⎦ . (4)

Second, all the m1 neurons in each column of Z are fully
connected to the m2 neurons in the corresponding column of
Y with the parameter Vi ∈ R

m1×m2 , which is formulated
as

Z =
[
Z1,Z2, . . . ,Zn2

]
↓

Y =
[
V �
1 Z1,V �

2 Z2, . . . ,V �
n2
Zn2

]
.

(5)

For low complexity of training, the parameters can be shared
and reduced in the form of

U = U1 = U2 = . . . = Um1
,

V � = V �
1 = V �

2 = . . . = V �
n2
.

(6)

Considering the symmetry property of the SPD matrix,
i.e., m1 = n1 = n and m2 = n2 = m, the parameters can
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Figure 2: The illustration of the 2D fully connected layer.
Neurons in the rectangles connecting to an arrow are fully
connected each other. The solid line represents the first step,
and the dotted line represents the second step.

be further shared: U = V = W . The 2D fully connected
layer for an SPD matrix is thus formulated as

Y = W�XW , (7)

where X ∈ S
+
n is the input, Y ∈ S

+
m(m < n) is the output,

and W ∈ R
n×m is the parameter. To ensure that Y is also

positive definite, W should be column full rank.

Symmetrically Clean Layer
A non-linear operation should be endowed to the SPD ma-
trix to ensure the non-linearity of the mapping. To describe
the operation, we first define a function f(·) as

Definition 1. For a square matrix A ∈ R
n×n and a set of

ordered pairs S ⊂ T× T where T = {1, 2, ..., n}, we define
f(A, S) as a new n× n square matrix B:

Bij =

{
0, if (i, j) ∈ S or (j, i) ∈ S,

Aij , otherwise.
(8)

The non-linear operation is then defined as

Y = f(X, S), (9)

where X and Y are the input and output of this layer, re-
spectively, and S ⊂ T×T−{(i, j)|i = j},T = {1, 2, ..., n}.
It’s easy to verify that Y is symmetric if X is a symmetric
matrix. Eq.(9) indicates that the operation is setting some
symmetric pairs of elements as zeros, we thus call this layer
symmetrically clean layer. Here, we have Proposition 1 to
ensure that Y is also an SPD matrix, and the proof of the
proposition is in the appendix.

Proposition 1. Let B ∈ S
+
n be an SPD matrix, and S ⊂

T×T−{(i, j)|i = j} where T = {1, 2, ..., n}, then f(B, S)
is still an SPD matrix.
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Table 1: Comparison results with other methods on YTC and ICT-TV datasets.
Methods YTC ICT-TV-BBT ICT-TV-PB
AIM (Pennec, Fillard, and Ayache 2006) 30.33± 3.72 37.64± 3.14 11.29± 2.46
SM (Sra 2012) 28.85± 3.41 38.07± 2.93 11.41± 2.85
LEM (Arsigny et al. 2007) 31.34± 3.64 40.89± 3.08 13.36± 2.72

SPDML (Harandi, Salzmann, and Hartley 2014) 40.86± 3.24 41.52± 2.14 17.94± 2.82
RSR (Harandi et al. 2012) 34.01± 3.06 47.93± 2.72 15.52± 2.30

LEK (Li et al. 2013) 33.81± 3.83 44.16± 2.71 16.74± 2.74
CDL (Wang et al. 2012) 31.84± 2.54 44.38± 2.28 15.26± 2.06
ITML-LEM (Vemulapalli and Jacobs 2015) 33.42± 3.42 46.62± 2.03 14.39± 2.52
LEML (Huang et al. 2015) 38.04± 2.11 49.60± 2.57 18.73± 2.20

DCC (Kim, Kittler, and Cipolla 2007) 32.84± 3.61 46.68± 3.04 15.31± 2.83
GDA (Hamm and Lee 2008) 32.09± 3.17 46.14± 2.98 17.03± 2.91
AHISD (Cevikalp and Triggs 2010) 31.16± 3.04 41.62± 2.72 15.88± 2.25
CHISD (Cevikalp and Triggs 2010) 32.08± 2.66 45.24± 2.58 16.52± 2.91
SSDML (Zhu et al. 2013) 34.77± 2.59 42.36± 2.47 13.71± 3.07

Our method 46.37± 3.07 55.18± 2.94 24.18± 2.05

The Proposition 1 shows that cleaning any symmetric
pairs (no principal diagonal elements) is capable, and the
ReLU operation is used here for simplicity. The ReLU oper-
ation assigns all the negative elements in the SPD matrix
zeros. The principal diagonal elements of an SPD matrix
will be positive forever, so the ReLU operation is a suitable
choice.

Stacking the two types of basic layers, we construct a
deep neural network to reduce the dimensionality of the SPD
manifold. At the end of the network, a triplet loss is utilized
to measure the distances between low-dimensional SPD ma-
trices.

Experiments
To verify the effectiveness of the proposed network, we con-
duct experiments on two face datasets: YouTube Celebrities
(YTC) (Kim et al. 2008) and ICT-TV (Li et al. 2015).

Datasets
The YouTube Celebrities (YTC) dataset (Kim et al. 2008)
contains 1, 190 videos clips of 47 individuals (actors, ac-
tresses, and politicians) collected from the YouTube web-
site. Each individual has about 41 clips segmented from 3
unique long videos, and the frame number of theses video
clips varies from 8 to 400. The face video clips in this dataset
exhibit larger variations in pose, illumination, and expres-
sions. What’s more, most of the videos are low resolution
and recorded at high compression rates, which leads to noisy
and low-quality image frames. The YTC dataset is thus a
more challenging face video dataset.

The ICT-TV dataset (Li et al. 2015) contains two large
scale video collections from two hit American shows, i.e.,
the Big Bang Theory (BBT) and Prison Break (PB). These
two TV series are quite different in their filming styles. The
BBT is a sitcom with 5 main characters, and most scenes are
taken indoors during each episode of about 20 minutes long.
Differently, many shots of the PB are taken outside during
the episodes with the length of about 42 minutes, which re-
sults in a large range of different illumination. All the face

video shots are collected from the whole first season of both
TV series, i.e., 17 episodes of BBT, and 22 episodes of PB,
and the number of shots of the two sets are 4, 667 and 9, 435,
respectively. The collected video shots are stored in the form
of images with size of 150× 150 frame by frame.

Experimental Setting
On the YTC dataset, we pre-process the face frames as fol-
lows for face recognition. All the faces are detected and re-
sized to 48 × 60 pixels, followed by the histogram equal-
ization for reducing lighting effects. The face frame is flat-
tened into a vector of size 2, 880, and the PCA is executed
to reduce the dimension to 100. For each face video clip, the
kernel representation which shows better performance than
covariance matrix (Wang et al. 2015) is extracted by using
these vectors, and the kernel representation is an SPD matrix
size of 100×100. For each individual, the gallery set is com-
posed of 3 randomly selected video clips which come from
3 unique videos, and the probe set consists 6 randomly se-
lected video clips where each unique video provides 2 video
clips. The recognition accuracy is used as the evaluation cri-
terion.

We preprocess face frames in the ICT-TV dataset in the
same way as the YTC dataset. The face videos of 5 and
11 main characters of BBT and PB are used in the exper-
iments, respectively. For each character, the videos are ran-
domly split into training and testing set with the ration of
1:1.

Results
The comparison results are shown in Table 1. Among the
comparison methods, the AIM, SM, and LEM are basic met-
rics and used as the baseline, SPDML and RSR are AIM and
SM based supervised methods, LEK, CDL, ITML-LEM,
and LEML are LEM based supervised methods, and others
are set model methods which are not based on SPD man-
ifold. The RSR and LEM are sparse representation based
methods, so they use sparse representation based classifier
for the face recognition task, and other methods use the
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nearest neighbor classifier. As shown in Table 1, our meth-
ods achieves the best performance on the face recognition
task, the primal reason is that the proposed deep network
describes a good non-linear mapping which projects high
dimensional SPD matrices to a low dimensional discrimina-
tive SPD manifold, and the end-to-end training manner helps
to improve the discriminative power of the low dimensional
manifold.

Conclusion
In this paper, we have constructed a deep neural network
which projects high dimensional SPD matrices to a more
discriminative low dimensional SPD manifold. Two basic
layers are introduced to implement the network. The 2D
fully connected layer reduces the dimensionality of the SPD
matrices, and the symmetrically clean layer aims to add
non-linearity to the mapping. Experiments on several face
datasets showed the effectiveness of the proposed network.
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Appendix
We prove Proposition 1 in the appendix. To prove the propo-
sition, we need two lemmas.

Lemma 1. Let E =

[
D β
β� b

]
be a square matrix where

D ∈ R
(n−1)×(n−1),β ∈ R

(n−1)×1, and a ∈ R. If the
determinant det(D) �= 0, then det(E) = det(D)(b −
β�D−1β).

Proof. We use D−1 to represent the inverse matrix of D
since det(D) �= 0. Let

F =

[
I −D−1α
0� 1

]
(10)

where I ∈ R
(n−1)×(n−1) is the identity matrix, and 0 ∈

R
(n−1)×1 is a vector whose elements are all zeros, then

det(F ) = 1.
We have that

EF =

[
D 0
β� b− β�D−1β

]
. (11)

Therefore, det(E) = det(E) det(F ) = det(EF ) =
det(D)(b− β�D−1β).

Lemma 2. For any G ∈ S
+
n , the inverse matrix G−1 ∈ S

+
n .

Proof. We do the following case analysis:

(1) G−1 is symmetric.
(
G−1

)�
=

(
G�

)−1
= G−1. (12)

(2) G−1 is positive definite.
Since G is a real symmetric matrix and thus a nor-
mal matrix, we have that G = WΛW� where W
is an unitary matrix, i.e., WW� = W�W = I ,
and Λ = diag(λ1, λ2, ..., λn) is a real diagonal matrix
whose principal diagonal elements are eigenvalues λi >
0. Then, G−1 = (W�)−1Λ−1W−1 = WΛ−1W�.
Note that Λ−1 = diag(λ−1

1 , λ−1
2 , ..., λ−1

n ) is also a real
diagonal matrix whose principal diagonal elements are
eigenvalues of G−1. Since all the eigenvalues λ−1

i are
positive, G−1 is a positive definite matrix .

Therefore, G−1 is an SPD matrix.

The proof of Proposition 1 is as follow:

Proof. The proof includes three procedures.

(1) ∀B ∈ S
+
n , f

(
B,

{
(n− 1, n)

}) ∈ S
+
n :

We rewrite B as

B =

[
A α
α� a

]
(13)

where α� =
[
β� b

]
,β ∈ R

(n−2)×1, and b ∈ R, then

C = f
(
B,

{
(n− 1, n)

})
=

[
A γ
γ� a

]
(14)

where γ� =
[
β� 0

]
.

Since B is a positive definite matrix, the determinants of
all the leading principal submatrices of B are positive,
including det(B) > 0. A is one of the leading principal
submatrix of B, so all the leading principal submatrices
of A are positive, and thus A is also an SPD matrix. It’s
no wonder that det(A) > 0, and according to Lemma
2, the inverse matrix A−1 is an SPD matrix.
We prove the hypothesis by contradiction. Assume to
the contrary that C is not an SPD matrix. Because the
determinants of all leading principal submatrices of A
are all positive, the determinant of C is not positive,
i.e. det (C) ≤ 0. According to Lemma 1, we have that
det(C) = det(A)(a−γ�A−1γ), and since det(A) >
0, then

a ≤ γ�A−1γ. (15)

Similarly, det(B) = det(A)(a − α�A−1α) > 0 and
det(A) > 0, we have that

a > α�A−1α. (16)

Considering Eq.(15) and Eq.(16) jointly, it’s easy to see
that

α�A−1α < γ�A−1γ. (17)

Let δ� =
[
0� b

]
where 0 ∈ R

(n−2)×1 is a vector of
zeros, then

α =

[
β
b

]
=

[
β
0

]
+

[
0
b

]
= γ + δ. (18)

Substitute Eq.(18) into Eq.(17), and note that
γ�A−1δ = δ�A−1γ = 0, we have δ�A−1δ < 0,
which is conflict with that A−1 is positive definite and
concludes the proof of procedure (1).
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Figure 3: The basic ideas of 2-nd and 3-rd procedure in the proof of Proposition 1. (a) In the 2-nd step, the matrix C is generated
by performing following four interchanging procedures on B. The transformation from B to C is invertible, and the inverse
of the transformation is itself. (b) An illustration of 3-rd procedure. Let’s take m = 4 as an example. Colorful stars represent
elements to be set to zero, and they are set one by one, i.e., the f(B, S) is performed in 4 steps.

(2) ∀B ∈ S
+
n , f

(
B,

{
(i, j)

}) ∈ S
+
n where (i, j) ∈ S.

Let’s consider two n × n elementary matrices: P1 and
P2. The P1 is created by interchanging the j-th and the
n-th columns of an identity matrix of size n×n, and the
P2 is created by interchanging the i-th and the (n− 1)-
th columns of an identity matrix of size n× n. It’s easy
to prove that

P1 = P�1 = P−1
1 ,P2 = P�2 = P−1

2 . (19)

We define a matrix P = P1P2. Please note that
P1P2 = P2P1, then P has the property that

P = P� = P−1. (20)

Figure 3(a) shows that a matrix C is generated by per-
forming following four procedures on B: interchanging
the j-th and the n-th columns, interchanging the i-th and
the (n − 1)-th columns, interchanging the j-th and the
n-th rows, and interchanging the i-th and the (n− 1)-th
rows, which can be formulated as

C = P�BP . (21)

In this way, the elements of (i, j) pair and (n − 1, n)
pair are interchanged. Since B is symmetric and posi-
tive definite and P is invertible, C is thus also an SPD
matrix. We then perform f

(·,{(n − 1, n)
})

on C and
obtain D:

D = f
(
C,

{
(n− 1, n)

})
. (22)

As proved in the procedure (1), D is also an SPD ma-
trix. The transformation from B to C is invertible, and
the inverse of the transformation is itself, as shown in
Eq.(20) and Figure 3(a), so B = P�CP . Since C and

D are only different at the elements of (n − 1, n) and
(n, n− 1),

f
(
B,

{
(i, j)

})
= P�DP . (23)

We thus have that f
(
B,

{
(i, j)

}) ∈ S
+
n because D ∈

S
+
n and P is invertible.

(3) f(B, S) is an SPD matrix.
We rewrite S = {(ik, jk)|k = 1, 2, ...,m} and m ≤
n(n − 1)/2. Figure 3(b) shows that the f(B, S) can be
performed in m steps:

B
f(·,{(i1,j1)})−−−−−−−−→C1

f(·,{(i2,j2)})−−−−−−−−→ C2 → ...

... → Cm−1
f(·,{(im,jm)})−−−−−−−−−→ Cm.

(24)

It’s easy to verify that Cm = f(B, S). By using the
proof in the procedure (2), we have that C1,C2, ..., and
Cm are all SPD matrices. Therefore, f(B, S) ∈ S

+
n .

To sum up, f(B, S) is still an SPD matrix.
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